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Abstract—A typical consumer digital camera uses a Color
Filter Array (CFA) to sense only one color component per
image pixel. The original three-color image is reconstructed by
interpolating the missing color components. This interpolation
process (known as demosaicing) corresponds to solving an under-
determined system of linear equations. In this paper, we show that
by replacing the traditional CFA with a random panchromatic
CFA, recent results in the emerging field of Compressed Sensing
(CS) can be used to solve the demosaicing problem in a novel
way. Specifically, during the image reconstruction process, we
exploit the fact that the multi-dimensional color of each pixel has
a compressible representation in a (possibly overcomplete) color
system. While adhering to the “single color per pixel sensing”
constraint at the sensing stage, during the reconstruction process
we utilize the inter-pixel correlation by exploiting the compress-
ible representation of the overall image in some sparsifying bases.
Depending on the CFA, sparsifying bases and the color system,
we form an underdetermined system of linear equations and
find the sparsest solution for the color image by utilizing a
CS solver. We illustrate that, for natural images, the proposed
Compressive Demosaicing (CD) framework visually performs
better (mostly significantly better) than leading demosaicing
approaches. Furthermore, CD could achieve virtually perfect
reconstruction on most tested images.

I. INTRODUCTION

Motivated by cost constraints, most low-cost consumer
grade digital camera systems are currently designed to (a)
sense only one color component per image pixel and (b)
interpolate the other missing color components (at each pixel)
during reconstruction. The sensing process, which employs a
Color Filter Array (CFA), maps each pixel to a single color
based on a color pattern. The CFA color pattern and the
interpolation process (widely known as demosaicing) have a
significant impact on the quality of the reconstructed image.
The most popular CFA pattern is the Bayer color pattern
that employs two green filters, one red, and one blue filter
in each 2 x 2 block within the CFA. Many other CFA
patterns have been proposed including ones that are based
on secondary colors [3]. There has been a great deal of
attention paid to the demosaicing problem, and consequently,
a flurry of algorithms has been proposed [2]-[11]. Several
recent papers on image demosaicing provide an excellent
overview of leading approaches and their classification (e.g.,
spatial versus frequency domains) [1]. In general, demosaicing
algorithms exploit the correlation that exists among adjacent
pixels (inter-pixel correlation) and among color planes (inter-
channel correlation) [1]-[11].

Meanwhile, the area of Compressed Sensing (CS) [12] has
attracted a great deal of attention recently. The problem of

CS targets the sparsest solution of an underdetermined system
of linear equations. Similarly, the problem of demosaicing
is basically an attempt to finding a solution to an underde-
termined system of linear equations where for each pixel,
one linear sample of three color components is sensed. In
principle, CFA-based image capture represents a three-to-one
compressed sensing. Hence, utilizing the rich results developed
in the CS area to solve the demosaicing problem seems
plausible. In this paper, we present Compressive Demosaicing
(CD), a framework to demosaic natural images by employing
aspects from the theory of CS. More specifically, instead of
finding the missing color components of a pixel, we find an
equivalent compressible description of the same image. This
equivalent description of the image is essentially the redundant
representation of that image with minimal inter-channel and
inter-pixel correlations. In words, given the CFA samples, the
proposed CD framework finds the transform coefficients of
the image (with respect to a sparsifying frame or basis) in
a redundant color space, by algorithms developed in the CS
area to reconstruct the three-color image. We employ a random
panchromatic CFA during the sensing stage of our proposed
framework.

It is important to highlight that the proposed compressive
demaosaicing framework differs significantly from other re-
cent attempts for combining CS and CFA sensing. In partic-
ular, the utility of CS for sensing color images has been pro-
posed in [19]. Our proposed CD framework departs from prior
work in many ways both in terms of the problem objectives
and also the approach to solve that problem. For instance, [19]
requires a compressed sensing camera [18] (where for each
pixel, a linear measurement of the whole image is sensed)
and hence requires drastic changes in the design of digital
cameras which might not be feasible (at least at the present
time). On the other hand, in our method, for each pixel, we
only sense a linear combination of color components of that
(single) pixel, which can be achieved simply by employing
a random panchromatic CFA. Hence, we strictly adhere to
the “single color per pixel” constraint. Second, [19] utilizes a
joint sparsity model to recover a sparse representation of the
color image. On the other hand, we utilize a novel combination
of Equiangular Tight Frames (ETFs) along with YUV color
system to de-correlate the color components of an image.

