¡¡

 

1.3.3 »ó¼ö°è¼ö µ¿Â÷ ¼±Çü¹ÌºÐ¹æÁ¤½Ä

¡¡

       Á¦ 1.2 ¿¡¼­ 1°è ¼±Çü¹ÌºÐ¹æÁ¤½Ä     (  : »ó¼ö)Àº Áö¼öÇÔ¼öÇØ   ¸¦ °¡Áø´Ù´Â °ÍÀ» ¾Ë¾Ò´Ù.

                                                  

¿Í °°Àº °í°è ¼±Çü¹ÌºÐ¹æÁ¤½Ä¿¡ ´ëÇØ¼­µµ ¾Ë¾Æº¸ÀÚ.

¿ì¼± ÀÎ °æ¿ì, Áï

(3.14)                                                              

ÀÎ °æ¿ìºÎÅÍ »ý°¢Çغ¸±â·Î ÇÏÀÚ.

      ÀÎ ÇØ¸¦ °¡Á¤ÇÏ¸é   À̹ǷΠ ½Ä (3.14)´Â ÀÌ°í   Àº  ÀÌ

¾Æ´Ï¹Ç·Î ·Î ¾çº¯À» ³ª´©¸é

(3.15)                                                              

ÀÇ ¿¡ °üÇÑ 2Â÷¹æÁ¤½ÄÀ» ¾òÀ» ¼ö ÀÖ´Ù. ¹æÁ¤½Ä (3.15)¸¦ ¹ÌºÐ¹æÁ¤½Ä (3.14)ÀÇ º¸Á¶¹æÁ¤½Ä (auxiliary equation) ¶Ç´Â

Ư¼º¹æÁ¤½Ä(characteristic equation)À̶ó ÇÑ´Ù.

        ¹ÌºÐ¹æÁ¤½Ä (3.14)ÀÇ ÇØÀÎ Áö¼öÇÔ¼ö   ¸¦ ã´Â °ÍÀº º¸Á¶¹æÁ¤½Ä (3.15)ÀÇ ±ÙÀÌ µÇ´Â À» ±¸ÇÏ´Â ¹®Á¦°¡ µÉ °ÍÀÌ´Ù.

½Ä (3.15)´Â ¿¡ °üÇÑ 2Â÷¹æÁ¤½ÄÀ̹ǷΠ ¼­·Î ´Ù¸¥ µÎ ½Ç±Ù, Áß±Ù, º¹¼Ò¼ö±ÙÀ» °¡Áö´Â 3°¡Áö °æ¿ì·Î ³ª´©¾î¼­ »ý°¢ÇØ¾ß ÇÒ °ÍÀÌ´Ù.

 

[ °æ¿ì I] ¼­·Î ´Ù¸¥ µÎ ½Ç±ÙÀ» °¡Áö´Â °æ¿ì :

      º¸Á¶¹æÁ¤½Ä (3.15)°¡ µÎ °³ÀÇ ¼­·Î ´Ù¸¥ ½Ç±Ù   °ú   À» °¡Áø´Ù¸é  µÎ ÇØ´Â ¿Í   ÀÌ´Ù. ÀÌ µÎ ÇÔ¼ö´Â

     ¿¡¼­ 1Â÷µ¶¸³À̹ǷΠ±âº»ÇØÁýÇÕÀ» ÀÌ·é´Ù. ±×·¯¹Ç·Î   ¿¡¼­ (3.14)ÀÇ ÀϹÝÇØ´Â

(3.16)                                                            

[ °æ¿ì II] Áß±ÙÀ» °¡Áö´Â °æ¿ì :

      º¸Á¶¹æÁ¤½Ä (3.15)°¡ Áß±Ù   À» °¡Áø´Ù¸é ¿¡¼­Ã³·³   À» ÀÌ¿ëÇÏ¿© ³ª¸ÓÁö 1Â÷µ¶¸³ÀÎ ÇØ¸¦ ±¸ÇØ¾ß ÇÑ´Ù.

     µÎ ¹øÂ°  ÇØ ´Â ½Ä (3.13)¿¡ ÀÇÇÏ¿© ±¸ÇÒ¼ö ÀÖ´Ù.

      º¸Á¶¹æÁ¤½Ä (3.15)°¡ Áß±ÙÀ» °¡Áö¹Ç·Î ÆÇº°½Ä À̾î¾ß  ÇϹǷΠ  ÀÌ´Ù.   À̹ǷÎ

       À» (3.13)¿¡ ´ëÀÔÇÏ¸é  

                                                                      

    ·Î µÈ´Ù. µû¶ó¼­ (3.14)ÀÇ ÀϹÝÇØ´Â

(3.17)                                                                  

[ °æ¿ì III] º¹¼Ò¼ö±ÙÀ» °¡Áö´Â °æ¿ì :

     º¸Á¶¹æÁ¤½Ä (3.15)°¡ º¹¼Ò¼ö±Ù ¸¦ °¡Áø´Ù¸é À̹ǷÎ

                                                                           

ÀÌ´Ù.

