1 .4.2 ¸è±Þ¼öÇØ

1.4.2.1 ¸è±Þ¼öÀÇ ¼ºÁú

(4.4)                            

À̿Ͱ°Àº ÇüÅÂÀÇ ±Þ¼ö¸¦ ¿¡ °üÇÑ ¸è±Þ¼ö(a power series about )¶ó ºÎ¸¥´Ù. ¿©±â¼­ ´Â º¯¼öÀÌ°í µéÀº »ó¼öÀ̸ç

µéÀ» ¸è±Þ¼ö (4.4)ÀÇ °è¼ö¶ó ÇÑ´Ù. ¸è±Þ¼ö (4.4)´Â °¡ ¾î¶² °ªÀ» ÃëÇϴ°¡¿¡ µû¶ó ¼ö·ÅÇϱ⵵ ÇÏ°í ¹ß»êÇϱ⵵ ÇÑ´Ù.

¸è±Þ¼ö°¡ ¼ö·ÅÇÏ´Â ¸ðµç ÀÇ ¹üÀ§¸¦ ¼ö·Å±¸°£ ¶Ç´Â ¼ö·Å¿ªÀ̶ó Çϴµ¥ ¸è±Þ¼ö (4.4)´Â 0| ¿¡¼­ ¼ö·ÅÇϰí,  

¿¡¼­ ¹ß»êÇÒ °æ¿ì ¾çÀÇ ½Ç¼ö À» ¼ö·Å¹Ý°æÀ̶ó ÇÑ´Ù.

          

Á¤¸® 4.2.1   ¸è±Þ¼ö (4.4)¿¡ ´ëÇÏ¿© ÀÌ Á¸ÀçÇÑ´Ù°í ÇÏÀÚ

(1) À̸é ÀÌ ±Þ¼ö´Â ¼ö·ÅÇÏ°í ¼ö·Å¹Ý°æÀº ÀÌ´Ù.

(2) À̸é ÀÌ ±Þ¼ö´Â ¹ß»êÇÑ´Ù.

(3) ÀÌ¸é ¸è±Þ¼ö´Â ÀϹݱ޼öÀ̹ǷΠÀϹݱ޼öÆÇÁ¤¹ý¿¡ ÀÇÇÏ¿© °áÁ¤µÈ´Ù.

    (  À϶§ ¼ö·ÅÇÏ¸é ¼ö·Å¿ªÀº À̰í ÀÏ ¶§ ¼ö·ÅÇÏ°í    À϶§ ¹ß»êÇϸé

     ¼ö·Å¿ªÀº À̸ç À϶§ ¹ß»êÇϰí À϶§ ¼ö·ÅÇÏ¸é ¼ö·Å¿ªÀº    

    ÀÌ´Ù. ¸¶Âù°¡Áö·Î À϶§ ¹ß»êÇÏ¸é ¼ö·Å¿ªÀº ÀÌ´Ù.)

              

¿¹Á¦ 4.2.1  ¸è±Þ¼ö   ÀÇ ¼ö·Å¹Ý°æ ¹× ¼ö·Å±¸°£À» ±¸Ç϶ó.

Ç®ÀÌ   À̶ó µÎ¸é

                                         

                                          

Áï, ¼ö·Å¹Ý°æÀº ÀÌ´Ù.

¿¡¼­ ÁÖ¾îÁø ±Þ¼ö´Â ¼ö·ÅÇÏÁö¸¸ À̱¸°£ÀÇ ³¡Á¡¿¡¼­ÀÇ ¼ö·Å¿©ºÎ´Â º°µµ·Î ÆÇÁ¤ÇØ¾ß ÇÑ´Ù.

À϶§ ÁÖ¾îÁø ±Þ¼ö´Â

                                          

ÀÌ ±Þ¼ö´Â ÀÎ ±Þ¼öÀ̹ǷΠ¹ß»êÇÑ´Ù.  

À϶§ ÁÖ¾îÁø ±Þ¼ö´Â

                                         

ÀÌ°í ±³´ë±Þ¼öÆÇÁ¤¹ý¿¡ ÀÇÇÏ¿© ¼ö·ÅÇÑ´Ù. ±×·¯¹Ç·Î ÁÖ¾îÁø ¸è±Þ¼öÀÇ ¼ö·Å±¸°£Àº

                                                          

                    

¿¹Á¦ 4.2.2    ¸è±Þ¼ö ÀÇ ¼ö·Å¹Ý°æ ¹× ¼ö·Å±¸°£À» ±¸Ç϶ó.

Ç®ÀÌ   À̶ó µÎ¸é

                                       

Áï, ¼ö·Å¹Ý°æÀº 3ÀÌ´Ù.

ÀÎ ÀÇ ±¸°£ Áï  (-5, 1)¿¡¼­ ÁÖ¾îÁø ±Þ¼ö´Â ¼ö·ÅÇÏÁö¸¸ ÀÌ ±¸°£ÀÇ ³¡Á¡¿¡¼­ÀÇ ¼ö·Å¿©ºÎ´Â

º°µµ·Î ÆÇÁ¤ÇØ¾ß ÇÑ´Ù.

À϶§ Áï   À϶§ ÁÖ¾îÁø ±Þ¼ö´Â

                                                           

ÀÌ°í ¹ß»êÆÇÁ¤¹ý¿¡ ÀÇÇÏ¿© ¹ß»êÇÑ´Ù.

  À϶§ Áï   À϶§ ÁÖ¾îÁø ±Þ¼ö´Â

                                                          

ÀÌ°í ¹ß»êÆÇÁ¤¹ý¿¡ ÀÇÇÏ¿© ¹ß»êÇÔÀ» ¾Ë ¼ö ÀÖ´Ù. µû¶ó¼­ ÁÖ¾îÁø ±Þ¼öÀÇ ¼ö·Å¿ªÀº  (-5, 1)ÀÌ´Ù.

