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1. Introduction      

Most algorithms in 3-D Computer Vision rely on the pinhole camera model because of its 
simplicity, whereas video optics, especially wide-angle lens, generates a lot of non-linear 
distortion. In some applications, for instance in stereo vision systems and robotic systems, 
this distortion can be critical. 
Camera calibration consists of finding the mapping between the 3-D space and the camera 
plane. This mapping can be separated in two different transformations: first, the relation 
between the origin of 3-D space (the global coordinate system) and the camera coordinate 
system, which forms the external calibration parameters (3-D rotation and translation), and 
second the mapping between 3-D points in space (using the camera coordinate system) and 
2-D points on the camera plane, which forms the internal calibration parameters (Devernay 
& Faugeras, 1995). 
Fig. 1 shows two types of distortion due to lens: barrel and pincushion distortions and a 
rectangle without any distortion like reference (e.g. the image taken by an ideal pinhole 
camera) (Weng et al. 1992). The pincushion distortion is due to zoom lens and the barrel 
distortion is due to wide angle lens. In commercial cameras with wide angle lens the most 
important component of the barrel distortion is the radial distortion and this chapter 
introduces a method to find the internal calibration parameters of a camera, specifically 
those parameters required to correct the radial distortion due to wide-angle lens. 

Figure 1. Types of distortion 

Source: Scene Reconstruction, Pose Estimation and Tracking, Book edited by: Rustam Stolkin,
ISBN 978-3-902613-06-6, pp.530, I-Tech, Vienna, Austria, June 2007
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The method works with two images, one from the camera and one from a calibration 
pattern (without distortion) and it is based on a non-linear optimization method to match 
feature points of both images, given a parametric distortion model. The image from the 
calibration pattern can be a scanned image, an image taken by a high quality digital camera 
(without lens distortion), or even the binary image of the pattern (which printed becomes 
the pattern). 
First, a set of feature point correspondences between both images are computed 
automatically. The next step is to find the best distortion model that maps the feature points 
from the distorted image to the calibration pattern. This search is guided by analytical 
derivatives with respect to the set of calibration parameters. The final result is the set of 
parameters of the best distortion model. 
The rest of this chapter is organized as follows. Section 2 describes the problem to compute 
transformed images and it presents the Bilinear Interpolation as a solution to that problem. 
Sections 3 and 4 describe the distortion and projective model that we are using. Section 5 
presents the method to match pairs of points. A brief comparison with previous calibration 
methods is found in section 6. Here we show the problems associated with cameras using 
wide angle lens and why some previous methods fail or require a human operator. 
Experimental results are shown in Section 7. Finally, some conclusions are given in Section 
8.

2. Computing Transformed Images 

For integer coordinates (i,j), let I(i,j) gives the intensity value of the pixel associated to 
position (i,j) in image I. Let Id and It be the original (distorted image taken from the camera)  
and the transformed image, respectively. A geometric transformation, considering a set  of 
parameters, computes pixels of the new image, It(i,j) in the following way: 

 It(i,j) = Id(x( ,i,j),y( ,i,j)) (1) 

If x( ,i,j) and y( ,i,j) are outside of the image I0, a common strategy is to assign zero value 
which represents a black pixel. But, What happen when x( ,i,j) and y( ,i,j) have real values 
instead of integer values? Remember that image Id(x,y) have only valid values when x and y
have integer values. An inaccurate method to solve this problem is to use their nearest 
integer values, but next section presents the bilinear interpolation, a much better method to 
interpolate a pixel with real coordinates (x,y) in an image. 
From other point of view, pixel Id(x,y) moves to the position It(i,j). However, most 
transformations define points in the new image given points in the original image. In that 
case, to apply the bilinear transformation, we need to compute the inverse transformation 
that maps new points (or coordinates) to points (or coordinates) in the original image. 