The remainder of the paper is organized as follows. In
section 2, we review the sensing process during image capture
and also briefly introduce the problem of CS and how it is
related to the proposed compressive demosaicing. In section



3, we formulate the compressive demosaicing problem and
describe the redundant sparse/compressible equivalent form
of the image and how we demosaic that image. Simulation
results for natural images are presented in Section 4. Section
5 concludes the paper.

II. SENSING FOR COMPRESSIVE DEMOSAICING

In this section, we review the sensing process during image
capture and link the demosaicing problem to the CS problem
[12]. Assume that the image of interest consists of three color
planes, red (R), green (G) and blue (B). In words, the color
of the pixel located at the Cartesian location (4, 7j) is in the
form of (R, ;, G, ;,B; ;) in the RGB color system. Using a
generic CFA, an n; X ny image sensed by a “single color per
pixel” digital camera can be represented as:

V(i,7) € [n1]x[n2] 1 yi; = a; ;R ;45 jGi j+7:,;Bi; (1)

where Vg € N, [q] :=={1,2,...,q}, y;; is the (single) sensed
color at pixel (¢,j) and «; ;, 8;; and ~y; ; are some positive
weights associated with the red, green and blue wavelengths
at pixel location (i, j), respectively, with the constraint Vi, j :
a;j + Bij + vi,; = 1 [3]. Extending this formulation to the
whole image yields: y = a«©OR+S0G+~y©B where © stands
for the Hadamard (point wise) product. Equation (1) suggests
that for any pixel (¢, 7) we have an underdetermined system of
one linear equation y; ; and three unknowns R; ;, G; ;, B, ;.
Indeed, the objective of all demosaicing algorithms is to find
these unknowns. However, from elementary linear algebra,
we know that an underdetermined system of linear equations
has an infinite set of solutions and hence the problem of
demosaicing might not be solved in a linear algebraic way.
Therefore, researchers over the past few decades proposed
many alternative approaches to tackle this problem including
bilinear interpolation, filtering, demodulating and many others
[1]. Most of these demosaicing methods assume some hypoth-
esis (or prior model) about the image (to name a few, the colors
of adjacent pixels obey a certain relationship or the image
edges are horizontally or vertically oriented) and then design
their recovery algorithms based on these assumptions. Thus,
demosaicing methods work quite well when the corresponding
assumptions are satisfied; however the same methods can fail
in a significant way once the underlying assumptions are
violated. For instance, the presence of a diagonal edge in the
image usually causes visible artifacts.

In this paper, we show that recent advances in the emerging
field of Compressed Sensing [12] enable us to design a de-
mosaicing algorithm by exploiting the fact that natural images
have sparse or compressibe representations in some transforms
such as Discrete Cosine Transform (DCT), Contourlets [21],
directional wavelets [16]-[17] and so on. Before presenting our
algorithm, let us briefly review the Compressed Sensing (CS)
problem.

CS targets the sparsest solution of an underdetermined
system of equations [12], [13]:

(Po) : argmin||zllo : Ymx1 = PmxnZnx1, m<n  (2)

where 2 € R” is the target sparse or compressible! unknown
vector, y is the measurement vector (set of equations), P is
the measurement matrix and hence ||z||o counts the number
of non-zero elements of x. Solving (Py) directly is NP-hard.
It has been shown that under some conditions [12]-[14], the
solution z of problem (P,) is the same as the solution to the
following problem:

(1) :

arg min Hx”l S Ymx1 = PrxnTnxi, m<n 3)

Now (P) is a convex optimization problem and can be solved
tractably, for instance using Basis Pursuit (BP) [15].

Naturally, the problem of demosaicing is a set of seemingly
independent underdetermined system of linear equations (1)
and hence utilizing the rich results in the area of CS seem
plausible. Here, we show that replacing traditional CFAs by a
random panchromatic CFA enables us to demosaic the image
by CS algorithms. By random panchromatic CFA we imply
that for each pixel, the weights a, § and ~ in (1) are some
positive random numbers that add up to one. The reason that
we have utilized random panchromatic CFA will be discussed
in more detail in the subsequent sections; meanwhile, an
intuitive justification can be highlighted as follows: when we
sense only one of the primary colors (red, green or blue)
for a particular pixel, then we are discarding the information
about the other two colors, which have not been sensed for
that particular pixel; and this is an irreversible mapping. On
contrary, if we sense a linear combination of color components
of a pixel, then we are retaining information about all three
colors; yet, we now have to face the problem of separating
these unknowns (color components) from the equation (one
sample).

