소프트웨어 개발 방법론

(2018-2, 대학원)

prof. Yun Tae Soo 2018.9.4.

1. 강의 개요(교과목 소개)

본 수업은 최근 화제가 되고 있는 4차산업혁명시대에 주류인 인공지능과 머신러닝에 대한 개념을 학습함으로써, 지능적으로 문제를 해결할 수 있는 문제해결능력을 키우고, 머신러닝과 딥러닝에 대한 이해를 바탕으로 본인이 하고 있는 연구문제를 딥러닝을 이용해서 해결할 수 있도록 도구를 설계하는 것을 목표로 한다.

2. 강의교재 및 참고자료

주교재: http://hunkim.github.io/ml/ 의 시즌 1-딥러닝의 기본 동영상강좌를 시청하고 수업시간 보충 부교재 및 참고문헌: 수업시간 배표 혹은 e-class에 탑재

3. 시험 및 평가

1) 성적 : 출석 20%, 수업 참여도 : 20%, 결과물 및 레포트 60%

2) 결과물 및 레포트 : 본인의 연구문제를 머신러닝을 통해 설계하고 해결한 것에 대한 레포트

4. 주별 강의계획서

주차	강의내용	비고(레포트 및 강의방법)
1	강의소개 /머신러닝의 개념와 용어	
2	Linear Regression(선형 회귀분석) 개념 및 Lab Exercise Python & TensorFlow 설치 및 테스팅	
3	Linerar Regression Cost 함수 최소화	
4	Multi feature의 Linear Regression	
5	Logistic (Regression) Classification	
6	Softmax Regression (Multinomial Logistic Regression)	
7	ML(Machine Learning)의 실용적인 측면과 유용한 기술 소개	
8	딥러닝의 기본 개념과 문제, 그리고 해결방법	
9	Neural Network 1 : XOR문제와 학습방법	
10	Neural Network 2 : ReLU and 초기값 정하기	
11	Convolutional Neural Networks (CNN)	
12	Recurrent Neural Network (RNN)	
13	Deep Network AWS에서 GPU 돌려보기	
14	AWS에서 저렴하게 Spot Instance를 터미네이션 걱정없이 사용하기	
15	Google Cloud ML을 이용해서 TensorFlow실행하기	