 

     ¸è±Þ¼ö   Àº ÁÖ¾îÁø ±Þ¼ö°¡ ¼ö·ÅÇÏ´Â ¸ðµç µéÀÇ ÁýÇÕÀ» Á¤ÀDZ¸¿ªÀ¸·Î ÇÏ´Â ÇÔ¼öÀÌ´Ù.

Áï

                            

ÀÌ ÇÔ¼ö ´Â ´ÙÇ×½ÄÀÇ ÇüÅÂÀÌ´Ù. ´Ù¸¸ Â÷ÀÌÁ¡Àº ´Â ¹«ÇѰ³ÀÇ Ç×À» °¡Áö°í ÀÖ´Ù´Â °ÍÀÌ´Ù. ±×·¯¹Ç·Î ´ÙÇ׽Ŀ¡ ´ëÇØ¼­

¹ÌºÐ°ú ÀûºÐÀ» ½ÃÇàÇÏ´Â ¹æ¹ý°ú ¸¶Âù°¡Áö·Î ¸è±Þ¼öÀÇ °¢ Ç×µéÀº °³º°ÀûÀ¸·Î ¹ÌºÐÇϰųª ÀûºÐÇÔÀ¸·Î½á ¸è±Þ¼ö¿¡

´ëÇØ¼­µµ ¹ÌºÐ°ú ÀûºÐÀ» ½ÃÇàÇÒ ¼ö ÀÖ´Ù. ÀÌ·¯ÇÑ ¹æ¹ýÀ» Ç׺°¹ÌºÐ°ú Ç׺°ÀûºÐ(term by term differentiation and integration)

À̶ó ºÎ¸¥´Ù.  µû¶ó¼­ ¿ì¸®´Â ´ÙÀ½ Á¤¸®¸¦ ¾òÀ» ¼ö ÀÖ´Ù.

                   

Á¤¸® 4.2.2   ¸è±Þ¼ö (4.4)ÀÇ ¼ö·Å¹Ý°æÀÌ À϶§

                                   

À¸·Î Á¤ÀǵǾîÁø ÇÔ¼ö´Â ±¸°£   ¿¡¼­ ¹ÌºÐ°¡´ÉÇϰí

(1)    

(2)   

ÀÌ ¼º¸³Çϸç (1), (2)¿¡¼­ ¾ò¾îÁø ¸è±Þ¼öµéÀÇ ¼ö·Å¹Ý°æ ¿ª½Ã ÀÌ´Ù.

 

     ÀÌÁ¦ ¸è±Þ¼ö·Î ³ªÅ¸³¾ ¼ö ÀÖ´Â ÇÔ¼ö¿Í ±× ¸è±Þ¼ö¸¦ ±¸ÇÏ´Â ¹æ¹ýÀ» ¾Ë¾Æº¸ÀÚ.

ÇÔ¼ö °¡ ¸è±Þ¼ö·Î ³ªÅ¸³¾ ¼ö ÀÖ´Â ÀÓÀÇÀÇ ÇÔ¼ö¶ó°í Çϰí

(4.5)                       

À̶ó ³õ´Â´Ù. ½Ä (4.5)¿¡ ¸¦ ´ëÀÔÇϸé ÀÌ´Ù.

½Ä (4.5)¿¡ Á¤¸® 4.2.2¸¦ Àû¿ëÇÏ¿©

(4.6)                      

À» ¾ò°í   ¸¦ ½Ä (4.6)¿¡ ´ëÀÔÇÏ¸é   ÀÌ´Ù.

À̿Ͱ°Àº ¹æ¹ýÀ» °è¼Ó ½ÃÇàÇÔÀ¸·Î½á

(4.7)                    

À» ¾òÀ» ¼ö ÀÖÀ¸¹Ç·Î,   ¸¦ ½Ä (4.7)¿¡ ´ëÀÔÇϸé ÀÌ´Ù.

¸¶Âù°¡Áö ¹æ¹ýÀ¸·Î

                            

                                         

                           

À» ¾ò´Â´Ù. ¸è±Þ¼öÀÇ °è¼ö   ¿¡ °üÇØ Ç®¸é

¸¦ ¾ò°Ô µÈ´Ù.

 

Á¤¸® 4.2.3   ÇÔ¼ö   °¡   ¿¡¼­ ¸è±Þ¼ö·Î Àü°³µÇ¸é

(4.8)                         

                                      

½Ä (4.8)À» ÇÔ¼ö ÀÇ ¿¡¼­ÀÇ Taylor ±Þ¼ö¶ó°í ºÎ¸¥´Ù.

ƯÈ÷ À϶§ Taylor ±Þ¼ö´Â ´ÙÀ½°ú °°ÀÌ Ç¥ÇöµÈ´Ù.   

(4.9)                      

½Ä (4.9)¸¦ ƯÈ÷ Maclaurin ±Þ¼ö¶ó°í ºÎ¸¥´Ù.

      ÇÔ¼ö °¡   ¿¡¼­ ¸è±Þ¼ö·Î Àü°³µÉ ¼ö ÀÖ´Ù¸é ÀÌ·¯ÇÑ ÇÔ¼ö¸¦ ¿¡¼­ ÇØ¼®Àû(analytic)À̶ó ºÎ¸¥´Ù.

Á¤¸® 4.2.3À¸·ÎºÎÅÍ ÇØ¼®ÇÔ¼ö´Â ¿¡¼­ ¹«Çѹø ¹ÌºÐ°¡´ÉÇÏ´Ù. ±×·¯³ª ¹«Çѹø ¹ÌºÐ°¡´ÉÇÑ ÇÔ¼öÀÏÁö¶óµµ

ÇØ¼®ÀûÀÌ ¾Æ´Ñ ÇÔ¼ö°¡ ÀÖ´Ù. ÀÌ·¯ÇÑ ÇÔ¼ö´Â ÀÌ ÇÔ¼öÀÇ Taylor ±Þ¼ö¿Í °°Áö ¾Ê´Ù.

¿©±â¼­ ¸î°¡Áö Áß¿äÇÑ Maclaurin ±Þ¼ö¸¦ ¼Ò°³ÇϰڴÙ.