To employ CS in the problem of demosaicing without intro-
ducing dramatic changes in hardware, we have to address some
issues and overcome some obstacles, few of which we list
here. First, in CS, we would traditionally sense m > 1 linear
samples from the same signal; however in digital cameras, in
the best case when a random panchromatic CFA is employed
(or equivalently Vi,j : a3 # 0,8;; # 0,7:; # 0) we are
sensing only one compressive sample (m = 1) from three
unknowns (the color components of a specific pixel). In words,
for each pixel we have a (seemingly independent) system of
only one equation and three unknowns and these unknowns
might not be sparse in the RGB color coordinate (and CS
does not apply to this type of problem). Second, most of the
popular CS decoding algorithms require the underlying signal
to have a high dimension (z € R™ where n > 1). Again
if we attempt to recover the color components of each pixel
individually, even if the pixel has a sparse representation in the
RGB domain, then there is no guarantee that the underlying
CS decoder would find that solution. Finally, Basis Pursuit
(BP), which is arguably the most reliable and best performing
CS decoder (in terms of quality of the reconstructed signal)

'By k-sparse we mean x is non-zero in k indices (k = ||z|lo = {#1 :
z; # 0} ). Similarly x is k-compressible if x has k significant non-zero
coefficients and the rest of coefficients are very small.



requires m ~ bk compressive samples to reconstruct a k-
sparse/compressible signal with “an acceptable” error. This
suggests that the signal which we are trying to find, has to
be (approximately) 20% compressible which is not the case
for RGB color planes of a natural image. Therefore, we need
to recover another (yet equivalent) form of the image such that
this equivalent form must be sufficiently sparse.

In our work, and while strictly adhering to the “single
color per pixel” CFA at the sensing stage, we address the
above challenges by applying our demosaicing algorithm on
blocks of the image and employing redundant color spaces
in the solver. More specifically, we jointly demosaic (blocks
of) an image (as opposed to pixel by pixel demosaicing). By
applying block based demosaicing, one might exploit the fact
that the underlying block has a compressible representation
in a basis or frame (for instance DCT, directional wavelets
[16]). Furthermore, inter-channel correlations are exploited by
utilizing a redundant color space, instead of a traditional three-
color space. To summarize, given the CFA samples, we utilize
the inter-pixel correlations by looking for the sparsest solution
within some transform coefficients of the image; and exploit
the inter-channel correlations by looking for these transform
coefficients in a redundant color space. Below, we outline the
problem formulation of the proposed compressive demosaicing
framework.

III. PROBLEM FORMULATION OF COMPRESSIVE
DEMOSAICING

As before, suppose the target color image is composed of
three color planes R, xn,, Gnyxn, and By, «n, (hence the
size of the image is ny X no pixel). Without loss of generality
and to simplify the equations, let us consider the vectorized
form of the image. By vectorized form we mean that we stack
the columns of the image on top of each others, that is:

= (j — 1)711 +i: R = Ri_’j, G = Giyj, B; = B@j 4)

Throughout this paper, we denote 2D forms of images and
also samples by bold-face letters (A) and use the same letter
in the normal size italic font (A) to show its vectorized form.
Let N = ning be the total number of pixels in the image of
interest. Then we can re-express (1) in the vectorized form:
Vil € [N} = {1,...7N} sy = Ry + BGy + v By, or
equivalently in the matrix form by:

y=o¢[R" G" B"|" (5)

where for b € {y, R,G,B}: b=[by ... by]" and ¢ can be

defined by means of matrices @, /5 and ¥ as:
p=[a B 7] (6)

and @, B and 7 are diagonal matrices in the following form.
=7

ao o iz g Bi=i o[
S VAR R A R T R VR

Hence in the demoasicing problem, we have ¢ (the CFA) and
y (sensed image) and we are searching for the R, G and B

