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ABSTRACT

In this paper, we explore the notion of using frames to project

sensed colors within their inherently 3D space onto a larger

number of color basis vectors. In particular, we develop a

new frame design, Incoherent Color Frames (ICF), which can

include an arbitrary number of incoherent color vectors. An

ICF frame possesses key desired properties including the abil-

ity to sparsify colors in 3D and to decorrelate color channels

utilizing a spatial-frequency selective strategy. We present

a low complexity algorithm for constructing ICF frames tar-

geted for the problem of image demosaicing. Our simulation

results show that when incorporating the proposed ICF within

a Compressive Demosaicing (CD) framework [8], significant

visual improvements can be achieved when compared with

traditional and Compressed Sesnsing-based demosaicing so-

lutions.
Index Terms— Compressed sensing, Demosaicing.

1. INTRODUCTION
The majority of consumer cameras utilize a Color Filter Array

(CFA) that admits, for each image pixel, a single color (e.g.,

R, G, or B) onto the image sensor. Hence, the captured image

is a mosaic of different single-color pixels. This framework

made it necessary to develop demosaicing algorithms that re-

cover the original three color channels for each image pixel.

Due to its impact on millions of consumer cameras, the area

of demosaicing has received a great deal of attention over the

past decade (e.g., [1]).

Few novel attempts have been made to solve the problem

of demosaicing based on solutions developed under the area

of Compressed Sensing (CS) [9, 8, 12]. Despite their rela-

tive success, recent CS based demosaicing approaches follow

the traditional view of 3D representation of the color chan-

nels. More recently, a Compressive Demosaicing (CD) frame-

work [8] was developed, and which is based on (a) utilizing

panchromatic CFAs; and (b) projecting traditional three color

channels onto an Equiangular Tight Frame (ETF). The no-

tion of projecting the traditional 3D color channels into an

ETF opened the door for a new paradigm for solving the de-

mosaicing problem. In a nutshell, applying an ETF within

the 3D color space enables further sparsification, and hence

enhances the probability of a CS solver to find the original

three-color signal. Nevertheless, and despite being maximally

incoherent, an ETF based approach for demosaicing suffers

from several shortcomings and faces key challenges. One key

obstacle for using ETF is that only a single non-trivial ETF

frame is known to exist in 3D. This single non-trivial ETF in

3D has only six basis vectors; and hence the level of sparsity

that can be achieved is rather limited. Furthermore, prior CS-

based demosaicing formulations [8, 9, 11] are not sufficiently

flexible and do not consider key characteristics of color im-

ages (e.g. positive values in RGB color planes) and related

attributes of the human vision system (e.g. low sensitivity of

human eyes to high frequency chroma components). Thus,

the deployed CS-solver might diverge from the correct solu-

tion and lead to demosaiced images with artifacts.

Consequently, there is a clear need for developing a more

general framework than ETF for representing color images in

their inherently 3D space. Such framework should exploit the

notion of projecting the three traditional color channels onto

an overcomplete sparsifying color dictionary using an arbi-

trary number of basis vectors while considering key features

of the color space and its relationship with the spatial fre-

quency domain. It is crucial to note that a viable CS-based de-

mosaicing solution needs to consider the sparisification of the

color image in both (a) the spatial (pixel) domain through an

inter-pixel decorrelation transform and (b) the 3D space of the

color channels through inter-color channel (or simply “inter-

channel”) decorrelation. This sparsification process (in both

domains) can be achieved in a separable manner (e.g., by em-

ploying a spatial-frequency independent color transform) or

by a non-separable framework. In this paper, we introduce a

new frame design that we refer to as Incoherent Color Frames

(ICF). ICF can be realized using a separable or non-separable

sparsifying framework. However, as we show in this paper, a

non-separable strategy (i.e., by employing an ICF frame that

is a function of the spatial-frequency) can outperform its sep-

arable counterpart significantly. Consequently, the primary

focus of this paper is on a non-sparable ICF framework.

It is important to note that employing well known “opti-

mization” methods for constructing tight frames or for achiev-

ing minimum coherence projection matrices [10] are not suit-

able (not even applicable) in the context of the proposed ICF

frames, since a set of ICF constraints (outlined later) lead

to a highly non-convex problem and any alternating projec-

tion algorithm may diverge after a few iterations. Hence, we
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present a heuristic algorithm for constructing sub-optimum

ICF frames that are tailored for demosaicing. The algorithm

attempts to capture the key properties of an ICF (e.g., the ne-

cessity of having a luminance component and considering at-

tributes of the human vision system) to achieve good sparsi-

fying results. Our simulation results show that the proposed

ICF design provides visibly improved quality for demosaiced

images when compared to leading approaches. The remain-

der of the paper is structured as follows: In Section 2, we

introduce the notations used in this paper and briefly describe

a CD framework that employs a generic ICF. In Section 3, we

present our algorithm for constructing sub-optimal ICF color

frames for CD. The simulation results are presented in Sec-

tion 4 and Section 5 concludes this paper.