 

Á¤¸® 4.2.4   

1.  

2.  

3.  

4.  

   

     »ç½Ç À̹ǷΠÁ¤¸® 4.2.2¿¡ ÀÇÇÏ¿© ÀÇ ¸è±Þ¼ö¸¦ ¹ÌºÐÇÏ¿© ÀÇ ¸è±Þ¼ö¸¦ ¹Ù·Î ±¸ÇÒ ¼ö ÀÖ´Ù.

¶Ç   À̹ǷΠ  ÀÇ ¸è±Þ¼ö¿¡ ¿¡ ¸¦ ´ëÀÔÇÏ¿©

                                                      

¸¦ ½±°Ô ±¸ÇÒ ¼ö ÀÖ´Ù. ÀÌó·³ Á¤¸® 4.2.4ÀÇ 4°³ÀÇ ÇÔ¼ö¿¡ ´ëÇÑ Maclaurin ±Þ¼ö¸¦ ÀÀ¿ëÇÏ¿© ´Ù¸¥ ÇÔ¼öµéÀÇ Maclaurin ±Þ¼ö¸¦

°£´ÜÈ÷ ±¸ÇÒ ¼ö ÀÖ´Ù.

             

¿¹Á¦ 4.2.3  ´ÙÀ½ ÇÔ¼öµéÀÇ Maclaurin ±Þ¼ö¸¦ ±¸Ç϶ó.

(1)   

(2)   

(3)   

Ç®ÀÌ  

(1)    

                     

(2)     

                       

                       

(3)    À̹ǷΠÀÇ ¸è±Þ¼ö¸¦ ÀÌ¿ëÇϸé

        

                 

                 

                 

 

                                                                  ¿¬½À¹®Á¦ 1.4.2.1

1. ´ÙÀ½ ±Þ¼öÀÇ ¼ö·Å¹Ý°æ °ú ¼ö·Å±¸°£À» ±¸Ç϶ó.

(1)                                                  (´ä: )

(2)                                                       (´ä: )

(3)                                                 (´ä: )  

(4)                                              (´ä: )       

2. ´ÙÀ½ ÇÔ¼ö¸¦ ¸è±Þ¼ö·Î ³ªÅ¸³»¾î¶ó.

(1)                                                      (´ä: )

(2)                                          (´ä: )   

(3)                                              (´ä: )

(4)                                             (´ä: )

(5)                                               (´ä: )

(6)                                                (´ä: )

 

¡¡

¡¡

¡¡

¡¡

1.4.2.2 Á¤»óÁ¡¿¡ ´ëÇÑ ÇØ

     °è µ¿Â÷¼±Çü¹ÌºÐ¹æÁ¤½Ä         

(4.10)                  

¿¡ ´ëÇÏ¿© ÇØ°¡ ¸è±Þ¼ö ·Î ³ªÅ¸³­´Ù°í °¡Á¤Çϰí, ÀÌ ¸è±Þ¼ö°¡ ÇØ°¡ µÇµµ·Ï ¹ÌÁ¤°è¼ö À» °áÁ¤ÇÑ´Ù.

½Ä (4.10)ÀÇ Ç¥ÁØÇü

(4.11)                       

¸¦ »ý°¢ÇÏÀÚ. ¿©±â¼­

                                     

ÀÌ´Ù. ÀÌ °æ¿ì °¡ ¸ðµÎ   ¿¡¼­ ÇØ¼®ÀûÀ̸é Áï, °¡ ¸ðµÎ ¾çÀÇ ¼ö·Å¹Ý°æÀ» °®´Â

ÀÇ ¸è±Þ¼ö¸¦ °¡Áö¸é Á¡ ¸¦ ¹æÁ¤½Ä (4.10)ÀÇ Á¤»óÁ¡(ordinary point)À̶ó Çϰí, Á¤»óÁ¡ÀÌ ¾Æ´Ñ Á¡À» ±× ¹æÁ¤½ÄÀÇ

ƯÀÌÁ¡(singular point)À̶ó ÇÑ´Ù. ´ÙÇ×½Ä °è¼ö(polynomial coefficients)¸¦ °®´Â °æ¿ì, ¸¸¾à °¡

°øÅëÀμö¸¦ °®Áö ¾Ê´Â ´ÙÇ×½ÄÀÏ ¶§ ÀÌ¸é ´Â Á¤»óÁ¡À̰í ÀÌ¸é ´Â Æ¯ÀÌÁ¡ÀÌ´Ù.

¿¹¸¦ µé¾î ÀÎ ¹ÌºÐ¹æÁ¤½Ä¿¡ ´ëÇÏ¿© ÀÌ µÇ´Â ´Â ƯÀÌÁ¡ÀÌ´Ù. ±×¸®°í ƯÀÌÁ¡Àº ¹Ýµå½Ã

½Ç¼öÀ̾î¾ß ÇÒ ÇÊ¿ä´Â ¾ø´Ù.

ÀÎ ¹ÌºÐ¹æÁ¤½Ä¿¡¼­ ÀÇ ¸ðµç À¯ÇѰªÀº Á¤»óÁ¡ÀÌ´Ù.

±×·¯³ª ÀÎ ¹ÌºÐ¹æÁ¤½Ä¿¡¼­ °¡ ÀÇ ¸è±Þ¼ö¸¦ °®Áö ¾ÊÀ¸¹Ç·Î ´Â ƯÀÌÁ¡ÀÌ´Ù.

       

Á¤¸® 4.2.5    °¡ ¹æÁ¤½Ä (4.10)ÀÇ Á¤»óÁ¡À̸é Çü½Ä ÀÎ °³ÀÇ »óÀÌÇÑ ¸è±Þ¼ö¸¦ ±¸ÇÒ ¼ö ÀÖ´Ù.

À» °¡Àå °¡±î¿î ƯÀÌÁ¡±îÁöÀÇ °Å¸®¶ó°í ÇÒ¶§ ±Þ¼öÇØ´Â Àû¾îµµ ¿¡ ´ëÇØ¼­ ¼ö·ÅÇÑ´Ù.

