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Scattered Data Interpolation
with Multilevel B-Splines

Seungyong Lee, George Wolberg, and Sung Yong Shin

Abstract —This paper describes a fast algorithm for scattered data interpolation and approximation. Multilevel B-splines are
introduced to compute a C 2 -continuous surface through a set of irregularly spaced points. The algorithm makes use of a coarse-to-
fine hierarchy of control lattices to generate a sequence of bicubic B-spline functions whose sum approaches the desired
interpolation function. Large performance gains are realized by using B-spline refinement to reduce the sum of these functions into
one equivalent B-spline function. Experimental results demonstrate that high-fidelity reconstruction is possible from a selected set
of sparse and irregular samples.

Index Terms —Scattered data interpolation, multilevel B-splines, data approximation.

—————————— ✦ ——————————

1 INTRODUCTION

CATTERED data interpolation refers to the problem of
fitting a smooth surface through a scattered, or nonuni-

form, distribution of data samples. This subject is of practi-
cal importance in many science and engineering fields,
where data is often measured or generated at sparse and
irregular positions. The goal of interpolation is to recon-
struct an underlying function (e.g., surface) that may be
evaluated at any desired set of positions. This serves to
smoothly propagate the information associated with the
scattered data onto all positions in the domain.

There are three principal sources of scattered data:
measured values of physical quantities, experimental re-
sults, and computational values [22]. They are found in
diverse scientific and engineering applications. For exam-
ple, nonuniform measurements of physical quantities are
collected in geology, meteorology, oceanography, cartogra-
phy, and mining; scattered experimental data is produced
in chemistry, physics, and engineering; and nonuniformly
spaced computational values arise in the output from finite
element solutions of partial differential equations, and vari-
ous applications in computer graphics and computer vision.

These fields require scattered data interpolation to de-
termine values at arbitrary positions, not just those at which
the data is available. This facilitates many useful operations
for visualizing scattered multidimensional data. For in-
stance, in medical imaging, scattered data interpolation is
essential to construct a closed surface from CT or MRI im-
ages of human organs. In geological applications, the de-
rived interpolation function facilitates a contour map to be

plotted. Computer vision utilizes scattered data interpola-
tion to perform visual surface reconstruction on sparse
measurements obtained from feature-based stereo or mo-
tion. In image morphing, scattered data interpolation is
useful for deriving a smooth mapping function from the
correspondence of feature points between a pair of images.
That same process is used to achieve image registration for
remote sensing applications.

Despite a flurry of activity in this area, scattered data in-
terpolation remains a difficult and computationally expen-
sive problem. The vast literature devoted to this subject
documents various approaches, many of which suffer from
limitations in smoothness, time complexity, or allowable
data distributions [22], [28]. This paper addresses these
problems and introduces a very fast algorithm for con-
structing a C2 -continuous interpolation function from arbi-
trary scattered data. The algorithm applies an effective B-
spline approximation technique to a hierarchy of control
lattices to generate a sequence of functions whose sum
approaches the desired interpolation function. Large per-
formance gains are realized by using B-spline refinement
to represent the sum of several functions as one B-spline
function.

This paper is based on the multilevel B-spline approxi-
mation technique presented in [33], [34] for image
morphing. In that work, multilevel B-splines were used to
propagate user-specified values at scattered features across
the image. This paper describes multilevel B-splines in
terms of scattered data interpolation and significantly im-
proves the performance by applying B-spline refinement to
the control lattice hierarchy. In addition, we consider how
multilevel B-spline approximation can be used to generate
an interpolation function through scattered data points. We
present a sufficient condition for interpolation and an adap-
tive representation of the control lattice hierarchy to mini-
mize memory overhead.

Although our method applies to multivariate data, we
limit our presentation to bivariate data for clarity. We as-
sume that the independent data is 2D and the dependent
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data is a simple scalar. This is the familiar surface interpola-
tion problem in which we have data values zk  defined at an
arbitrary set of positions {( , )}x yk k . To interpolate the data,
we seek to find a function f(x, y) which takes on the value
zk  at ( , )x yk k , i.e., z f x yk k k= ( , ) . Together, ( , , )x y zk k k  com-
prise the scattered bivariate data. The reader should note
that other names for scattered data are offered in the litera-
ture, including “random,” “nonuniform,” “irregular,” and
“arbitrarily located.”

This paper is organized as follows. Section 2 reviews
previous work. B-Spline approximation is presented in Sec-
tion 3. That serves to motivate the discussion of multilevel
B-Spline approximation, given in Section 4. In Section 5, we
demonstrate how the approximation algorithm is used to
perform multilevel B-spline interpolation. Section 6 gives
several examples in various applications. Performance re-
sults and a comparison to thin plate splines and hierarchical
B-spline refinement are presented in Section 7. Conclusions
are given in Section 8.

2 PREVIOUS WORK

There is a vast amount of literature devoted to scattered
data interpolation. The reader is referred to [22], [28], [44],
[2] for excellent surveys. In this section, we review several
dominant approaches based on Shepard’s method, radial
basis functions, thin plate splines, and finite element meth-
ods. We also consider related research in image processing
and geometric modeling, including multiresolution filtering,
direct manipulation techniques, and hierarchical B-spline
refinement.

One of the earliest algorithms in this field was based on
inverse distance weighting of data. Developed by meteor-
ologists and geologists [9], [10], it has become known as
Shepard’s method [45]. Shepard defined a C0 -continuous
interpolation function as the weighted average of the data,
with the weights being inversely proportional to distance.
This technique suffers from several shortcomings, including
cusps, corners, and flat spots at the data points, as well as
undue influence of points which are far away. Furthermore,
it is a global method requiring all the weights to be recom-
puted if any data point is added, removed, or modified.
Franke and Nielson introduced the modified quadratic
Shepard’s method [21] to address these deficiencies and
produce C1-continuous interpolation.

Another popular approach to scattered data interpola-
tion is to define the interpolation function as a linear com-
bination of radially symmetric basis functions, each cen-
tered at a data point. The unknown coefficients for the basis
functions are determined by solving a linear system of
equations. The coefficient matrix is always full, and, for
large data sets, it may become poorly conditioned and re-
quire preconditioning [13], [12]. Popular choices for the
basis functions include Gaussian, multiquadratics [27], and
shifted log [19], [12], [22], [28]. Hardy’s multiquadratics are
among the most successful and applied methods due to its
simplicity, well-conditioned property, and intuitive results.
See [19], [20], [41] for numerous tests and comparisons. A
survey of radial basis functions for image warping can be
found in [43].

Thin plate splines are derived by minimizing the integral
of the curvatures over the domain among the interpolation
functions of the scattered points. They are widely used due
to their visually pleasing results and stability for large data
sets. Although they are usually formulated as the solution
to a variational problem, Duchon has shown thin plate
splines to be derived from radial basis functions [11]. The
numerical solution of thin plate splines can be accelerated
by the multigrid relaxation technique [4], [5], [47]. An alter-
native to multigrid relaxation has been presented that uses
hierarchical basis functions or wavelets to accelerate the
convergence of an iterative technique such as conjugate
gradient descent [46], [25]. Nevertheless, the numerical so-
lution remains computationally expensive when the inter-
polation function is computed on a large grid. Recently,
thin plate splines have been used to generate smooth warp
functions for image warping and morphing [35], [31], [32].