2.1 Bilinear Interpolation 

If xi and xf are the integer and fractional part of x, respectively, and yi and yf the integer and 
fractional part of y, Figure 2 illustrates the bilinear interpolation method (Faugeras, 1993) to 
find I(xi+xf, yi+yf), given the four nearest pixels to position (xi+xf, yi+yf): I(xi,yi), I(xi+1, yi),
I(xi,yi+1), I(xi+1,yi+1) (image values at particular positions are represented by vertical bars in 
Figure 2). First two linear interpolations are used to compute two new values I(xi,yi+yf) and 
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I(xi+1,yi+yf) and then another linear interpolation is used to compute the desired value 
I(xi+xf,yi+yf) from the new computed values: 

I(xi, yi+yf) = (1-yf)I(xi,yi)+yf I(xi,yi+1)

 I(xi+1, yi+yf) = (1-yf)I(xi+1,yi)+yf I(xi+1,yi+1)  (2) 

 I(xi+xf, yi+yf) = (1-xf)I(xi,yi+yf)+xf I(xi+1,yi+yf)

Using the bilinear interpolation, a smooth transformed image is computed. Now we are able 
to deal with the transformation associated with cameras. In section 5.3 we describe the 
process to build new images from distorted images and the set of parameters of the 
distortion and projection model. 

Figure 2. Using the bilinear interpolation 

3. The Distortion Model 

The radial distortion process due to wide-angle lens is illustrated in Figure 3. Figure 3 (b) 
shows an image taken from the camera when the pattern shown in Figure 3 (a) is in front of 
the camera. Note the effect of lens, the image is distorted, specially in those parts far away 
from the center of the image. 

Figure 3. The distortion process due to wide angle lens 
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Figure 3 (c) shows the radial distortion in detail, supposing that the center of distortion is 
the point Cd with coordinates (cx,cy) (no necessarily the center of the image). Let Id be the 
distorted image captured by the camera and Iu the undistorted image associated to Id.
In order to correct the distorted image, the distorted point at position Pd with coordinates 
(xd, yd) in Id should move to point Pu with coordinates (xu,yu). Let rd and ru be the Euclidian 
distance between Pd and Cd, and between Pu and Cd, respectively. The relationship between 
radial distances rd and ru can be modeled in two ways: 

 rd = ruf1(ru2)  (3) 

 ru = rdf2(rd2) (4) 

Approximations to arbitrary function f1 and f2 may be given by a Taylor expansion: (f1(ru2) = 
1+k1ru2+k2ru4+...) and (f2(rd2) = 1+k1rd2+k2rd4+...). Figure 4 helps to see the difference between f1

and f2 considering only k1 for a typical distortion in a wide-angle lens. f1 models a 
compression while f2 models an expansion.  

Figure 4. Two different functions to model the distortion of images 

The problem with f1 is that there is the possibility to get the same rd for two different values 
of ru (see Fig. 5).  

Figure 5. Problem using f1. A single rd is related with two different ru
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In fact, this behavior was found experimentally when we use f1. Figure 6 shows an example. 
Borders of the corrected image duplicate parts of the image (see the top corners in Figure 
6(b)). However f2 does not have this problem. 

        
(a) Original image                   (b) Corrected image 

Figure 6. An example of a wrong correction using f1

From now on, we consider only eq. 4. Experimentally we found that we need to consider 
four terms for f2, to remove the distortion due to wide-angle lens. Then, the coordinates 
(xu,yu) of Pu can be computed by: 

                                                   xu = cx+(xd – cx) f2(rd2)
= cx + (xd – cx)(1 + k1rd2 + k2rd4 + k3rd6)

                                                   yu = cy + (yd – cy) f2(rd2)
= cy + (yd – cy)(1 + k1rd2 + k2rd4 + k3rd6)

                                                  rd2 = (xd – cx)2 + (yd – cy)2

(5)

where (cx,cy) are the coordinates of the center of radial distortion. So, this distortion model 
have a set of five parameters d = {cx,cy,k1,k2,k3}. This model works fine if the camera have 
square pixel, but if not, we need another parameter, sx, called aspect ratio that divide the 
term (xd – cx). Since most cameras have square pixels, we consider sx = 1.
Figure 7 helps to understand the process to transform the image taken from the camera, Id,
to a new image, Id, similar to the reference image. A point  Pi  in image Id with coordinates 
(xd, yd) maps to an undistorted point (xu, yu). Figure 7(b) illustrates the image without radial 
distortion and the transformation Tu that maps  the point with coordinates (xd, yd) to new 
coordinates (xu, yu). This new image is bigger than Id because the compression due to the 
wide angle lens has been removed, lines in the environment maps to lines in this image.   
In a second step, the point with coordinates (xu, yu) is projected to a new point (xp, yp) in 
image It,. Next section focuses in this projection step.  