vectors. It is important to highlight that at this stage, we may
not apply a CS decoding algorithm to recover the missing
color components due to the following reasons: 1) The vector
[RT GT BT]T is not necessarily sparse or compressible; and
2) even if [RT GT BT]T is sparse and the CFA is random
panchromatic (each row of ¢ is non-zero in three column
indices), the matrix ¢ is ill-conditioned in terms of what is
known as the Restricted Isometry Constant (RIC) measure
[12]-[14]. This makes ¢ unsuitable for most CS decoders?.
Hence, we need to change the problem of finding a solution
to (5) into an equivalent problem that is suitable for CS solvers.
For instance, we need to formulate a variant to (5), for example
y = P(, which is better-conditioned; meaning, the solution
vector ( is compressible and the RIC measure for P is smaller
compared to ¢. These issues are addressed in the following
subsections.

A. Exploiting inter-pixel correlations

In the CS framework, each measurement y; is usually a
linear combination of all (or subsets of large size) of the
unknown signal z. This is usually achieved by employing
dense measurement matrices P in (2). However, in demosaic-
ing of an N = njny pixel digital image, it seems that we
have N independent small CS problems in the form of one
measurement and three unknown color components for each
pixel. As stated before, this type of problem is not generally
solvable under CS. Therefore, the first step of our proposed
method shall be: re-shaping the demosaicing problem into
a format suitable for CS without introducing any dramatic
changes in the hardware of digital cameras. To that end:
1) instead of recovering (or interpolating) the missing color
components individually for each pixel, we recover these
missing colors jointly for blocks of an image and 2) instead
of attempting to directly recover RGB planes, we look for
the transform coefficients of an alternative RGB planes in a
redundant color space. By doing so, we achieve several goals
simultaneously which we describe below.

Note that the value of each pixel in any color plane can be
considered as a linear combination of transform coefficients
of that image in some space. The number of transform
coefficients that contribute to the color value is dictated by
the nature of the transform. For instance, for Fourier, DCT
or any global transform domain, this subset is the set of
all transform coefficients (the value of each pixel is a linear
combination of all of Fourier/DCT transform coefficients). For
local transforms such as wavelets and similar transforms, the
size of the set depends on the support size of basis elements.
Consequently, with a random panchromatic CFA, each sample
would be a linear combination of transform coefficients of
RGB color planes. Now this is the format desirable for CS.
Moreover, we can exploit the high inter-pixel correlations
among adjacent pixels in our proposed method to make the
objective signal (representing the same image) sparse and

2Broadly speaking, most of CS solvers require that any full rank sub-matrix
of the underlying measurement matrix (P) behaves like an orthogonal system.



consequently help the CS solver. Recall that high inter-pixel
correlation translates to sparse/compressible representation of
these pixels in another transform. For instance, it has been
known that the DCT coefficients of texture regions are sparse.
Similarly different kinds of directional wavelets [16], [17]
represent edges effectively. Again, this motivates searching for
transform coefficients of RGB planes (instead of attempting
to recover RGB planes directly). Finally, as stated before,
most CS decoding algorithms succeed (with some tolerable
error) when the underlying signal is in high dimensions. Now
instead of finding (R;, Gy, B;) for each pixel, if we attempt
to find the block transform coefficients of these color planes
(}?, G, B), the length of the solution vector equals (at least)
the number of pixels in that block which is advantageous
for CS decoders. One might even virtually lengthening the
solution vector furthermore by utilizing redundant frames in
the decoder. In the rest of this subsection we show that by
targeting the transform coefficients, we improve the conditions
of the virtual measurement matrix P for the recovery process.

As long as a transform is linear, we can express the
analysis/synthesis steps in a matrix form. For instance, assume
that we want to represent the red plane of the image in a
separable transform (A, B): R = ARB. It is straightforward
to show that the transform coefficients in the vectorized form
are in the form of: R = T/JRR where Yvr = BT ® A and
® is the Kronecker tensor product operator (recall that R is
the vectorized form of R). Now assume R, G and B have
sparse/compressible representations (R, G , B ) in the transform
domains g, ¥g and p respectively, that is: R = 1/)31%,
G = 1¢G and B = 15 B. Define ¥ as:

Yr O 0
v = 0 Yvag O @)
0 0 ¢p

AT
then, we have: [RT GT BT]T = ¥ [RT GT BT} . Define
1n = ¢W. Then (5) would become:

y=n[R" G* B"|" ®)
Note that combining (7) and (6) simplifies 7 by:
n=[ar Pe Wn | ©)

Finally depending on the nature of bases used in the matrix
W, the RIC of 7 might be more suitable than the same
parameter for the matrix ¢, and hence y = 5[R G B]” has
a better chance of recovery by any CS decoding algorithm
(compared to (1)). In the next section, we exploit the inter
channel correlations to further sparsify the solution vector we
are searching for.