 

      ÁÖ¸ñÇÒ °ÍÀº Æí¸®¸¦ À§ÇØ Á¤»óÁ¡ À» ¿¡ À§Ä¡Çϵµ·Ï ÇÑ´Ù. ¸¸ÀÏ ÀÌ¸é ·Î Ä¡È¯ÇÏ¿© ¿¡ ´ëÇØ¼­

·Î À̵¿½Ãų ¼ö Àֱ⠶§¹®ÀÌ´Ù. Áï ±Þ¼öÇØÀÇ Çü½ÄÀ» À¸·Î ÇÏ¿© ±¸ÇÏ¸é µÈ´Ù.

±×·¸´Ù¸é ÀÌÁ¦ ½Ä (4.10)ÀÇ ¸è±Þ¼ö ÇØ¸¦ ±¸ÇÏ´Â ¹æ¹ýÀ» ¾Ë¾Æº¸ÀÚ.

°¡ ½Ä (4.10)ÀÇ Á¤»óÁ¡À̸é ÀÇ ¸è±Þ¼öÀÇ ÇüÅÂ

(4.12)                                               

ÀÎ ÇØ°¡ Á¸ÀçÇÑ´Ù°í °¡Á¤ÇÏ°í¼­ ½Ä (4.12)°¡ ½Ä (4.10)À» ¸¸Á·ÇÏ´Â ÇÔ¼ö°¡ µÇµµ·Ï °è¼ö À» °áÁ¤ÇÏ´Â °ÍÀ¸·Î ÀÌ ¹æ¹ýÀº

¹ÌÁ¤°è¼ö¹ý°ú ºñ½ÁÇÏ´Ù.

Ç׺°¹ÌºÐÇÏ¿© ½Ä (4.12)¸¦ ½Ä (4.10)¿¡ ´ëÀÔÇÏ¿© ÃÑÇÕÀÇ Ã·¼ö°¡ °°Àº °ª¿¡¼­ Ãâ¹ßÇϵµ·Ï ÇÏ°í °¢ ÇÕ¿¡ À־ ÀÇ

¸èÀÇ ¼öÄ¡°ªÀÌ °°µµ·Ï ÇÑ´Ù.

ÀÌÇØ¸¦ µ½±â À§ÇÏ¿©   ÀÎ °æ¿ì, Áï 2°è ¼±Çü¹ÌºÐ¹æÁ¤½Ä

(4.13)                                         

¿¡ ´ëÇÏ¿© ±¸Ã¼ÀûÀ¸·Î ¼³¸íÇØ º¸±â·Î ÇÏÀÚ. ½Ä (4.13)À» Ç¥ÁØÇü

(4.14)                                         

·Î º¯ÇüÇß´Ù°í ÇÏÀÚ. ±¸Ã¼ÀûÀÎ ¼³¸íÀ» À§ÇØ ÀÎ °æ¿ì¿¡ ´ëÇØ ¸è±Þ¼ö¸¦ ±¸Çغ¸ÀÚ. Áï

(4.15)                                             

ÀÎ ¹ÌºÐ¹æÁ¤½ÄÀ» »ý°¢ÇÏÀÚ. °¡ ½Ä (4.15)ÀÇ Á¤»óÁ¡ÀÌ°í Æ¯ÀÌÁ¡ÀÌ ¾øÀ¸¹Ç·Î Á¤¸® 4.2.5¿¡ ÀÇÇÏ¿© ¿¡ ´ëÇØ¼­

¼ö·ÅÇÏ´Â ¸è±Þ¼ö Çü½Ä   ÀÎ ÇØ°¡ Á¸ÀçÇÑ´Ù°í °¡Á¤ÇÒ ¼ö ÀÖ´Ù.

À» °áÁ¤Çϱâ À§ÇØ Ç׺° ¹ÌºÐÇÏ¿©

                                         

¸¦ (4.15)¿¡ ´ëÀÔÇÏ¸é        

(4.16)             

                                        

À» ¾ò´Â´Ù. ½Ä (4.16)ÀÇ ¼¼ ±Þ¼ö¸¦ ´õÇϵÇ, ¼¼ ÃÑÇÕÀÇ Ã·¼ö°¡ °°Àº °ª¿¡¼­ Ãâ¹ßÇÏ°Ô ÇÏ°í °¢ ÇÕ¿¡¼­ ÀÇ ¸èÀÇ ¼öÄ¡°ªÀÌ

°°µµ·Ï ÇÑ´Ù. ÀÌ·¸°Ô Çϱâ À§ÇÏ¿© ½Ä (4.16)À» ´ÙÀ½°ú °°ÀÌ ¾´´Ù.

(4.17)            

                                       

                                       

                                       

ÀÌ´Ù. µû¶ó¼­ °è¼öºñ±³Çϸé

(4.18)                                  

À» ¸¸Á·ÇØ¾ß ÇÑ´Ù. ¹æÁ¤½Ä (4.18)À» ¸¦ °áÁ¤ÇÏ´Â ¼øÈ¯°ü°è½Ä(recurrence relation)À̶ó ÇÑ´Ù.

ÀÇ ¸ðµç ÷¼ö°ª¿¡ ´ëÇÏ¿© À̹ǷΠ½Ä (4.18)Àº

                                  

ÀÌ´Ù. À̰Ϳ¡ ºÎÅÍ ´ëÀÔÇÏ¿© ¹Ýº¹»ç¿ëÇϸé

                                    

                                    

                                    

                                    

                                    

                                    

                                    

À» ¾ò°Ô µÈ´Ù. À§ÀÇ ¼øÈ¯°ü°è½ÄÀ» »ìÆìº¸¸é   ÀÓÀ» ¾Ë ¼ö ÀÖ´Ù. µû¶ó¼­

                  

                   

                  

¿©±â¼­ ¿Í Àº ÀÓÀÇÀÇ »ó¼öÀÌ´Ù.