4. The Projection Model 

Figure 3 shows and ideal case, where the plane of the pattern is parallel to the camera plane 
and center of the pattern coincides with the optical axis of the camera. A more realistic case 
is illustrated in Figure 7. Conceptually we can assume that a pinhole camera captures the 
undistorted image (a planar image) into the new image It. Since cameras are projective 
devices, a projective transformation is involved. A projective transformation is the most 
general transformation that maps lines into lines (Hartley & Zisserman, 2004). 
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           (a) Input image Id       b) Image Iu without radial distortion   (c) New image It

Figure 7. Transforming the input image 

Using homogeneous coordinates, the class of 2-D planar projective transformations between 
the camera plane and the plane of the undistorted image is given by (Szeliski, 1996) (Hartley 
& Zisserman, 2004) [xp’,yp’,wp’]t = M[xu’,yu’,wu’]t, where matrix M is called an homography 
and it has eight degrees of freedom. For our calibration application, M has the form: 
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Plane and homogeneous coordinates are related by (xp=xp’/wp’,yp=yp’/wp’) and (xu=xu’/wu’,
yu=yu’/wu’). So, a point Pu(xu,yu) in image Iu moves to Pp(xp,yp) in the new projected image It.
Assigning wu’=1, the new coordinates of Pp are given by: 
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And now the projection parameters are p = {m0,m1,m2,m3,m4,m5,m6,m7}.
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5. The Point Correspondences Method 

The goal is to find a set of parameters d and p that transform the distorted image captured 
by the camera, Id, into a new projected image, It, that match the image, Ir, of the calibration 
pattern put in front of the camera. To do that, a set of point correspondences are extracted 
from Id and Ir (see section 5.2 for details). 
Let n be the number of features, (xrk,yrk) be the coordinates of the k-th feature (k=1,...,n) in Ir

and (xdk,ydk) be its correspondence point in Id. From (xdk,ydk) and using eq. 5, we can compute 
(xuk,yuk) and using eq. 6, we can get the coordinates (xpk,ypk) of the projected feature. So we 
have a set of pairs of points C = {<(xr1,yr1),(xp1,yp1)>,...,<(xrn,yrn),(xpn,ypn)>}. 
We formulate the goal of the calibration as to find a set of parameters  = d ∪ p such the 
sum, E, of square distances between projected points and reference points is a minimum, 

exk = xp( ,xdk,ydk) - xrk

eyk = yp( ,xdk,ydk) - yrk
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(7)

5.1 Non-Linear Optimization 

The Gauss-Newton-Levenberg-Marquardt method (GNLM) (Press et al., 1986) is a non-
linear iterative technique specifically designated for minimizing functions which has the 
form of sum of square functions, like E. At each iteration the increment of parameters, 
vector , is computed solving the following linear matrix equation: 

 [A+ I] =B (8) 

If there is n point correspondences and q parameters in , A is a matrix of dimension qxq
and matrix B has dimension qx1 and =[ 1, 1,..., q ]t.  is a parameter which is allowed 
to vary at each iteration. After a little algebra, the elements of A and B can be computed 
using the following formulas, 
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In order to simplify the notation, we use xp instead of xpk and yp instead of ypk. Then, 

ipx θ∂∂ /  and ipy θ∂∂ /  for )( p
i Θ∈θ  can be derived from eq. 6, 
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Where D = m6xu + m7yu + 1. Partial  derivatives of distortion parameters are derived from eq. 
5 and two applications of the chain rule, 

i

u

u

p

i

u

u

p

i

p y
y
xx

x
xx

θθθ ∂
∂

∂
∂

+
∂
∂

∂
∂

=
∂
∂

i

u

u

p

i

u

u

p

i

p y
y
yx

x
yy

θθθ ∂
∂

∂
∂

+
∂
∂

∂
∂

=
∂
∂

}k,k,k,c,{c 321yxi ∈θ

}k,k,k,c,{c 321yxi ∈θ

(11)



Correcting Radial Distortion of Cameras with Wide Angle Lens Using Point Correspondences 59

2

62100 )(

D
mmymxmDm

x
x uu

u

p ++−=
∂
∂

2

65433 )(

D
mmymxmDm

x
y uu

u

p ++−=
∂
∂

2

72101 )(

D
mmymxmDm

y
x uu

u

p ++−=
∂
∂

2

75434 )(

D
mmymxmDm

y
y uu

u

p ++−=
∂
∂

(12)

Finally, the last set of formulas are derived from eq. 5, 
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Where rd was defined previously in eq. 5.  
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Next section describes how to compute feature points from each image, as well as their 
correspondences automatically. 