Another class of solutions to scattered data interpolation
is due to finite element methods. This approach involves
creating some type of optimal triangulation on the set of
data points to delimit local neighborhoods over which
surface patches are defined. These patches are constrained
to interpolate the original data. There are several criteria
suggested by Lawson [30] to derive optimal triangulations
in which long thin triangles with small angles are
avoided. Piecewise linear approximation over the triangu-
lation is not smooth, achieving only C0 -continuity. The
most common C1 method uses the Clough-Tocher trian-
gular interpolant [7], [2], [26]. A related technique was
proposed in [39]. Triangulation methods, however, are sen-
sitive to data distribution, i.e., long thin triangles cannot
always be avoided.

Schumaker [44] proposed a two-stage method that first
generates a grid of data using any method for scattered
data interpolation. The second stage applies a standard ten-
sor product approximation on the grid. The resulting ap-
proximation may be made to interpolate the original data
through the use of an iterative process called the delta itera-
tion, developed by Foley and Nielson [15]. Arge et al. [1]
proposed an approximation scheme consisting of three
steps: regularization, local approximation, and extrapola-
tion. They first determine the approximation function by a
local method at a subset of the grid points where the data
density is high. That function is then extrapolated to the
entire grid by a global method.

In the image processing community, scattered data in-
terpolation is necessary to perform reconstruction among
nonuniform samples. A fine survey of nonuniform recon-
struction techniques can be found in [23]. A trend in recent
algorithms has been the use of hierarchical, or multiresolu-
tion, filtering to extend onto all positions the information
known only at the sparse and irregular samples. Burt
proposed hierarchical polynomial fit filtering to yield a
multiresolution set of low-pass filtered images that can be
combined to form a smooth surface passing through the
original data [6]. Mitchell proposed multistage filtering to
handle highly variable sample density [40]. In that work,
weighted-average filters are repeatedly applied with ever-
narrowing low-pass cutoff until the proper bandwidth for
the display is reached.
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Recent work in geometric modeling has addressed scat-
tered data interpolation. A B-spline approximation technique
for scattered data was introduced to directly manipulate an
object modeled by free-form deformation [29]. That tech-
nique calculates the pseudoinverse of a matrix containing
B-spline basis function values to minimize the approxima-
tion error. Welch and Witkin proposed a variational ap-
proach to directly manipulate B-spline surfaces with scat-
tered points or curves [50]. The control lattice is determined
by minimizing the sum of energy functionals to derive a
smooth interpolating surface. The high computational cost of
pseudoinverse and energy minimization solutions render
these methods prohibitively expensive for large data sets.

Forsey and Bartels proposed hierarchical B-spline re-
finement for object modeling [16]. They augmented B-spline
approximation with that technique to interpolate a grid of
data using a control lattice hierarchy [17], [18]. Interpola-
tion is achieved by successively improving the approxima-
tion at a coarse level with a correction term from the next
finer level. Although their method is similar in spirit to the
multilevel B-spline approximation presented in this paper,
their method cannot handle scattered data.

3 B-SPLINE APPROXIMATION

Recently, a B-spline approximation technique has been
proposed for image morphing [33], [34]. In this section, we
elaborate on that technique in terms of scattered data inter-
polation and present the details of the algorithm.

3.1 Basic Idea
Let W = £ < £ <{( , ) , }x y x m y n0 0  be a rectangular do-
main in the xy-plane. Consider a set of scattered points
P x y zc c c= {( , , )} in 3D space, where ( , )x yc c  is a point in :.
To approximate scattered data P, we formulate approxima-
tion function f as a uniform bicubic B-spline function, which
is defined by a control lattice ) overlaid on domain :.
Without loss of generality, we assume that ) is an (m + 3) ×
(n + 3) lattice which spans the integer grid in : (Fig. 1).
Later, we shall consider the effect of different lattice sizes
on the approximation function.

Let f ij  be the value of the ij-th control point on lattice ),
located at (i, j) for i = −1, 0, ..., m + 1 and j = −1, 0, ..., n + 1.
The approximation function f is defined in terms of these
control points by

f x y B s B tk l i k j l
lk

,b g a f a f b fb g= + +
==
ÂÂ f

0

3

0

3

,                   (1)

where i x j y s x x= - = - = -1 1, , , and t y y= - . Bk
and Bl  are uniform cubic B-spline basis functions defined as

B t t0
31 6a f a f= - ,

B t t t1
3 23 6 4 6a f e j= - + ,

B t t t t2
3 23 3 3 1 6a f e j= - + + + ,

B t t3
3 6a f = ,

where 0 1£ <t . They serve to weigh the contribution of
each control point to f(x, y) based on its distance to (x, y).

With this formulation, the problem of deriving function f is
reduced to solving for the control points in ) that best ap-
proximate the scattered data in P.

To determine the unknown control lattice ), we first
consider one data point ( , , )x y zc c c  in P. From (1), we know
that function value f x yc c( , ) relates to the sixteen control
points in the neighborhood of ( , )x yc c . Without loss of gen-
erality, we may assume that 1 2£ <x yc c, . Then, control
points f kl , for k, l = 0, 1, 2, 3, determine the value of f at
( , )x yc c . For function f to take on the value zc  at ( , )x yc c , the
control points f kl  must satisfy

z wc kl kl
lk

=
==
ÂÂ f

0

3

0

3

,                                (2)

where w B s B tkl k l= ( ) ( ) and s x t yc c= - = -1 1, .
There are many values for the f kl ’s that satisfy (2). We

choose one in the least-squared sense that minimizes
Â Â= =k k kl0

3
0

3 2f . This tends to minimize the deviation of f from

zero over the domain :. This property will prove useful
when we apply the B-spline approximation to a hierar-
chy of control lattices in Section 4. Simple linear algebra
using pseudoinverse is used to derive the solution [29]:

f kl
kl c

abba

w z

w
=

== ÂÂ 2

0

3

0

3 .                             (3)

In this solution, the control points near ( , )x yc c  get larger
values because they are associated with larger wkl . The re-
sulting function f has the value zc  at ( , )x yc c  and tapers off
smoothly.

Now, we consider all the data points in P. For each data
point, (3) can be used to determine the set of 4 × 4 control
points in its neighborhood. These neighborhoods may
overlap for sufficiently close data points. Fig. 2a depicts two
such data points, p1  and p2 . They may assign different val-
ues to several shared control points. In general, we resolve
multiple assignments to a control point I by considering the
data points in its 4 × 4 neighborhood (Fig. 2b). Only these
points may influence the value of I by (3). We call this set
of points the proximity data set of I.

Let Pij  be the proximity data set of control point f ij  such

that

P x y z P i x i j y jij c c c c c= Œ - £ < + - £ < +, , ,c hn s2 2 2 2 .