     Euler°ø½Ä   (   : ½Ç¼ö)¸¦  »ç¿ëÇÏ¿©

                                                                      

                                                    

                                                

    ·Î µÈ´Ù.    ¿Í ´Â   ¿¡¼­ ÁÖ¾îÁø ¹ÌºÐ¹æÁ¤½ÄÀÇ ±âº»ÇØÁýÇÕÀ̹ǷΠ ÀϹÝÇØ´Â

(3.18)                                                                      

                                                                  

¿¹Á¦ 3.3.1   ´ÙÀ½ ¹ÌºÐ¹æÁ¤½ÄÀ» Ç®¾î¶ó.

(1)  

(2)  

(3)  

Ç®ÀÌ             

(1) º¸Á¶¹æÁ¤½Ä ·ÎºÎÅÍ   À̹ǷΠÀϹÝÇØ´Â

                                                            

(2) º¸Á¶¹æÁ¤½Ä ·ÎºÎÅÍ   Áß±ÙÀ̹ǷΠÀϹÝÇØ´Â

                                                            

(3) º¸Á¶¹æÁ¤½Ä ·ÎºÎÅÍ À̹ǷΠÀϹÝÇØ´Â

                                                            

 

       ÀϹÝÀûÀ¸·Î   °è ¹ÌºÐ¹æÁ¤½Ä

(3.19)                      (¿©±â¼­ Àº ½Ç¼öÀÎ »ó¼ö)

À» Ç®·Á¸é À» ´ëÀÔÇÏ¿© ¾ò¾îÁö´Â º¸Á¶¹æÁ¤½Ä

(3.20)                                                  

À» Ç®¾î¾ß Çϰí (3.20)ÀÇ ±ÙÀÌ ¼­·Î ´Ù¸¥ µÎ ½Ç±Ù, Áß±Ù, º¹¼Ò¼ö±Ù ¶Ç´Â 3 °æ¿ìÀÇ È¥ÇÕÀ¸·Î ³ªÅ¸³¯ ¼ö ÀÖ´Ù.                                 

 

1. ¸ðµÎ ¼­·Î ´Ù¸¥ ½Ç±ÙÀÎ °æ¿ì,  Áï   ÀÎ °æ¿ìÀÇ ÀϹÝÇØ´Â

                                                               

2.  ÀΠ°æ¿ìÀÇ ÀϹÝÇØ´Â

                                                              

3. ÀÎ °æ¿ìÀÇ ÀϹÝÇØ´Â

                                          

4. ÀÎ °æ¿ìÀÇ ÀϹÝÇØ´Â

                                                         

5. ÀÎ °æ¿ìÀÇ ÀϹÝÇØ´Â

                          

6. ÀÎ °æ¿ìÀÇ ÀϹÝÇØ´Â

                          

       ÀÌ¿Í °°Àº ¿©·¯°¡Áö ÇüŰ¡ ³ª¿Ã ¼ö ÀÖÀ¸¸ç ¾î¶² °æ¿ì°¡ ³ª¿À´õ¶óµµ º¸Á¶¹æÁ¤½ÄÀÇ ±Ù   ¿¡ ÀÇÇØ °áÁ¤ÇÒ ¼ö ÀÖÀ» °ÍÀÌ´Ù.

                                              

¿¹Á¦ 3.3.2    ´ÙÀ½ ¹ÌºÐ¹æÁ¤½ÄÀ» Ç®¾î¶ó.

(1)   

(2)   

(3)   

(4)   

(5)   

Ç®ÀÌ

(1)  º¸Á¶¹æÁ¤½Ä   ·ÎºÎÅÍ

       À̹ǷΠÀϹÝÇØ´Â

                                              

(2) º¸Á¶¹æÁ¤½Ä Àº   ·Î

    ÀμöºÐÇØµÇ¾î À̹ǷΠÀϹÝÇØ´Â

                                              

(3) º¸Á¶¹æÁ¤½Ä    ·ÎºÎÅÍ

      À̹ǷΠÀϹÝÇØ´Â

                                                      

(4) º¸Á¶¹æÁ¤½Ä    ·ÎºÎÅÍ

      À̹ǷΠÀϹÝÇØ´Â

                                                       

(5) º¸Á¶¹æÁ¤½Ä   ·ÎºÎÅÍ    À̹ǷΠÀϹÝÇØ´Â

                                                       

 

                                                                ¿¬½À¹®Á¦ 1.3.3

1. ´ÙÀ½ ¹ÌºÐ¹æÁ¤½ÄÀÇ ÀϹÝÇØ¸¦ ±¸Ç϶ó.

(1)                                                        (´ä: )

(2)                                                              (´ä: )

(3)                                                                (´ä: )

(4)                                                                          (´ä: )

(5)                                 (´ä: )

(6)                                               (´ä: )

(7)                                                          (´ä: )

(8)  

                                           (´ä:  

 

 

 

  top