B. Exploiting inter-channel (color) correlation

It is well known that YUV or similar color spaces are
more efficient color coordinates than the RGB space for
compression applications. For instance, if the color of a pixel
in the RGB space is in the form of (a,b,c), then this color
can be expressed in the form of (e, f,g) in the YUV color

space where (e, f, g) decays faster compared to (a, b, ¢) when
represented in some transform space (e.g. DCT). Similar to the
idea of extending bases to frames, one might extend the color
coordinate basis vectors to an over-complete color coordinate
system to represent the colors of an image even more sparsely.
In matrix form, one can express the RGB color system using

another set of colors {c1,ca,...,¢q}:
[r g b]" = 0sxq4lcica .. cg]’, ¢>3 (10)
where 6 is the matrix for converting colors {c1,...,c,} into

the RGB color system. Clearly, by increasing ¢ (the number of
colors in the color system), we are increasing the likelihood of
expressing the color of a pixel sparsely. Note that {c1,...,cq}
are used for analysis (and not synthesis) at the demosaicing
solver only. In words, by targeting a color space {c1,...,¢,}
with higher sparsity levels than traditional YUV or other 3D
color spaces, neither we utilize these sparisfying over-complete
colors for displaying the reconstructed images nor we require
sensing a larger number of colors when capturing the image.
These colors solely facilitate expressing the color of any pixel
in a redundant and sparse format and hence help the CS solver
during the decoding process. In our proposed compressive
demosaicing framework, we propose the utility of a novel color
space that includes Equiangular Tight Frames (ETF) [22] along
with YUV in the color transform 6. Before describing the task
of 6, let us briefly review the key properties of ETFs.

A real valued (n, k)-equiangular-tight frame (where n > k)
is a set of n unit norm vectors {fi,..., f,} in R* with the
strong property of: Vg # p € [n] : | (fy, fp) | = X, that is the
absolute value of inner-product of any two different vectors in
the frame is constant. It can be verified [22] that these vectors
correspond to finding n lines in R¥ for which the closest pair
(in terms of angle) is as far apart as possible. The motivation
for using a random panchromatic CFA in conjunction with
ETF’s in the proposed CD framework should be clear now.
Recall that one major drawback of using a Bayer pattern is that
for each pixel, the measured color is projected onto only one
of the 3D color coordinate bases; hence, we completely lose
the information about the other two colors (for that particular
pixel). For an ETF, none of the vectors are orthogonal to each
other and meanwhile all color vectors have the same angular
distances with respect to each other. In words, in the sensing
process (which is random panchromatic in our method), we
are not discriminating any color over the other ones, and at
the solver side an ETF system with sufficient color coordinates
can sparsify the color. For sparsifying the RGB components
of a pixel, we have used the redundant color coordinate frame
composed of a (6,3)-ETF and YUV color space (hence ¢ = 9).
Let A = # and form (6, 3)-ETF by:

0 0 1 1 X =X

1
Oprp=——o | 1 1 A =A 0 0
VIEX LN X0 0 1 1

then 6 that we have used for our simulations, is in the form
of:

Y

0 = [Oyvv OprF] (12)



Now let us denote the identity matrix of size N x N by Iy
and define © (which is a 3N X ¢N matrix) as © = 0 ® Iy;
and as before let R, G and B be, respectively, the vectorized
form of the red, green and blue color planes of the image of
interest. Then it can be easily verified that:

[R" GT BT]" =0[¢ ...¢n]"

where {(1,...,(yn} represents the colors of the same image
in the color system {ci,...,c,}. Note that the transform
coefficients ]:2, G and B in (8) belong to color planes R, G
and B respectively. Hence a similar equality holds true for the
transform coefficients of the image in different color planes:

13)

T

(&7 6m 57 = efa i (14)

where ¢ = [(; ... éqN]T might be thought of as sparse (or
compressible) and redundant color components of transform
coefficients of an image in the color space {ci,...,c4}
Note that having é , (the vectorized form of) the image can
be reconstructed uniquely by [RT GT BT|T = wO(. The
objective of compressed demosaicing is finding f In the
next sub-section, we summarize our proposed compressed
demosaicing framework.