Fig. 1. The configuration of control lattice :.
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For each point ( , , )x y zc c c  inPij , (3) gives f ij  a different value
f c :

f c
c c

abba

w z

w
=

== ÂÂ 2

0

3

0

3 ,                                  (4)

where w w B s B t k i x l jc kl k l c= = = + - = + -a f a f, ( ) , ( )1 1

y s x x t y yc c c c c, ,= - = - . To compromise among the
values, f ij  is chosen to minimize error e ij( )f =

Â -c c ij c cw w( )f f 2 . The term ( )w wc ij c cf f-  is the difference

between the real and expected contributions of f ij  to func-

tion f at ( , )x yc c . In other words, it is the approximation er-
ror due to f ij , assuming that the other control points sur-

rounding ( , , )x y zc c c  have their values determined by (3)
using that data point. By differentiating the error e ij( )f  with

respect to f ij , we get

f
f

ij
c cc

cc

w

w
= Â

Â
2

2 .                                    (5)

The proximity data set Pij  is the set of points in P at

which control point f ij  has an influence on function f.

When Pij  contains several points, (5) provides a least-

squared solution to f ij  which minimizes a local approxima-

tion error. When Pij  consists of only one point, (5) reduces

to (3), leaving no approximation error. When Pij  is empty,

however, f ij  has no influence on f x yc c( , ) for any data point

( , , )x y zc c c  in P. This implies that f ij  may be assigned any

arbitrary value, such as zero or the average of the zc ’s, with-
out affecting the approximation error. In that case, we as-
sign zero to f ij  to make function f tend to zero in its neigh-

borhood. This will prove useful for multilevel B-spline ap-
proximation in Section 4.

3.2 Algorithm
To determine the control lattice ) from the data points in P
using (5), it is not necessary to explicitly identify the proxim-
ity data set for each control point. Since each data point in P
influences a set of 4 × 4 neighboring control points in ), it
belongs only to the proximity data sets of those control
points. Hence, we can efficiently accumulate the numerator
and denominator of (5) for each control point by considering
each data point in turn. The value of a control point is then
obtained by division if the denominator is not zero. A null
denominator occurs only when a control point has an empty
proximity data set. In that case, we assign zero to the control

point. The following pseudocode outlines this B-spline ap-
proximation method, which we denote as the BA algorithm.

BA Algorithm
Input: scattered data P x y zc c c= {( , , )}
Output: control lattice F = { }f ij

for all i, j do let d ij = 0  and w ij = 0

for each point ( , , )x y zc c c  in P do
let i xc= - 1 and j yc= - 1
let s x xc c= -  and t y yc c= -
compute wkl ’s and Â Â= =a b abw0

3
0

3 2

for k, l = 0, 1, 2, 3 do
compute f kl  with (3)

add wkl kl
2f  to d

i k j l+ +b fb g
add wkl

2  to w
i k j l+ +b fb g

end
end
for all i, j do

if w ij π 0 then

compute f d wij ij ij=
else let f ij = 0

end

The time and space complexity of the BA algorithm is
O(p + mn), where p is the number of data points, and (m + 3)
× (n + 3) is the size of the control lattice. Although the con-
trol point values are determined locally, we minimize the
approximation error so that the resulting function properly
reflects the scattered data. Fig. 3 shows an example. Figs. 3a
and 3b, respectively, show data P and the B-spline function
f derived by the BA algorithm for m = n = 16. Notice that f
nicely approximates P at densely distributed data points
and interpolates P at isolated points.

The density of control lattice ) overlaid on domain : di-
rectly affects the shape of approximation function f. If we
select lattice ) of size ¢ + ¥ ¢ +m n3 3a f a f , instead of (m + 3) ×
(n + 3), then the ijth control point in the new lattice is lo-
cated at ( , )i jm

m
n
n¢ ¢  in :. As ) becomes coarser, the proxim-

ity data set of each control point covers a larger number of
points in P. This causes many data points to be blended
together to yield a smoother shape for f at the expense of
approximation accuracy. However, as ) becomes finer, the
influence of a data point is limited to smaller neighbor-
hoods. This enables P to be more closely approximated,
although f will tend to contain local peaks near the data
points. These characteristics are evident in Figs. 3c and 3d,
where m = n = 8 and m = n = 32, respectively.

The BA algorithm runs very fast even when the number
of data points is large. Given 5,000 data points, for instance,
the control lattice for the approximation function can be
derived in 0.15 second on a Sun SPARC10. Furthermore,
since B-splines have local support, only a small neighbor-
hood in the control lattice needs to be updated when a data
point is added or deleted. This modification is easily com-
puted as long as we keep the variables d ij  and w ij .

The approximation function f from the BA algorithm is
C2 -continuous because it is a bicubic B-spline surface

    
       (a) overlapping control points             (b) proximity data set

Fig. 2. Positional relationship between data and control points.
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generated by control lattice ). Since ) can be derived very
quickly from the data points, most of the time for comput-
ing function f is taken by the evaluation of f from ) on do-
main W . To accelerate this evaluation, we use the forward
difference method [14], [51] or table lookup for basis func-
tions depending on the control point spacing. It takes 0.77
second for a Sun SPARC10 to obtain function f on a 1,024 ×
1,024 grid from the data points in Fig. 3.

4 MULTILEVEL B-SPLINE APPROXIMATION

A tradeoff exists between the shape smoothness and accu-
racy of the approximation function generated by the BA
algorithm. In this section, we present a multilevel B-spline
approximation algorithm to circumvent this tradeoff. The
resulting function simultaneously achieves a smooth shape
while closely approximating the given data P. The algo-
rithm makes use of a hierarchy of control lattices to gener-
ate a sequence of functions fk  whose sum approaches the
desired approximation function. In the sequence, a function
from a coarse lattice provides a rough approximation,
which is further refined in accuracy by functions derived
from finer lattices. We further optimize this process by us-
ing B-spline refinement to reduce the sum of these func-
tions into one equivalent B-spline function.

4.1 Basic Algorithm
Consider a hierarchy of control lattices, F F F0 1, , ,K h ,
overlaid on domain :. We assume that the spacing between
control points for )0 is given and that the spacing is halved
from one lattice to the next. Therefore, if )k is an (m + 3) ×
(n + 3) lattice, the next finer lattice )k+1 will have (2m + 3) ×
(2n + 3) control points. The position of the ij-th control point
in )k coincides with that of the (2i, 2j)-th control point in)k+1.

The multilevel B-spline approximation begins by apply-
ing the BA algorithm to P with the coarsest control lattice
)0. The resulting function f0  serves as a smooth initial ap-
proximation that possibly leaves large discrepancies at the

data points in P. In particular, f0  leaves a deviation

D1
0z z f x yc c c c= - ( , )  for each point ( , , )x y zc c c  in P. The next

finer control lattice )1 is then used to obtain function f1
that approximates the difference P x y zc c c1

1= {( , , )}D . Then,

the sum f f0 1+  yields a smaller deviation D2zc =
z f x y f x yc c c c c- -0 1( , ) ( , ) for each point ( , , )x y zc c c  in P.