                                                  

                                                  

À̹ǷΠÀϹÝÇØ´Â

               

                         

¿¹Á¦ 4.2.4  ´ÙÀ½ ¹ÌºÐ¹æÁ¤½ÄÀ» Ç®¾î¶ó.

                                                                                 

Ç®ÀÌ    Àº ÁÖ¾îÁø ¹ÌºÐ¹æÁ¤½ÄÀÇ Á¤»óÁ¡ÀÌ°í   °¡ ƯÀÌÁ¡À̹ǷΠÁ¤¸® 4.2.5¿¡ ÀÇÇØ ¿¡ ´ëÇØ¼­ ¼ö·ÅÇÏ´Â Çü½ÄÀÌ

ÀÎ µÎ ÇØ°¡ Á¸ÀçÇÔÀ» ¾Ë ¼ö ÀÖ´Ù.

                                                   

À̹ǷΠ       

                        

                                                     

À¸·Î ¸èÀÇ ¼öÄ¡¸¦ °°°Ô ÇÑ´Ù.

                

                                              

                                              

µû¶ó¼­     

                      

                      

                     

¹Ýº¹°è»êÇϸé

                     

                     

                    

                    

                    

                    

                                     

À» ¾òÀ» ¼ö ÀÖÀ¸¸ç ¿©±â¼­ Àº ÀÓÀÇÀÇ »ó¼öÀÌ´Ù. µû¶ó¼­

                       

                        

                        

                     

                    

À̹ǷΠÀϹÝÇØ´Â

                    

 

                                                              ¿¬½À¹®Á¦ 1.4.2.2

1. ´ÙÀ½ ¹ÌºÐ¹æÁ¤½ÄÀÇ ¸è±Þ¼öÇØ¸¦ ±¸Ç϶ó.

(1)

 ( ´ä:

 (2)         ( ´ä: )

(3)  

 ( ´ä:

(4)               

 ( ´ä:

(5)                    

 ( ´ä:

 

 

 

 

1.4.2.3 ƯÀÌÁ¡¿¡ ´ëÇÑ ÇØ

      °è µ¿Â÷¹ÌºÐ¹æÁ¤½Ä                                     

(4.19)                      

ÀÇ °è¼ö ´Â ¾î¶² Á¡ ¿¡¼­ ÇØ¼®ÀûÀÌ ¾Æ´ÏÁö¸¸ ´Â ¿¡¼­ ÇØ¼®ÀûÀ϶§ À»

Á¤Ä¢Æ¯ÀÌÁ¡(regular singular point)À̶ó Çϰí Á¤Ä¢Æ¯ÀÌÁ¡ ÀÌ ¾Æ´ÑƯÀÌÁ¡À» ºñÁ¤Ä¢Æ¯ÀÌÁ¡(irregular singular point)À̶ó ÇÑ´Ù.

Áï ½Ä (4.19)ÀÇ °è¼ö°¡ °øÅëÀμö¸¦ °®Áö ¾Ê´Â ´ÙÇ×½ÄÀÏ ¶§ À̶ó Çϰí ÀÇ ºÐ¸ð¿¡ Àμö °¡ ÃÖ°í

1Â÷¸è½ÂÀ¸·Î ³ªÅ¸³ª°í ÀÇ ºÐ¸ð¿¡ Àμö °¡ ÃÖ°í 2Â÷¸è½ÂÀ¸·Î ³ªÅ¸³ª¸ç, ÀÇ ºÐ¸ð¿¡ Àμö °¡

ÃÖ°í Â÷¸è½ÂÀ¸·Î ³ªÅ¸³ª¸é ´Â Á¤Ä¢Æ¯ÀÌÁ¡ÀÌ´Ù.¿¹¸¦ µé¾î ¹ÌºÐ¹æÁ¤½Ä

                                                                        

´Â ¿¡¼­ ƯÀÌÁ¡À» °®´Â´Ù. ±×¸®°í ÀÌ ¹æÁ¤½ÄÀ»

                                                    

·Î º¯ÇüÇÏ¿© ¿Í ¸¦ »ìÆìº¸¸é Àμö´Â ÀÇ ºÐ¸ð¿¡¼­ 1Â÷¸è½ÂÀ̰í ÀÇ ºÐ¸ð¿¡¼­µµ

1Â÷¸è½ÂÀ̹ǷΠ´Â Á¤Ä¢Æ¯ÀÌÁ¡ÀÌ´Ù. Àμö´Â ÀÇ ºÐ¸ð¿¡¼­ 1Â÷¸è½Â, ÀÇ ºÐ¸ð¿¡¼­ 2Â÷¸è½ÂÀ̹ǷΠµµ

Á¤Ä¢Æ¯ÀÌÁ¡ÀÌ´Ù.

      ÀÇ ¹ÌºÐ¹æÁ¤½ÄÀÇ °æ¿ì

·Î º¯Çü½ÃÄѺ¸¸é

                                              

À̹ǷΠÀμö´Â ÀÇ ºÐ¸ð¿¡ 2Â÷¸è½ÂÀ̹ǷΠ  ´Â ºñÁ¤Ä¢Æ¯ÀÌÁ¡À̰í Àμö´Â ÀÇ ºÐ¸ð¿¡ ¸ðµÎ

1Â÷¸è½ÂÀ̹ǷΠÀº Á¤Ä¢Æ¯ÀÌÁ¡ÀÌ´Ù.

 

¿¹Á¦ 4.2.5    ´ÙÀ½ ¹ÌºÐ¹æÁ¤½Ä¿¡¼­ ƯÀÌÁ¡ÀÌ ÀÖÀ¸¸é ã¾Æ Á¤Ä¢Æ¯ÀÌÁ¡ÀÎÁö ºñÁ¤Ä¢Æ¯ÀÌÁ¡ÀÎÁö Á¶»çÇ϶ó.