5.2 Selecting Feature Points

As we can see in Figure 6(a), the image has white squares over a black background. As 
robust feature points we select the center of mass of each one of the white squares (or 
distorted white squares) of both images. The mass of each pixel is its gray level in the range 
[0-255] (0 for black pixels and 255 for white pixels). 
In the implementation, once a white pixel is found (considering a given threshold), its 
cluster is identified visiting its neighbours recursively, and the center of mass is computed 
from all pixels in the cluster. 
To compute automatically point correspondences, we assume that the array of white 
squares in each image is centered, specially in the case of the image from the camera. In this 
way, bad clusters (for instance when the camera capture some white areas outside of the 
calibration pattern) can be eliminated because the good clusters are closer to the image 
center.  This is not a problem with the reference pattern, because we use the perfect graphic 
file of the image and there are no bad clusters of white pixels.  
We also assume that the image from the camera does not have a significant rotation, relative 
to the reference image, so relative positions of white squares hold in both images. For 
instance, the top left-most white square is the closest square to the top-left corner of the 
image.

5.3 Computing Corrected Images 

If we compute a set of parameters  we are able to map a point (xd,yd) into a new projected 
point (xp,yp). But to compute a new image It we need the inverse mapping: to set the pixel 
value with integer coordinates (xp,yp) in It, we need to compute the pixel value with 
coordinates (xd,yd) in the distorted image Id.
It is easy to compute (xu,yu) given (xp,yp) and the homography M. In homogeneous 
coordinates, [xu’,yu’,wu’]t = M-1 [xp’,yp’,wp’]t.
However, it is harder to compute (xd,yd) given (xu,yu). There is no a direct way to solve this 
problem. To solve it, we use the binary search algorithm. Our goal is to find rd given ru2 =
(xu-cx)2+(yu-cy)2, k1, k2 and k3. Once rd has been found, xd and yd are easily computed using eq. 
5. (xd = (xu-cx) / f2(rd 2) + cx  and yd = (yu-cy) / f2(rd 2) + cy). From eq. 4, we formulate a new 
function f:

 f(rd) = ru –rdf2(rd2) = ru –rd(1+k1rd2+k2rd4+k3rd6) (14) 

If xu=cx and yu=cy, from eq. 5 we have xd = xu and yd=yu. If xu cx and yu cy, we need to find a 
low limit, rd0, and high limit, rd1, such that f(rd0) > 0 and f(rd1) < 0. With these limits, the 
binary search algorithm is able to find the right rd  such  that f(rd)=0 (or very close to zero) 
and then ru = rd f2(rd 2).
If xu cx and yu cy then ru>0 and f(0) > 0, so we have the low limit  rd1= 0. To find the high 
limit rd1 we iteratively increment rd until f(rd) < 0. 
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5.4 The Calibration Process 

The calibration process starts with one image from the camera, Id, another image from the 
calibration pattern, Ir, and initial values for parameters . In the following algorithm,  and 

 are considered as vectors. We start with (cx,cy) at the center of the image, k1=k2=k3=0 and 
the identity matrix for M. The calibration algorithm is as follows: 
1. From the reference image, compute the reference feature points (xrk,yrk), (k=1,...n).
2. From  and the distorted image, compute a corrected image. 
3. From the corrected image compute the set of feature points (xpk,ypk), (k=1,...n).
4. From (xpk,ypk)(k=1,...n) and  compute (xdk,ydk)(k=1,...n).
5. Find the best  that minimize E using the GNLM algorithm: 

(a) Compute the total error, E( ) (eq. 7). 
(b) Pick a modest value for , say =0.001.
(c) Solve the linear system of equations (8), and calculate E( + ).
(d) If E( + ) >= E( ), increase  by a factor of 10, and go to the previous step. If 

grows very large, it means that there is no way to improve the solution .
(e) If E( + ) < E( ), decrease  by a factor of 10, replace  by + , and go to step 

5a.
6. Repeat steps 2-5 until E( ) does not decrease. 
When =0, the GNLM method is a Gauss-Newton method, and when  tends to infinity, 
turns to so called steepest descent direction and the size of i tends to zero. 
The calibration algorithm apply several times the GNLM algorithm to get better solutions. 
At the beginning, the clusters of the distorted image are not perfect squares and so point 
features can not match exactly the feature points computed using the reference image. Once 
a corrected image is ready, point features can be better estimated. 