In general, for a level k in the hierarchy, we derive func-
tion fk  by using control lattice )k to approximate data Pk =
{( , , )}x y zc c

k
cD , where D Dk

c c i
k

i c c
k

cz z f x y z= - Â = -=
- -
0
1 1( , )

f x yk c c-1( , ), and D0z zc c= . This process starts from the

coarsest lattice )0 and continues incrementally to the finest

lattice )h. The final approximation function f is defined as

the sum of functions fk , i.e., f fk
h

k= Â =0 . Note that only the

coarsest lattice )0 is applied to the original data P to derive
the global shape of function f. All successively finer lattices
serve to approximate and remove the residual error. In this
manner, we have an incremental solution for function f
that yields a smooth and close approximation to P. The
following pseudocode outlines the basic algorithm for
multilevel B-spline approximation, which we denote as
the basic MBA algorithm. Note that a hierarchy of control
lattices is sufficient to represent function f because each fk
can be represented by )k, and f is the sum of the fk ’s.

Basic MBA Algorithm
Input: scattered data P x y zc c c= {( , , )}
Output: a control lattice hierarchy F F F0 1, , ,K h
let k = 0
while k h£  do

let P x y zk c c
k

c= {( , , )}D
compute Fk  from Pk  by the BA algorithm

compute D Dk
c

k
c k c cz z f x y+ = -1 ( , ) for each data point

let k = k + 1
end

    
                                                        (a) given data                                                                           (b) m = n = 16

    
                                                       (c) m = n = 8                                                                            (d) m = n = 32

Fig. 3. Examples of B-spline approximation under different control lattice resolutions.
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Let p be the number of data points in P and let (m + 3) ×
(n + 3) be the size of the finest control lattice )h. The num-

ber of control points in lattice )k is a quarter of that in the

next finer lattice )k+1. Hence, the time complexity of the
basic MBA algorithm is O p mn O p mn( ) ( )+ + + + +1

4 K

O p mn O hp mnh( ) ( )+ = +1
4

4
3 . The space complexity is

O p mn( )+ 4
3  because we have to store all the control lattices

in the hierarchy. A function from the basic MBA algorithm
is C2 -continuous because it is the sum of C2 -continuous
B-spline functions. Fig. 4b shows an example. The algo-
rithm is applied to the data shown in Fig. 4a, which is the
same as that in Fig. 3a. Notice that multilevel B-spline ap-
proximation generates a much smoother and more accurate
function than B-spline approximation.

In the multilevel B-spline approximation, the density of
the coarsest lattice )0 determines the area of influence of a
data point on function f. Larger spacing between control
points serves to merge the influences of data points over
large areas to produce smoother function shapes. On the
other hand, the density of the finest lattice )h controls the
precision with which f approximates the data points. When
)h is sufficiently fine compared to the data distribution, f
can interpolate the data without an approximation error.

Fig. 4 shows several examples. In Fig. 4a, the given data is
the same as that in Fig. 3a. Let ( ) ( )m nk k+ ¥ +3 3  be the size
of control lattice)k. In Fig. 4b, m n0 0 1= =  and mh =  nh = 64 .
In the figure, the approximation function has a smooth shape
and interpolates the data points. Fig. 4c depicts the function
when )0 gets finer m n0 0 16= = . In Fig. 4d, a coarser )h with
m nh h= = 8 results in an approximation error.

In practice, we use the same horizontal and vertical
spacing of control points in a control lattice. The sizes of
control lattices in the hierarchy are related to the aspect
ratio of domain :. For the coarsest control lattice )0, we
generally choose m0 1=  or n0 1= , depending on the aspect
ratio, to make )0 as coarse as possible. Then, the basic MBA

algorithm is applied through the hierarchy until we reach a
sufficiently fine control lattice )h for which the maximum
error falls below a specified threshold. This results in an
approximation function that satisfies our goal for smooth
function shape and accuracy.

4.2 Optimization with B-Spline Refinement
The basic MBA algorithm generates a control lattice hier-
archy that represents the approximation function f. To
evaluate f, we must determine function fk  from control
lattice )k for each level k, and add them over domain :
(Fig. 5a). This introduces a significant overhead in compu-
tation time if f has to be evaluated at a large number of
points in :. We propose to address this problem by pro-
gressively applying B-spline refinement to the control lat-
tice hierarchy. This allows f to be represented by one B-
spline function rather than the sum of several B-spline func-
tions. Consequently, the computation of fk  is limited to the
small number of control points in )k rather than all the
points in W .

Let F Fa f  be the B-spline function generated by control
lattice ) and let F  denote the size of ). With B-spline re-
finement, we can derive control lattice ¢F0  from the coarsest
lattice )0 such that F f¢ =F0 0c h  and ¢ =F F0 1 . Then, the
sum of functions f0  and f1  can be represented by control
lattice <1 which results from the addition of each corre-
sponding pair of control points in ¢F0  and F1. That is,
F g f fY1 1 0 1c h = = + , where Y F F1 0 1= ¢ + .

In general, let g fk i
k

i= Â =0  be the partial sum of functions
fi  up to level k in the hierarchy. Suppose that function gk-1

is represented by a control lattice Yk-1 such that

Y Fk k- -=1 1 . In the same manner as we computed <1

above, we can refine Yk-1 to obtain ¢-Yk 1, and add ¢-Yk 1 to

)k to derive <k such that F gk kYc h =  and Y Fk k= . That is,
Y Y Fk k k= ¢ +-1 . Therefore, from g f0 0=  and Y F0 0= , we

can compute a sequence of control lattices <k to progres-

    
                                                        (a) given data                                                            (b) m n m nh h0 0 1 64= = = =,

    
                                          (c) m n m nh h0 0 16 64= = = =,                                              (d) m n m nh h0 0 1 8= = = =,

Fig. 4. Examples of multilevel B-spline approximation under different resolutions for the coarsest and finest control lattices.
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sively derive the control lattice <h for the final approxima-
tion function f gh= . This process is depicted in Fig. 5b.

There are many methods for refining a control lattice
into another so that they both generate the same B-spline
functions [8], [37], [3], [38], [36]. In this paper, an (m + 3) ×
(n + 3) control lattice ) is always refined to a (2m + 3) ×
(2n + 3) lattice ¢F  whose control point spacing is half as
large as that of ). With this restriction, we can simplify the
refinement algorithm for B-spline curves in [38] to derive

¢F  from ). Let f ij  and ¢f ij  be the ij-th control points in ) and
¢F , respectively. Then, the position of control point ¢f2 2i j,  in
¢F  coincides with that of control point f ij  in ). The values

for the control points in ¢F  are obtained from those in ) by
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To generate control lattice <h from data P, we do not
have to keep the elements of F Y Yk k k, , ¢ , and Pk  for all k. If
we apply the B-spline approximation and refinement to-
gether at each level, <h can be derived by traversing the
control lattice hierarchy from the coarsest to the finest lev-
els. In the traversal, only one variable for each of the data
and control lattice sequences is sufficient to manage the
computation and intermediate result. This technique, which
we call the MBA algorithm, is outlined in the following
pseudocode. In the algorithm, P F- Fa f  denotes the up-

dated data {( , , )}x y zc c
k

cD +1 , where P x y zc c
k

c= {( , , )}D  and
f Fk = Fa f .