(1)

(2)

(3)

Ç®ÀÌ    

(1) ÀÇ ²Ã·Î º¯Çü½ÃÄѺ¸¸é À̹ǷΠ´Â Á¤Ä¢Æ¯ÀÌÁ¡ÀÌ´Ù.

(2) ÀÇ ²Ã·Î º¯Çü½ÃÄѺ¸¸é À̹ǷΠ´Â Á¤Ä¢Æ¯ÀÌÁ¡,

     ±×¸®°í µµ Á¤Ä¢Æ¯ÀÌÁ¡ÀÌ´Ù.

(3) ÀÇ ²Ã·Î º¯Çü½ÃÄѺ¸¸é À̹ǷΠ´Â ºñÁ¤Ä¢Æ¯ÀÌÁ¡ÀÌ´Ù.

 

     ¶ÇÇÑ Æ¯ÀÌÁ¡Àº º¹¼Ò¼öÀÏ ¼öµµ ÀÖ´Ù. ¿¹ÄÁµ¥

                                                              

ÀÇ ¹ÌºÐ¹æÁ¤½ÄÀº

                                                              

ÀÇ ²Ã·Î º¯Çü½Ãų ¼ö ÀÖ°í

                                        

À̹ǷΠ´Â Á¤Ä¢Æ¯ÀÌÁ¡ÀÌ´Ù.

      ½Ä (4.19)°ú °°Àº ¹ÌºÐ¹æÁ¤½ÄÀ» Á¤Ä¢Æ¯ÀÌÁ¡¿¡ ´ëÇØ Ç®·Á°í Çϸé Frobenius  ¹æ¹ýÀ» Àû¿ëÇÑ´Ù.

                            

Á¤¸® 4.2.6    °¡ ¹æÁ¤½Ä (4.19)ÀÇ Á¤Ä¢Æ¯ÀÌÁ¡À̸é Çü½ÄÀÌ

                                           

ÀÎ ±Þ¼öÇØ°¡ Àû¾îµµ Çϳª Á¸ÀçÇÑ´Ù. ¿©±â¼­ Àº °áÁ¤ÇؾßÇÒ »ó¼öÀ̰í ÀÌ ±Þ¼ö´Â ¾î¶² ±¸°£ ¿¡¼­ ¼ö·ÅÇÑ´Ù.

                                             

      ¾Õ Àý¿¡¼­¿Í °°ÀÌ °£´ÜÇÏ°Ô Çϱâ À§ÇÏ¿© ÀÌ¶ó °¡Á¤ÇÏÀÚ. ±¸Ã¼ÀûÀ¸·Î Á¤Ä¢Æ¯ÀÌÁ¡¿¡ ´ëÇÑ ±Þ¼öÇØ¸¦ ±¸ÇÏ´Â

Frobenius method¸¦ ¾Ë¾Æº¸±â À§ÇÏ¿© 2°è¹ÌºÐ¹æÁ¤½Ä

(4.20)                                               

ÀÇ ÇØ¸¦ ±¸Çغ¸±â·Î ÇÏÀÚ.

´Â ½Ä (4.20)ÀÇ Á¤Ä¢Æ¯ÀÌÁ¡À̹ǷΠ±Þ¼öÇØ Çü½ÄÀÌ

                                                        

ÀÌ¶ó °¡Á¤ÇÏÀÚ.

                                                       

                                                      

À̹ǷÎ

                  

                                            

                                             

                                                  

                                           

                                          

À̰ÍÀ¸·ÎºÎÅÍ

                                     

ÀÌ ¼º¸³ÇÑ´Ù.

(4.21)                                                          

°¡ µÈ´Ù.

(4.22)                                        

ÀÌ´Ù. ½Ä (4.21)À» ¸¸Á·ÇÏ´Â Àº ¿Í ÀÌ´Ù. À̰ÍÀ» ½Ä (4.22)¿¡ ´ëÀÔÇÏ¸é µÎ °¡Áö ¼­·Î ´Ù¸¥ ¼øÈ¯°ü°è½Ä :

(4.23)                                         

(4.24)                                        

¸¦ ¾ò´Â´Ù. ½Ä (4.23)À» ¹Ýº¹Çϸé

                                                              

                                                              

                                                              

                                                              

                                                              

                                                                             

                                                             

À̰í ÇÑÆí ½Ä (4.24)¸¦ ¹Ýº¹Çϸé

                                                             

                                                             

                                                             

                                                             

                                                             

                                                                            

                                                              

ÀÌ´Ù. µû¶ó¼­ µÎ ±Þ¼öÇØ

                                                          

                                                          

À» ¾ò´Â´Ù. ÀÌµé µÎ ±Þ¼ö´Â ¼­·ÎÀÇ »ó¼ö¹è°¡ ¾Æ´ÔÀº ¸í¹éÇϹǷΠ  ´Â 1Â÷µ¶¸³ÀÎ ÇØÀÌ°í µû¶ó¼­ ÀϹÝÇØ´Â

                                

À§¿¡¼­ ¾ð±ÞÇÑ ¿¹´Â FrobeniusÀÇ ¹æ¹ýÀ» »ç¿ëÇÏ´Â ÀϹÝÀûÀÎ °úÁ¤À» ¼³¸íÇÑ °ÍÀÌÁö¸¸ ¹Ýµå½Ã µÎ ÇØ°¡ ½±°Ô ±¸ÇØÁö´Â

°ÍÀº ¾Æ´Ï´Ù.   ÀÌ °¡Áú ¼ö ÀÖ´Â °ªÀÇ ¿©·¯ ÇüÅ¿¡ µû¶ó ´Þ¶óÁø´Ù.

     ¹æÁ¤½Ä (4.21)À» ¹ÌºÐ¹æÁ¤½Ä (4.20)ÀÇ °áÁ¤¹æÁ¤½Ä(indicial equation)À̶ó ÇÏ°í ¿Í À» ƯÀÌÁ¡ÀÇ

°áÁ¤±Ù(indicial root) ¶Ç´Â Áö¼ö(exponent) ¶ó°í ÇÑ´Ù.