2. COMPRESSIVE DEMOSAICING WITH ICF
Throughout this paper, we use the vectorized forms of images

(formed by stacking the columns of respective matrices). As-

sume that for the l-th pixel, the CFA effectively multiplies the

red, green and blue intensities by a factor of αl, βl and γl
respectively. Thus, the photosensor for the l-th pixel senses:

yl = αlRl + βlGl + γlBl, where R, G and B are red, green

and blue color planes of the image in the vectorized form.

Extending this formulation for the whole image gives:

y = φ[RT GT BT ]T (1)

where y,R,G,B ∈ R
N and N is the total number of pixels.

Furthermore, φ can be defined by means of matrices ᾱ, β̄
and γ̄ as φ =

[
ᾱ β̄ γ̄

]
. Here, ᾱ, β̄ and γ̄ are diagonal

matrices where ᾱi,i = αi, β̄i,i = βi, γ̄i,i = γi and zero else-

where. Now the problem of demosaicing can be stated as fol-

lows: given samples y and the CFA matrix φ in (1), find color

planes R, G and B. Note that (1) is an under-determined sys-

tem of linear equations and one can resort to a CS approach

if the RGB vector can be mapped into a sufficiently sparse

representation ξ through a sparsifying transform Ψ and if the

CFA matrix φ leads to a projection matrix P = φΨ with a

low measure of coherency. In that case, the sparse represen-

tation of the image (block) would be estimated by solving:

ξ̂ = argmin ‖ξ̄‖1 : y = P ξ̄ (2)

After recovering ξ̂, the vectorized forms of RGB color planes
of the target image would be reconstructed by Ψξ̂.

The success of any CS-based demosaicing algorithm or

equivalently the quality of the demosaiced image tightly de-

pends on how well the transform Ψ captures intrinsic cor-

relations within color images. Broadly speaking, there are

two approaches for designing the sparsifying transform Ψ for

natural color images: (a) methods (e.g. [9]) which are inher-

ently oblivious to the distinction between the spatial and color

domains; and (b) approaches that are mindful of the distinc-

tion between the two types of correlations (spatial and color-

channel) [8, 11, 12]. A prime example of the first approach

is the one introduced in [9] where trained dictionaries were

employed to sparicify color images. Despite of its superior

results, such approach relies on image-dependent transforms

and hence can suffer from high computational complexities

due to the training process. In this paper, we focus on the

second approach, which is mindful of the distinction between

spatial and color channels’ domains, yet it employs fixed non-

separable frames that are based on using spatial-frequency de-

pendent ICF’s. This strategy lowers the computational com-

plexity and simplifies the demosaicing process while provid-

ing high-quality visual results.

Consider signal x = (x1, x2, . . . , xl) where transform

Ψ(i) de-correlates xi ∈ R
di . Then, one can use the separable

transform Ψ(1)⊗. . .⊗Ψ(l) to de-correlate the vectorized form

of x, where ⊗ denotes the Kronecker product. Prior works [8,

12, 11] in CS-based demosaicing utilized inter-channel and

inter-pixel correlations in this separable form. More specif-

ically, in our work [8, 12], the sparsifying transform Ψ is

formed by: Ψ = Θ ⊗ ψ, where ψ and Θ capture spatial

and color correlations, respectively. This separable formula-

tion, which is similar to some traditional demosaicing meth-

ods, attempts to find spatial transform (e.g., DCT or Fourier)

coefficients of the image in fixed color spaces (e.g., YUV).

In [8], we utilized Equiangular Tight Frame (ETF) along with

the luminance (Y ) axis in a separable form for Θ and 2D-

DCT for the spatial transform ψ. At first glance, this choice

seems to be an optimal one since an ETF is the most incoher-

ent redundant frame for a given number of atoms. Although

the ETF based solution may work well for image regions

with limited colors, a demosaiced image can still have visi-

ble color shifts in other regions. The failure of the separable

ETF based color frame is due in part to the inflexibility of the

separable formulation. Another formulation for Ψ = Θ⊗ ψ
is: Ψ =

[
Θ⊗ψ:,1 . . . Θ⊗ψ:,N

]
where ψ:,i is the i-th

column of ψ. In this formulation, Θ can be considered a

frame to decorrelate the triplet (R̂i, Ĝi, B̂i), where R = ψR̂,

G = ψĜ and B = ψB̂. Unfortunately, designing a Θ which

can sparsify (R̂i, Ĝi, B̂i) for all frequencies i, is cumbersome

and practically infeasible. This is due the fact that if an im-

age patch has more than one color (which is most likely the

case), then the optimum Θ changes for different frequencies

as well. Thus, the CS-solver might diverge from the correct

solution and hence introduces some artifacts. In this paper,

we solve this problem by introducing the concept of utilizing

non-separable Incoherent Color Frames (ICF). More specifi-

cally, we divide the frequency indices [N ] := {1, 2, . . . , N}
into K groups Si, i ∈ [K], where