MBA Algorithm
Input: scattered data P x y zc c c= {( , , )}
Output: control lattice <
let ) be the coarsest control lattice
let ¢ =Y 0
while F  does not exceed the finest control lattice do

compute F  from P by the BA algorithm
compute P P F= - Fa f
compute Y Y F= ¢ +
let ) be the next finer control lattice
refine < into ¢Y  whereby F F¢ =Y Ya f a f  and ¢ =Y F

end

Let p be the number of data points in P and let (m + 3) ×
(n + 3) be the size of the finest control lattice )h. The

                    
                                           (a) without B-spline refinement                                                  (b) with B-spline refinement

Fig. 5. Approximation function evaluation in the MBA algorithm.
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number of operations required for B-spline refinement is
linear in the number of control points. Hence, the time com-
plexity of the MBA algorithm is O hp mn( )+ 4

3 . Since we use
only one variable for each F Y Yk k k, , ¢ , andPk , the space
complexity of the algorithm is O(p + mn). If we note that
the depth of the hierarchy is much less than the number of
control points, then the MBA algorithm runs with virtually
the same time and space complexity as the BA algorithm
for the finest lattice. However, the MBA algorithm gener-
ates a much smoother function shape with the same ap-
proximation error.

Suppose that the approximation function f must be known
at M × N grid points on domain :. The processes for evalu-
ating f in the basic and the optimal MBA algorithms are illus-
trated in Fig. 5. The basic MBA algorithm requires O(hMN)
time to evaluate f on : since it takes O(MN) time to evaluate
each function fk  across all h levels of the hierarchy. The opti-
mal MBA algorithm, however, requires O mn( )4

3  time to ap-
ply the B-spline refinement to the control lattice hierarchy
and O(MN) time to evaluate the final B-spline function on :.
Although both algorithms generate the same function f, the
optimal MBA algorithm with B-spline refinement realizes
large computational savings, especially when MN mn@ .
When f is evaluated on a 1,024 × 1,024 grid, it takes 0.92 sec-
ond on a Sun SPARC10 for the optimal MBA algorithm to
generate the function shown in Fig. 4b.

5 MULTILEVEL B-SPLINE INTERPOLATION

The MBA algorithm generates an approximation function f
that passes near the data points P, but not necessarily
through them. We now consider how the MBA algorithm
can be used to interpolate the data. Recall that function fk ,
for level k > 0 in the hierarchy, is derived to approximate
and remove the residual error Dk

cz  at each data point. The
final function f is made to interpolate data P once this error
goes to zero at some level k. In this section, we present a
sufficient condition for control lattice )k to generate a
function fk  that removes any residual error. We also
present an adaptive representation for the control lat-
tice hierarchy to minimize memory overhead when the
finest control lattice is required to be very dense.

5.1 Sufficient Condition for Interpolation
Let p x y z1 1 1 1= ( , , )  and p x y z2 2 2 2= ( , , )  be two points in

data Pk . Without loss of generality, we assume that )k has
the same horizontal and vertical spacing between control
points. We define the distance between p1  and p2  as

max x
s

x
s

y
s

y
s

2 1 2 1- -F
H

I
K, , where s is the control point

spacing. This distance represents the maximum number of
horizontal or vertical lattice lines in )k that lie between p1

and p2  after they have been projected onto domain :. We
use it to define the interpolation property in terms of the
control lattice density and the data distribution.

Let d be the minimum distance among all pairs of data
points in Pk . If d ≥ 4 , then no two data points share a con-

trol point in their 4 × 4 neighborhoods. In that case, each
control point in )k contains at most one data point in its
proximity data set. When the BA algorithm is applied to Pk
with )k, (5) reduces to (3) for all control points. This results
in an interpolation function fk  that satisfies (2) at each data
point in Pk . If d < 3, however, there is a control point I in )k

that has at least two data points in its proximity data set. In
that case, the effects of those points are blended together to
determine the value of I so that function fk  only approxi-
mates them.

Figs. 6a and 6b show examples of the interpolation and
approximation cases, respectively. Note that the interpola-
tion property depends on the number of control lattice lines
between data points, not the actual distance between them.
This is depicted in Fig. 6 where points p1  and p2  have the
same distance but different interpolation properties.

5.2 Adaptive Control Lattice Hierarchy
The interpolation condition given in Section 5.1 demon-
strates that the MBA algorithm can interpolate data when
the control point spacing in the finest lattice )h becomes
sufficiently small to satisfy d ≥ 4 . It is possible, however,
that a single pair of close data points may require )h to be-
come very dense even though all other data points are
sparsely distributed. This can impose large memory over-
head in computing the interpolation function. To avoid this
drawback, we propose an adaptive representation for the
control lattice hierarchy that only stores those control points
that lie in a 4 × 4 neighborhood about each data point.

When the B-spline approximation is applied in the MBA
algorithm, control points with empty proximity data sets are
assigned the value zero and do not contribute to the final
function f. Therefore, to derive f, it is sufficient to maintain
only those control points that have data points in their
proximity data sets. We can then represent a control lattice as
a set of necessary control points rather than a lattice of all
control points. As successive B-spline approximations pro-
ceed across a control lattice hierarchy, many of the control
points in the finer lattices have empty proximity data sets.
Hence, the set representation of a control lattice makes it pos-
sible to save a lot of storage, especially for finer lattices.

At a level k in the hierarchy, the values of the necessary
control points in lattice )k can efficiently be computed by
modifying the BA algorithm. The variables d ij  and w ij  are

allocated in linear arrays instead of two dimensional arrays.
When data points are considered in sequence, their influ-
ences on the neighboring control points are stored in the

    
                (a) interpolation                              (b) approximation

Fig. 6. Examples of the interpolation and approximation cases.
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linear arrays, together with the control point indices. The
arrays are then sorted by index and merged together to
compute (5) for control points with nonempty proximity
data sets. The control points not included in the arrays are
assumed to be zero because they have empty proximity
data sets. The following pseudocode reflects this modifi-
cation, which we refer to as the adaptive BA algorithm.