     ÀϹÝÀûÀ¸·Î °¡ ¹ÌºÐ¹æÁ¤½Ä (4.19)ÀÇ Á¤Ä¢Æ¯ÀÌÁ¡À̸é À» ½Ä (4.19)¿¡ ´ëÀÔÇÑ ÈÄ °£´ÜÈ÷

ÇÏ¸é ¿¡ °üÇÑ 2Â÷¹æÁ¤½ÄÀÎ °áÁ¤¹æÁ¤½ÄÀ» ¾òÀ» ¼ö ÀÖ´Ù. ÀϹÝÀûÀ¸·Î °áÁ¤¹æÁ¤½ÄÀº

(4.25)                                               

ÀÌ¸ç ¿©±â¼­ ´Â ÀÇ Àü°³½Ä, Áï ÀÇ »ó¼öÇ×À̸ç,

´Â ÀÇ Àü°³½Ä, Áï   ÀÇ »ó¼öÇ×ÀÌ µÊÀº °è»ê¿¡ ÀÇÇØ ½±°Ô ¾Ë ¼ö ÀÖ´Ù.

ÀÌó·³ ¿¡ ´ëÇÑ 2Â÷¹æÁ¤½ÄÀÎ °áÁ¤¹æÁ¤½ÄÀ» Ç®¾î ÀÌµé °ªÀ» ¼øÈ¯°ü°è½Ä¿¡ ´ëÀÔÇÏ¿© ¸è±Þ¼öÇØ¸¦ ±¸ÇÑ´Ù.

FrobeniusÀÇ ¹æ¹ýÀ» »ç¿ëÇÏ´Â °æ¿ì °áÁ¤±ÙÀÇ ¼ºÁú¿¡ µû¶ó 3°¡Áö °æ¿ì·Î ³ª´©¾î¼­ »ý°¢ÇÒ ¼ö Àִµ¥, 2°è ¹ÌºÐ¹æÁ¤½Ä

(4.26)                                         

¿¡ °üÇÏ¿© »ý°¢ÇØ º¸±â·Î ÇÏÀÚ.   °ú ¸¦ °áÁ¤¹æÁ¤½ÄÀÇ ½Ç¼öÇØ¶ó°í ÇÏ°í ¶ó°í °¡Á¤ÇÏÀÚ.

 

[ °æ¿ì I ] ¼­·Î ´Ù¸¥ µÎ ±Ù ÀÇ Â÷°¡ Á¤¼ö°¡ ¾Æ´Ñ °æ¿ì:

     2°³ÀÇ ÀÏÂ÷µ¶¸³ÀÎ ÇØ  

                                                        

                                                        

°¡ Á¸ÀçÇÏ¿© ÀϹÝÇØ´Â

                                                 

 

[ °æ¿ì II ] ¼­·Î ´Ù¸¥ µÎ ±Ù   ÀÇ Â÷°¡ Á¤¼öÀÎ °æ¿ì, Áï ÀÎ °æ¿ì :

2°³ÀÇ ÀÏÂ÷µ¶¸³ÀÎ ÇØ´Â  

                                                         

                                                        

ÀÇ ÇüÅ·ΠÁ¸ÀçÇÏ¿© ÀϹÝÇØ´Â

                                                           

 

[ °æ¿ì III ] µÎ ±ÙÀÌ °°Àº °æ¿ì, Áï   ÀÎ °æ¿ì :

2°³ÀÇ ÀÏÂ÷µ¶¸³ÀÎ ÇØ°¡  

                                                      

                                                     

ÀÇ ÇüÅ·ΠÁ¸ÀçÇÏ¿© ÀϹÝÇØ´Â

                                                          

 

     °æ¿ì II¿Í °æ¿ì IIIÀ» º¸¸é µÑ° ÇØ´Â ´ë¼öÇØ¸¦ Æ÷ÇÔÇÒ ¼ö ÀÖ°í ¶Ç Æ÷ÇÔÇϰí ÀÖ´Ù. ½ÇÁ¦·Î À̰ÍÀº ¹Ì¸® ¾Ë°í ÀÖÁö ¸øÇÑ °ÍÀ̳ª

°áÁ¤±ÙÀ» ±¸ÇÏ°í °è¼ö   À» ±¸ÇÒ ¼ö ÀÖ´Â ¼øÈ¯°ü°è½ÄÀ» ÁÖÀDZí°Ô À½¹ÌÇÔÀ¸·Î½á ¾òÀ» ¼ö ÀÖ´Ù.

¸¸ÀÏ µÑ° ±Þ¼öÇØ¸¦ ±¸ÇÒ ¼ö ¾ø´Â °æ¿ì¿¡´Â Á¦ 1.3.2ÀýÀÇ ±âÁöÇØ¸¦ ÀÌ¿ëÇÑ µÎ¹øÂ° ÇØÀÇ ±¸¼º¿¡¼­ ¾ð±ÞÇßµíÀÌ                                      

(4.27)                                                

¿¡ ÀÇÇØ ¾Ë·ÁÁø À» ÀÌ¿ëÇÏ¿© ±¸ÇÒ ¼ö ÀÖÀ» °ÍÀÌ´Ù.

        

¿¹Á¦ 4.2.6    ÀÇ ¸è±Þ¼öÇØ¸¦ ±¸Ç϶ó.

Ç®ÀÌ    ´Â ÁÖ¾îÁø ¹ÌºÐ¹æÁ¤½ÄÀÇ Á¤Ä¢Æ¯ÀÌÁ¡ÀÌ´Ù.

                                                         

À̶ó Çϸé

         

                                   

                                            

                                   

                                   

                                   

À̰ÍÀ¸·ÎºÎÅÍ

                                                             

                                 

ÀÌ°í   ·Î ¼­·Î ´Ù¸¥ °áÁ¤±Ù ÀÇ Â÷µµ Á¤¼ö°¡ ¾Æ´Ï´Ù.