C. Integrating inter-pixel and inter-channel correlations

Now we can explicitly express the sensing and the demo-
saicing stages of our proposed method. As stated before, the
only change that we require in the hardware, is substituting a
traditional Bayer CFA by a random panchromatic CFA. Hence,
the sensed image is in the form of (1). We use y the vectorized
form of the captured image (5) along with ¢ in (6) (the matrix
describing the CFA) in the image decoder. Integrating (8) and
(14) yields: . R

y=n0[C ... Cn)"

Note that the vector ¢ = [ ... ((; ~]7T expresses the same im-
age with the minimal correlations both among adjacent pixels
and among the colors of any pixel. Hence é is a compressible
signal. Meanwhile it is easy to verify that P = ¢¥0O = n©
is a dense matrix and with high probability any subset of its
columns is full-rank (because of random entries in ¢ and also
the nature of © in our method). Now giving y and P, any
generic CS decoder (for instance BP) recovers é by solving:

5)

x = argmin ||C]|; : ynx1 = PNXqNéqNXl (16)

After recovering z (the estimate of f) we estimate the vec-
torized forms of RGB color planes of the target image by
[RT GT BT]T = UOz. Reshaping R, G and B into R, G
and B (the matrix form) we display the demosaiced image.

IV. SIMULATION RESULTS

We have tested our proposed method to demosaic natu-
ral images and compared our results with some prominent
demosaicing methods. The number of demosaicing methods,
proposed in the community is so large that we can present
only some of the leading approaches to compare them with

the proposed CD framework. Among the leading demosaicing
approaches we present here are the Homogeneity-directed in-
terpolation [2], Alternating Projections (POCS) [4], Successive
Approximations [6] and the method of Hirakawa & Wolfe. The
first three methods were applied on a Bayer CFA image while
a Spatio-Spectral [3] CFA image and a random panchromatic
CFA data were generated for the method of Hirakawa and
our proposed CD method. In this section, we show the results
for demosaiced images of the well-known “Lighthouse” image
(most popular in the demosaicing literature), and we also
show results for the “Barbara” image. Both images contain
quite challenging high-frequency regions where a demosaicing
method can easily fail. Due to space limitations, some cropped
regions of these sets of demosaiced images are presented in
this section. For example, we focus on the well-know fence
area of the “Lighthouse”, where most demosaicing papers
focus on. In all these simulations, we have chosen YUV
and (6,3)-ETF for the sparsifying color coordinate in (12)
and DCT as the sparsifying transform in (7) and run our
algorithm on blocks of size 16 x 16 pixel. To eliminate the
blocking effect, we considered 12 pixel of overlap between
adjacent blocks and selected the medians of values calculated
for each pixel (for each color). For the solver, we have used
the Basis Pursuit algorithm to recover é in (16). Finally after
the recovery, we have used a median filter to reduce color
artifacts [5].

As clearly demonstrated in Fig. 2 and Fig. 1, CD has
achieved virtually perfect reconstruction for these parts of the
tested images while other methods introduce some artifacts in
the same images. These (almost) perfect reconstructions by
CD are due to the fact that (the overlapping) sub-blocks of
these images can be described in a compressible format in
the DCT domain and in the color space {(6,3)-ETF, YUV}.
More importantly, since the proposed method does not employ
any kind of filtering for interpolation process, none of the
demosaiced images was blurred.

V. CONCLUSION

In this paper, we introduced Compressive Demosaicing
(CD), a new framework for demosaicing images. As opposed
to traditional demosaicing methods, CD exploits inter-channel
and inter-pixel correlations to find the compressible transform
coefficients of the image of interest in an over-complete
color space by utilizing an optimal compressed sensing solver.
The only hardware change we require for our method, is to
employing a random panchromatic CFA.
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