Adaptive BA Algorithm
Input: scattered data P x y zc c c= {( , , )}

Output: a set of control points { }f ij

let r = 0
for each point ( , , )x y zc c c  in P do

set i, j, s, t, wkl , Â Â wab
2  as in the BA algorithm

for k, l = 0, 1, 2, 3 do
compute f kl  with (3)

store wkl kl
2f  and index (i + k, j + l) to d r

store wkl
2  and index (i + k, j + l) to w r

ler r = r + 1
end

end
sort d r  and w r  by index
for each index (i, j) in w r  do

set r r1 2,  so that index(w r ) = (i, j) for r r r1 2£ £
compute f d wij r r

r
r r r

r
r= Â Â= =1

2

1

2

end

Let p be the number of data points in P. The time com-
plexity of the modified BA algorithm is O(p log p) because
arrays d r  and w r  require sorting. The space complexity is
O(p). The time and space complexities of the algorithm de-
pend on the number of data points, not the size of the con-
trol lattice. Hence, the algorithm will be useful at a finer
level of the hierarchy where the size of the control lattice is
much larger than the number of data points. Note that the
set of stored control points need not form a sublattice be-
cause a lattice structure is not required for the algorithm to
handle the control points.

With the set representation of a control lattice, the final
function f of the MBA algorithm must be represented by
the sum of the B-spline functions derived at each level of
the hierarchy. Function f cannot be converted into one
B-spline function on the finest control lattice because we
do not maintain all of the control points in that lattice. In
that case, we cannot benefit from the optimization with
B-spline refinement in evaluating f although we can
save a lot of storage in deriving f. A reasonable solution
lies in maintaining the full control lattice at the coarser
levels so that B-spline refinement can be applied, and then
switching to the adaptive approach for finer control lat-
tices. This realizes performance gains with minimal mem-
ory overhead.

6 APPLICATIONS

Multilevel B-spline interpolation is well suited to any ap-
plication that can be cast as a surface fitting problem. In this
section, we demonstrate its use in three diverse applica-

tions: image reconstruction, image warping, and object
reconstruction. The scattered data values in these cases con-
sist of image intensities (1D), positional constraints (2D),
and surface points (3D), respectively. These examples dem-
onstrate the use of the MBA algorithm on multidimensional
data for various applications.

6.1 Image Reconstruction from Nonuniform Samples
Consider a set of nonuniform samples taken from an image.
Reconstruction refers to the interpolation necessary to re-
cover the image from its samples. A robust solution to this
problem is of great practical importance in image compres-
sion. Significant data reduction is possible by representing a
full image with only a few scattered samples. We now ad-
dress this problem by interpreting a grayscale image as a
surface, where the value of each pixel represents its height.
Image reconstruction from nonuniform samples is then cast
into a surface fitting framework that can be solved with the
MBA algorithm.

Consider the image in Fig. 7a. To derive a set of nonuni-
form samples, we first apply the Sobel operator [24] to the
image and threshold the result to identify edges. These
edge contours consist of an important set of pixels which
capture the visual details of the image. Due to their rather
arbitrary definition and distribution, edges alone are not
sufficient to recover the image. Therefore, we also sample
the image on a coarse regular grid to properly reconstruct
the parts of the image where there are no nearby edge
points. For the purpose of this example, we used a uniform
sampling rate of one sample per six pixels along each direc-
tion. The positions of the sampled pixels are shown in Fig.
7b. The MBA algorithm is applied to the samples to recon-
struct the surface in Fig. 7c. The reconstructed image that
corresponds to this surface is shown in Fig. 7d.

Large data reduction is achieved here. The dimensions of
the original image in Fig. 7a is 360 × 243. The number of
sample points in Fig. 7b is 7,301, of which 4,984 lie upon the
edge contours. Therefore, sample points constitute only 8.3
percent of the total number of pixels in the original image.
In the MBA algorithm, we used m0 2= , n0 1=  and
mh = 360 , nh = 243 for the size of the coarsest and finest
control lattices, respectively. Fig. 7d demonstrates that the
MBA algorithm can adequately reconstruct an image from
a proper set of samples. The original and reconstructed im-
ages are visually indistinguishable.

6.2 Image Warping
Image warping deals with the geometric transformation of
digital images. It requires a warp function to establish a
spatial transformation between the input and output im-
ages. Depending on the application, warp functions may
take on many different forms. Simple transformations may
be specified by analytic expressions including affine, projec-
tive, bilinear, and polynomial transformations. More so-
phisticated warp functions that are not conveniently ex-
pressed in analytic terms can be determined from a sparse
collection of feature points which are displaced to define a
transformation. The displacements for the remaining points
are evaluated through interpolation.
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A warp function relates the (x, y) points in the input
(original) image to their ( , )¢ ¢x y  counterparts in the output
(warped) image. We can define the mapping in terms of
two functions: ¢ =x X x y( , )  and ¢ =y Y x y( , ). That is, for
every point (x, y) in the input image, functions X and Y re-
late its corresponding ¢x - and ¢y -coordinates, respectively.
Consider feature points ( , )x yc c  in the input image and their
displaced positions ( , )¢ ¢x yc c  in the output image. The MBA
algorithm can be used to determine a warp function from
the feature point displacements by constructing two
smooth surfaces for functions X and Y. One surface for X is
required to pass through points ( , , )x y xc c c¢ , while the other
surface for Y passes through ( , , )x y yc c c¢ .

An image warping example is shown Fig. 8. The origi-
nal image is given in Fig. 8a. Fig. 8b shows the user-
specified features consisting of points placed on charac-
teristic parts of the face, such as the profile, eyes, nose,
and mouth. These feature points are moved to new posi-
tions to warp the original image. Fig. 8c shows the new
positions and the deformation due to the warp function
derived by the MBA algorithm. The warped image pro-
duced by resampling the original image using the derived
warp function is given in Fig. 8d.

The dimensions of the original image in Fig. 8a is 360 ×
243. The number of feature points in Fig. 8b is 242. Two
functions for the ¢x - and ¢y -components of the warp
function are derived simultaneously by using the 2D val-
ues of control points. In the MBA algorithm, we used
m0 2= , n0 1=  and mh = 360 , nh = 243 for the size of the
coarsest and finest control lattices, respectively. Fig. 8

demonstrates that the MBA algorithm can adequately
generate smooth warp functions from a few selected fea-
ture points.

6.3 Object Reconstruction
Object reconstruction from a set of scattered 3D points is
important in geometric modeling. The MBA algorithm can
be used to solve this problem when a mapping between the
scattered points and a 2D parametric space is defined. In
that case, each control point in the algorithm is associated
with a 3D value corresponding to the x-, y-, and z-
coordinates of a point on the object. The reconstructed ob-
ject is a 3D uniform cubic B-spline surface that passes
through the scattered points.

Fig. 9 illustrates an example. Fig. 9a shows a panoramic
image of cylindrical range data of a head, as measured by a
range finder (Cyberware 4020/PS 3-D Digitizer). The pixel
intensities depict depth values. We convert the image to a
3D object by mapping each pixel to a 3D point, as shown in
Fig. 9b. To derive a set of scattered points on the object, we
first apply the Sobel operator [24] to the image in Fig. 9a
and threshold the result. The 3D points corresponding to
the resulting pixels consist of characteristic parts of the
object that have high curvature. We also sample a coarse
regular grid (e.g., one out of every ten points along each
direction) on the object to handle low curvature regions.
Fig. 9c shows the set of sampled points. The MBA algo-
rithm is applied to the samples to reconstruct the object in
Fig. 9d.