⋃
Si = [N ]. Then for

the i-th frequency group, an ICF Θi ∈ R
3×qi that has qi

color atoms would be utilized. Thus, given the frequency

group {Si}i, spatial dictionary ψ(.) and the color coordinates

{Θi}i, the final sparsifying dictionary is formed by:

Ψ =
[
Θ1 ⊗ψ

(.)
:,S1

. . . ΘK ⊗ψ
(.)
:,SK

]
(3)

Note that in an extreme case, where all Θi are the same, then

the non-separable formulation (3) turns into the separable for-
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mat. Another extreme case might be the case where we de-

sign a distinct color frame for each frequency, i.e. K = N .

In this paper, we consider the case when frequencies are par-

titioned into three groups (K = 3): (a) DC frequency (b) low

frequency atoms and (c) high frequency atoms. In the next

section, we develop some guidelines for designing the corre-

sponding three ICFs (Θ1, Θ2 and Θ3).

3. INCOHERENT COLOR FRAMES

Our proposed design for matrices Θ := {Θi}i considers the

following:

The Luminance Vector for DC: Θ1 has to include the lu-

minance vector Y = [ 1√
3

1√
3

1√
3
]T . This can be justified

easily by recalling that the luminance of any color image usu-

ally contains the most energy of that image. Inclusion of the

Y vector in ICFs clearly contributes to improved sparsity.

Over-complete ICFs for DC and low frequencies: Note

that the role of matrices {Θi} is two-fold: (a) to make the

solution vector (more) sparse and (b) improve the mutual in-

coherency conditions [5] of the projection matrix P = φΨ.

Considering that a CD approach would operate on blocks of

images and each image block has only a few colors, then Θ1

should sparsify the average color of any possible image patch.

Clearly for a given Θ1 where q1 = 3, this task is impossi-

ble (the same argument holds true for low frequency atoms

but not for high frequency ranges). Consequently, a basic re-

quirement for DC and low frequencies is qi > 3 for i = 1, 2.

Further, these frames have to be incoherent to keep the mutual

coherency as low as possible.

The Proper Number of Color Bases: Note that there is a

limitation on the number of atoms in color coordinates {Θi}.

First, as we add more and more atoms to Θi (increase qi),
the length of the solution vector ξ increases as well. Since

the complexity of most of the CS decoder algorithms are non-

linear as a function of the length of the solution vector, thus

the time required for demosaicing increases at a much higher

rate as we add more atoms. Second, adding too many colors to

an ICF could lead to a degraded color quality or to a saturated

quality in the best case (where no improvements on visual

quality/PSNR can be achieved), since the sparsity ratio of the

solution would fall out of the working region of CS-decoder

due to the phase transition phenomenon [7].

In our simulations, Θ1 (for DC) is a color frame com-

posed of seven incoherent vectors (including the luma axis)

in the positive Orthant of R3. Meanwhile, Θ2 (for low fre-

quency atoms) contains twelve incoherent vectors in R
3 and

for high frequencies, Θ3 only consists of the luma vector Y .

The aforementioned selected color atoms and their numbers

in these color transforms have been chosen based on our expe-

rience, and hence, they are seemingly (and admittedly) heuris-

tic. However, we can justify such selection of color trans-

forms for different frequency ranges by the following argu-

ments: (a) The DC coefficients (sum of pixel values) in differ-

Input: C, u, l, v, H, Θi

Output: Θi

for i=1 to C do
Generate W ∈ H ;

if max{WTΘi} ∈ [l, u] then
Θi ← [Θi W ] ;

end
end

Algorithm 1: Finding an Incoherent Color Frame.

ent color planes (and hence (R̂1, Ĝ1, B̂1)) are always positive.

Hence, the color frame for the DC coefficient has to span only

positive Orthant of R3 and our choice of color frames enables

us to span a wide range of colors sparsely. (b) For low fre-

quencies, spatial coefficients (R̂i, Ĝi, B̂i), i > 1 might take

any value (including negative numbers). To sparsely represent

all possible triples and meanwhile keep the size of the respec-

tive color frame as small as possible, we have to use ETFs

with a sufficient number of atoms. However, as stated before

in R
3 there exists only one non-trivial ETF with six atoms.