6. Related Approaches 

There are two kinds of calibration methods. The first kind is the one that uses a calibration 
pattern or grid with features whose world coordinates are known. The second family of 
methods use geometric invariants of the image features like parallel lines, spheres, circles, 
etc. (Devernay & Faugeras, 2001). 
The method described in this paper is in the first family of methods. Feature point 
correspondences are computed automatically. Some other methods require a human 
operator (with a lot of patience) to find such correspondences (Tamaki  et al., 2001). Some 
other registration methods use all pixels of images as features, instead of a small set of point 
correspondences. However these methods need an initial set of parameters close enough to 
the right one and also have problems due to non uniform illumination (Tamaki et al., 2001). 
The main problem when we have a high radial distortion is the accurate detection of 
features. Detect white clusters of pixels is easier than detect lines or corners. Some other 
methods apply the function f1 of eq. (3), computing rd directly from ru. But they tend to fail 
when there is a high radial distortion, as shown in Figure 6. Also, in order to correct images, 
we have to introduce more terms in the distortion model (k1,k2,k3). Other methods use only 
k1 and find a direct solution for rd. However they also fail to model higher radial distortions. 
Other methods (Ma et al. 2003) use a Taylor expansion of rd instead of rd2. Experimentally 
we found better results using rd2 instead of rd for wide angle lens. 
Once a set of parameters was found using our method, computing each pixel of the new 
image is slow (due to the binary search method). However, in order to process many images 
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from the same camera, that process of finding correspondences between It (the new image) 
and Id (the distorted image) should be done only once. Given such correspondences, the 
bilinear interpolation process is very fast and a new corrected image is computed quickly. 
We have described a calibration method based on the Gauss-Newton-Levenberg-Marquardt 
non-linear  optimization method using analytical derivatives. Other approaches compute 
numerical derivatives (Devernay, 1995; Sten, 1997;  Devernay 2001), so we have faster 
calculations and better convergence properties. 

7. Experimental results 

We test a MDCS2, ½” format CMOS, Firewire color camera from Videre Design with a 
3.5mm C-mount lens. This camera acquire 15fps with resolution of 1280 x 960 pixels. 
The pattern calibration (image Ir), showed in Figure 8(a), was made using the program xfig 
under Linux. The image taken by the camera is shown in Figure 8(b). The corrected and 
projected image, using our point correspondences method, is shown in Figure 8(c), a very 
good result. The GNLM process was applied twice, requiring 6 iterations in the first case 
and 108 iterations in the second case. The error E after the first GNLM search was 1.706x105

and at the end of the second search it was 1.572x105. It is interesting to compute the 

maximum individual distance between points ( )22

ii yxi eed +=  to see the maximum 

individual error. Using this criteria, at the end of the process we got dimax = 1.86 pixels. The 
final parameters found are listed in Table 1. 

Figure 8. The calibration process 
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Finally, Figure 9 shows an example of removing distortion using an image of our 
Laboratory.

Figure 9. Original and corrected images 

m0 m1 m2 m3 m4 m5 m6 m7

.0752 .0146 131.0073 -.0132 .0788 115.4594 -.00002 -.000036 

m8 k1 k2 k3 cx cy sx

-.000048 1.2026E-6 -4.2812E-13 6.6317E-18 508.936 625.977 1 

Table 1. Final set of parameters 

8. Conclusions 

We propose a robust method to remove radial distortion from images using a reference 
image as a guide. It is based on point correspondences between the acquired image from the 
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camera (with wide-angle lens) and the reference image. This method is faster than image 
registration methods and it is able to model high radial distortions. Also the selection of the 
center of mass of clusters of white pixels within images, as point features, are easier to detect 
than lines or corners. Another advantage of this method is its good convergence properties 
even starting with a set of parameters that no introduces any distortion. 
This method was implemented in Linux and it is available online1, using the C language and 
standard routines from the Free Gnu Scientific library (GSL) to solve the linear system of 
equations and to find the inverse of matrix M.
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