    
                                                        (a) original image                                                         (b) sample points

    
                                                  (c) reconstructed surface                                             (d) reconstructed image

Fig. 7. The MBA algorithm is applied to nonuniform image samples to generate a visually indistinguishable reconstructed image.
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                                                           (a) original image                                                         (b) feature points

    
                                                            (c) warp function                                                         (d) warped image

Fig. 8. The MBA algorithm is applied to scattered feature constraints to produce a smooth warp function for image warping.

                             
                                                     (a) range data                                                           (b) original model

    
                                                               (c) sample points                                            (d) reconstructed model

Fig. 9. The MBA algorithm is applied to nonuniform range data samples to reconstruct a 3D object.
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The 512 × 170 image in Fig. 9a was used as the 2D
parametric space to apply the MBA algorithm to the sample
points. The number of samples in Fig. 9c is 4,112. In the
MBA algorithm, we used m0 2= , n0 1=  and mh = 512,
nh = 170  for the size of the coarsest and finest control lat-
tices, respectively. Fig. 9 demonstrates the potential of the
MBA algorithm in reconstructing an object from a set of
scattered 3D points.

7 DISCUSSION

In this section, we first present experimental results for the
performance and reconstruction accuracy of the MBA algo-
rithm. We provide insight into the role of B-spline refine-
ment and adaptive control lattice hierarchy in the measured
performance. The results are compared to that of multigrid
relaxation for thin plate splines, an efficient method for
scattered data interpolation. In all cases, the MBA algo-
rithm is faster than multigrid relaxation. We then consider
the use of an affine approximation as a preprocessing of
multilevel B-spline approximation. Finally, we compare the
MBA algorithm to hierarchical B-spline refinement, a related
technique presented for object modeling.

7.1 Performance
The performance of the MBA algorithm for the examples in
this paper are given in Table 1. Four versions of the algo-
rithm were tested:

• basic MBA algorithm (without B-spline refinement)
• MBA algorithm (with B-spline refinement)
• basic adaptive MBA algorithm (without B-spline re-

finement)
• adaptive MBA algorithm (with B-spline refinement)

The first row was derived from the surface construction
example shown in Fig. 4b. The other rows were obtained
from the examples in Section 6. The performance numbers
in Table 1 were measured in seconds on a Sun SPARC10.

In the basic adaptive MBA algorithm applied to a control
lattice hierarchy, the adaptive BA algorithm is used to de-
rive lattices Fk  for which 16p k< F , where p is the number
of data points. The final approximation function f is com-
puted by adding the functions fk  from each control lattice
Fk  as in the basic MBA algorithm. When Fk  is available as
a lattice, we use the forward difference method [14], [51] to
compute fk . If Fk  is stored by a set of control points, how-
ever, fk  must only be computed in the neighborhoods of
those control points. In that case, we use a lookup table for
B-spline basis functions to efficiently compute fk  in those
neighborhoods. The basic adaptive and adaptive MBA al-
gorithms differ only in the use of B-spline refinement for
reducing the coarser control lattices into one equivalent

lattice. Note that B-spline refinement can be applied only to
the coarser control lattices that violate the condition
16p k< F . This realizes computational savings in evaluat-
ing the final approximation function.

The first row in Table 1 shows that the performance of
the MBA algorithm is far superior to that of the basic MBA
algorithm in constructing the surface in Fig. 4b. This dem-
onstrates the important role of B-spline refinement in real-
izing performance gains. In this case, the adaptive MBA
algorithms were not applied because the data points are
sparse and can be interpolated with a rather coarse 64 × 64
control lattice. The second row in Table 1 shows that similar
performance gains due to B-spline refinement were realized
in the image reconstruction example. The adaptive MBA
algorithms were also not applied in this case because the
large number of data points violated the condition
16p k< F  for every control lattice Fk .

In the image warping example, the adaptive MBA algo-
rithm was the fastest among all tested. In that algorithm,
the approximation functions fk  are computed efficiently on
the coarser control lattices by using B-spline refinement. On
the finer control lattices, the adaptive BA algorithm is used
and the approximation functions are efficiently computed
by applying a lookup table for B-spline basis functions to
the set of necessary control points. In this case, the MBA
algorithm is slower because it must apply B-spline refine-
ment to a large number of control points on the finer lat-
tices. In general, if the number of data points is small and
the control lattice size is large, B-spline function evaluation
using a lookup table can be more efficient than B-spline
refinement. Hence, the adaptive MBA algorithm outper-
forms the MBA algorithm on the finer control lattices in
spite of the overhead of sorting the arrays d r  and w r  to
compute the necessary control point values.

The basic adaptive MBA algorithm is slightly slower
than the MBA algorithm in the image warping example.
Although the basic adaptive MBA algorithm efficiently
computes the approximation functions at the finer levels,
the performance loss is due to the computation required to
densely evaluate the functions at the coarser levels rather
than applying B-spline refinement. The difference between
the numbers for the two adaptive MBA algorithms shows
that B-spline refinement is very helpful for the coarser levels.

The last row in Table 1 shows that the adaptive MBA al-
gorithm is slower than the MBA algorithm in the object
reconstruction example. In this case, the arrays d r  and w r

are very large because there are a large number of data
points. Sorting these large arrays requires a computation
overhead that undermines the efficiency of the adaptive
MBA algorithm at the finer levels. Actually, the evaluation
of an approximation function using a lookup table at a finer

TABLE 1
PERFORMANCE DATA (TIME MEASUREMENTS IN SECONDS)

Basic MBA Basic adaptive Adaptive Multigrid
MBA MBA MBA relaxation

Surface construction 4.18 0.92 - - 26.62
Image reconstruction 3.86 2.23 - - 4.15
Image warping 2.14 1.65 1.76 0.98 7.90
Object reconstruction 6.54 3.77 6.24 4.38 12.23
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level is not very efficient in this case due to the large num-
ber of data points.

In the last column of Table 1, the performance data is de-
rived by using multigrid relaxation to obtain thin plate
splines for the examples in this paper. The multigrid relaxa-
tion method has been considered an efficient numerical tech-
nique to solve a linear system [5]. The method was used in
early vision problems to accelerate the numerical solution of
thin plate surfaces that interpolate scattered data points [48],
[49]. An alternate approach using hierarchical basis functions
or wavelets has been proposed to provide an efficient solu-
tion to scattered data interpolation with thin plate splines
[46], [25]. In the approach, a set of hierarchical basis functions
is used to accelerate the convergence of an iterative numeri-
cal technique such as conjugate gradient descent.

Let an interpolation function be evaluated on a grid of
size M × N. The time complexity of the multigrid relaxation
method is O(MN), while the approach using hierarchical
basis functions runs in O(MN log MN). When the grid is
large, we can expect that multigrid relaxation derives a thin
plate surface faster than hierarchical basis functions. Hence,
multigrid relaxation for thin plate splines was chosen to be
compared to the MBA algorithm in Table 1. To implement
the multigrid relaxation method, we followed the pseudo-
code in [5], where the parameters v v0 1, , and v2  determine
the number of relaxations. A summary of this approach to
derive thin plate splines can be found in [32]. We used
v v v0 1 2 1= = =  for the surface construction example and
v0 1=  and v v1 2 3= =  for the other examples.