ÀÎ °æ¿ì ¼øÈ¯°ü°è½Ä

                                      

                                      

À¸·ÎºÎÅÍ      

                                         

                                         

                                         

                                                           

                                        

ÀÌ ¼º¸³ÇÑ´Ù. µû¶ó¼­ ÇϳªÀÇ ±Þ¼öÇØ´Â

                                    

ÇÑÆí   ÀÎ °æ¿ì ¼øÈ¯°ü°è½ÄÀº

                                         

À̹ǷÎ

                                                       

                                                       

                                                       

                                                                         

                                                       

À» ¾òÀ» ¼ö ÀÖ´Ù. µû¶ó¼­

                                                                                                  

´Â 1Â÷µ¶¸³ÀÎ ÇØÀ̹ǷΠÀϹÝÇØ´Â

                                                                                 

 

¿¹Á¦ 4.2.7    ÀÇ ¸è±Þ¼öÇØ¸¦ ±¸Ç϶ó.

Ç®ÀÌ    ´Â ÁÖ¾îÁø ¹ÌºÐ¹æÁ¤½ÄÀÇ Á¤Ä¢Æ¯ÀÌÁ¡ÀÌ´Ù.

                                                                 

À» ÁÖ¾îÁø ¹ÌºÐ¹æÁ¤½Ä¿¡ ´ëÀÔÇϸé

          

                                    

                                          

                                    

                                    

À̹ǷΠ°áÁ¤¹æÁ¤½Ä ¿¡¼­ °áÁ¤±Ù À» ¾ò°í ¼øÈ¯°ü°è½Ä

                                

À» ¾ò´Â´Ù.    

ÀÎ °æ¿ì

                                         

·ÎºÎÅÍ      

                                            

                                            

                                            

                                                       

                                            

ÀÌ ¼º¸³ÇÑ´Ù. µû¶ó¼­ ÇϳªÀÇ ±Þ¼öÇØ´Â

                                      

ÇÑÆí ÀÎ °æ¿ì ¼øÈ¯°ü°è½ÄÀº                              

(4.28)                        

·Î µÈ´Ù. ±×·±µ¥ Àº ÀÏ ¶§ À̱⠶§¹®¿¡ ·Î ³ª´©¾î¼­´Â ¾ÈµÈ´Ù. ÇÏÁö¸¸ ¿¡ ´ëÇØ¼­´Â

¼øÈ¯°ü°è½Ä (4.28)À» »ç¿ëÇÏ¸é µÈ´Ù.

                                                    

µû¶ó¼­

ºÎÅÍ´Â ¼øÈ¯°ü°è½Ä

                                                

                                               

                                               

                                               

                                                            

                                               

µû¶ó¼­

                                       

                                          

                                          

Áï, ´Â 1Â÷µ¶¸³ÀÎ ÇØ°¡ ¾Æ´Ï´Ù. ´Ù½Ã ¸»Çϸé FrobeniusÀÇ ¹æ¹ýÀº ÁÖ¾îÁø ¹ÌºÐ¹æÁ¤½Ä¿¡ ´ëÇÑ ¿ÀÁ÷ ÇϳªÀÇ ÇØ

Áï, ¸¸À» ÁÖ¾úÀ½À» ¾Ë ¼ö ÀÖ´Ù. ½Ä (4.27)À» »ç¿ëÇÏ¿© µÑÂ°ÇØ¸¦ ±¸Çغ¸ÀÚ.

¿©±â¼­ À̹ǷÎ

                                         

ÀÌ´Ù. µû¶ó¼­

                                        

                                             

                                            

                                           

                                          

                                          

                                         

µû¶ó¼­

                                           

À̰í ÀϹÝÇØ´Â

                            

¿©±â¼­ ÀÌ´Ù.

  

¿¹Á¦ 4.2.8    ÀÇ ¸è±Þ¼öÇØ¸¦ ±¸Ç϶ó.

Ç®ÀÌ   ´Â ÁÖ¾îÁø ¹ÌºÐ¹æÁ¤½ÄÀÇ Á¤Ä¢Æ¯ÀÌÁ¡ÀÌ´Ù.

                                                            

À» ÁÖ¾îÁø ¹ÌºÐ¹æÁ¤½Ä¿¡ ´ëÀÔÇÏÀÚ.

                           

                                           

                                      

                                      

                                      

À̹ǷÎ

                                        

 

       ºÐ¸íÈ÷ ´Â Áß±ÙÀ̹ǷΠÀ§ÀÇ ¼øÈ¯°ü°è½ÄÀÇ ¹Ýº¹¿¡ ÀÇÇÏ¿© °áÁ¤µÇ´Â °è¼ö¿¡ ´ëÀÀÇÏ´Â ÇϳªÀÇ ÇØ¸¸À» ¾òÀ»¼ö ÀÖ´Ù.

À» ´ëÀÔÇÏ¸é ¼øÈ¯°ü°è½ÄÀº

                                                  

À̹ǷΠ       

                                                  

                                                  

                                                  

                                                  

                                                             

                                                 

µû¶ó¼­                               

(4.29)                              

ÀÌ´Ù. µÑ° ÇØ¸¦ ±¸Çϱâ À§ÇØ ½Ä (4.29)¿¡ À̶ó ³õ°í ½Ä (4.27)À» »ç¿ëÇÑ´Ù.

                                      

                                        

                                       

                                      

                                      

Áï

                                   

ÀÌ´Ù. µû¶ó¼­ ÀϹÝÇØ´Â

                                                                           

À̰í, ¿©±â¼­ ´Â ½Ä (4.29)¿¡¼­ Á¤ÀǵǾú´Ù.

 

                                                          ¿¬½À¹®Á¦ 1.4.2.3

1. ´ÙÀ½ ¹ÌºÐ¹æÁ¤½ÄÀÇ ¸è±Þ¼öÇØ¸¦ ±¸Ç϶ó.      

(1)                          

 (´ä: )

(2)                             

 (´ä:

(3)                           

 (´ä:

(4)      

 (´ä:

 

 

¡¡

¡¡