Hence, we deploy an incoherent frame (which is the best ap-

proximation to an ETF) with twelve atoms. (c) For high fre-

quencies, we have considered the well-known fact that the

human visual system is much less sensitive to high frequency

chrominance changes. Hence for simplicity of design and

by choosing Θ3 = Y as the only color coordinate for high

frequency atoms, we enforce the demosaiced image to have

the same high frequency coefficients for luma and chroma.

This also prevents the CS-decoder to choose high frequency

chroma atoms that might lead to color artifacts.

Our approach to finding such ICF is presented in Algo-

rithm 1. Bounds l and u dictate the maximum number of at-

tainable atoms. Number of iterations is chosen large enough

(e.g. one hundred) to increase the chance of finding all possi-

ble atoms. Note that, we set max{WTΘi} to be higher than

l, since otherwise we may end up with a few vectors that oc-

cupy a big space in R
3 and prevent adding any further vector

to Θi. The restriction of max{WTΘi} < u guarantees that

atoms are distinct and meaningful (incoherent).

4. SIMULATION RESULTS
In this section, we present our simulation results for demo-

saicing of natural images. Due to space limitations, we can

only present results for a cropped region of the well-known

“Lighthouse” test image. This particular image region has

been the choice for virtually all leading demosaicing methods

including CS-based ones; and hence we used it for consis-

tency. As clearly demonstrated in Fig.1(b)-1(d), leading tradi-

tional demosaicing algorithms such as [4, 2, 3], introduce vis-

ible color artifacts. Even though, the spatio-spectral method

[3] produces a color image with a very high PSNR Fig.1(d),

the reconstructed image still suffers from visible color ar-

tifacts. Note that the CS based approach of [9] (Fig.1(e)),
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(a) Original image. (b) Method of POCS[4],

PSNR=31.06db

(c) Method of AHD[2],

PSNR=38.64db

(d) Method of SG[3],

PSNR=41.64db

(e) Method of Mairal[9],

PSNR=35.68db

(f) CD[8], YUV separable

form, PSNR=29.62db

(g) CD, ETF-6 separable,

PSNR=36.01db

(h) CD, q1 = 7, Θ2 =
ETF , PSNR=40.70db

(i) CD, ICF, (q1, q2) =
(7, 12), PSNR=42.09db

(j) CD, ICF, (q1, q3) =
(64, 12), PSNR=30.29db

Fig. 1. A 64× 64 cropped region from the “lighthouse”. The reported PSNRs are calculated only for the cropped region.

requires some training for deriving an “optimal” sparsifying

dictionary (tailored for the specific CFA used) during the de-

mosaicing process, and naturally this increases the complex-

ity of their algorithm. In contrast, the proposed ICF-based CD

method is a generic, non-adaptive framework for demosaicing

and works on all types of CFAs. Here, we have used a sec-

ond generation CFA [3] which might not be the optimal one

for our CD framework. To investigate the effect of ICFs on

the quality of demosaiced images, we also run our algorithm

to generate ICFs with different number of atoms to utilize in

our CD solver. For instance, Fig.1(f) and Fig.1(g) show the

cases where, respectively, color coordinates YUV and ETF-6

are utilized in a separable form for designing the sparsifying

dictionary while in Fig.1(h)-Fig.1(j) non-separable ICFs are

utilized. More specifically, for Fig.1(h)-Fig.1(j), Θ1 is an ICF

with q1 = 7 atoms where (u1, l1) = (.83, .73). For Fig.1(h),

an ETF is utilized for Θ2 while Fig.1(i) illustrates the case

where Θ2 consists of 12 atoms with parameters (u2, l2) =
(.82, .72). Finally, Fig.1(j) shows an extreme case where q1 =
64 and (u1, l1) = (.99, .89). As clearly illustrated in these

figures, increasing the number of color atoms in utilized ICFs

(qi) clearly improves the visual quality (and PSNR values) of

the demosaiced images. However, after a certain number of

color basis vectors, adding more atoms to Θis does not nec-

essarily improve the quality and eventually the quality of the

demosaiced images may actually degrade in the extreme cases

where qis are relatively large as in Fig. 1(j).

5. CONCLUSION
In this paper, we investigate the design of new non-separable

color frames for demosaicing applications. Our results show

that utilizing incoherent color frames in a non-separable form

for different frequency ranges in the frequency spatial do-

main, leads to demosaiced image with high visual quality.
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