The data in Table 1 shows that multigrid relaxation for
thin plate splines is slower than any version of the MBA
algorithm. The performance of multigrid relaxation
strongly depends on the size of the underlying grid and
remains nearly constant regardless of the number of data
points. In the surface construction example, the approxi-
mation function is evaluated on a 1,024 × 1,024 grid and
multigrid relaxation is several times slower than the MBA
algorithm. In the image reconstruction example, the per-
formance gap is smaller than in the other examples due to
the large number of data points.

7.2 Reconstruction Accuracy
To demonstrate the accuracy of reconstruction by the MBA
algorithm, we performed experiments with several test
functions. Given a test function f(x, y), we first sampled
data points from it and applied the MBA algorithm to ob-
tain an approximation function g. The difference between g
and f is then measured by computing the root mean square
error between the function values on a dense grid.

We selected five out of the six test functions used in
Nielson’s experiment [41] for trivariate scattered data inter-
polation. We simplified the selected functions to make them
bivariate functions. The resulting test functions are

f x y
x y x y

x y
x y

f x y x y

f x y y x

f x

1

2 2 2

2 2
2 2

2

3
2

4

0 75
9 2 9 2

4 0 75
9 1

49
9 1

10

0
9 7 9 3

4 0 2 9 4 9 7

9 9 9 1 9

1 25 5 4 6 6 3 1

, . exp . exp

.5 exp . exp ,

, tanh ,

, . cos . ,

,

b g a f b g a f b g

a f b g a f b g

b g b gd i
b g b gd i a fe j

= -
- + -L

N
M
M

O

Q
P
P + -

+
-

+L

N
M
M

O

Q
P
P

+ -
- + -L

N
M
M

O

Q
P
P - - - - -

= - - +

= + + -

y x y

f x y x y

b g a f b ge j

b g a f b ge j

= - - + -
L
NM

O
QP

= - - + - -

exp .5 .5 ,

, .5 .5 .5 .

81
4 0 0 3

64 81 0 0 9 0

2 2

5
2 2

In addition, we used a bicubic B-spline surface f6  as a test
function. Fig. 10 shows the test functions. The domain of
the functions is x y x y, ,b gn s0 1 0 1£ £ £ £ . The approxi-

mate ranges of the functions are f f1 20 0 1 3 0 0 0 22: . , . , : . , . ,

f f f f3 4 5 60 0 0 38 0 0 0 34 0 0 0 39 0 1 1 0: . , . , : . , . , : . , . , : . , .- .
For each test function, we used four data sets, M100, M500,

L160, and C160. M100 and M500 are small and large data sets,
which consist of 100 and 500 points, respectively. We uni-
formly sampled 7 × 7 and 15 × 15 data points for M100 and
M500, respectively, while the other points were randomly
sampled. L160 consists of data points sampled from several
lines, which is similar to sampling from the edges of an ob-
ject. We used eight lines, and 20 points were sampled and
perturbed on each of the lines. In C160, the sampled points

      

                                       (a) f 1                                                                 (b) f 2                                                                 (c) f 3

      

                                       (d) f 4                                                                 (e) f 5                                                                 (f) f 6

Fig. 10. Test functions used for demonstrating reconstruction accuracy.
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were clustered, which is analogous to real-world sampling
[41]. C160 consists of eight clusters, each of which has 20
points. Fig. 11 shows the sampling positions for the data sets.

   
                        (a) M100                                      (b) M500

   
                         (c) L160                                        (d) C160

Fig. 11. Sampling positions for test data sets.

For each test function f, we derived an approximation
function g by applying the MBA algorithm to each of the
data sets, M100, M500, L160, and C160. The root mean
square (RMS) error between f and g was measured on a
dense grid over the domain. That is,

RMS
f x y g x y

M N

i j i jj

N

i

M

=
-

+ +
== ÂÂ , ,e j e je j
a fa f

2

00

1 1
,

where x i M y j Ni j= =, , and M = N = 50. To normalize

the error values, we divided the RMS error by the differ-
ence of the maximum and minimum values of f over the
domain. Table 2 shows the results.

TABLE 2
NORMALIZED RMS ERRORS BETWEEN TEST FUNCTIONS AND

THEIR APPROXIMATIONS

f 1 f 2 f 3 f 4 f
5

f 6

M100 0.016 0.025  0.013 0.006 0.027 0.016
M500 0.001 0.005  0.003  0.0008  0.007 0.002
L160 0.031 0.032  0.042 0.008 0.049 0.022
C160 0.082 0.097  0.130 0.086 0.080 0.081

Table 2 demonstrates that the MBA algorithm recon-
structs a test function quite accurately regardless of the type
of the function. The normalized RMS error is less than 5
percent of the range of the function values, except for the
case of cluster sampling. It is clear from the examples of
M100 and M500 that the accuracy increases when the num-
ber of data points gets larger.

7.3 Initial Linear Approximation
Only at the coarsest level k = 0 does data P0  consist of the
original data points P in the MBA algorithm. At each suc-
cessively finer level k > 0, data Pk  contains the residual er-
ror between the intermediate approximation function gk-1
and the original data P. The BA algorithm applied at level k
attempts to remove the residual error by deriving a B-spline
approximation of Pk  that may be added to gk-1  to yield a
more accurate approximation gk . In that case, if the prox-
imity data set of a control point f ij  is empty, f ij  has no ef-
fect in reducing the residual errors. Then, the most natural
choice for the value of f ij  is zero so that the approximation
from the coarser levels remains unaffected. When f ij  has a
nonempty proximity data set, f ij  is determined by a
weighted average of the values f c  computed by (4). Among
the solutions of (2), we chose (4) to minimize the deviation
of a B-spline approximation from zero. This serves to retain
the approximation from the coarser levels as much as pos-
sible while properly reducing the residuals.

Regardless of the proximity data set of a control point,
the BA algorithm determines its value so as to minimize the
changes to the approximation function obtained from the
coarser levels. This is intuitive for all but the coarsest level,
which must provide a good initial approximation of the data.
In general, the BA algorithm applied at the coarsest level
generates a reasonable global approximation of data points.
In the event that the coarsest control lattice is very fine, many
of its control points may have empty proximity data sets and
be assigned zero. The final approximation will thereby tend
to contain local peaks near the data points, which may be
unsatisfactory for many applications (see Fig. 4c). In this
case, we may improve matters by using a least squares lin-
ear fit to obtain a better initial approximation.

We now review how to compute a linear approximation
function f-1  from given data points, P x y zc c c= {( ), ,
c p= 1, , }K . Let

f x y a x a y a- = + +1 1 2 3,b g ,                              (6)

where a a1 2, , and a3  are parameters. We may fit plane f-1  to
data P by solving for x in the set of linear equations

Ax = b,
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We derive the least-squared solution for f-1  that minimizes

the error ( ( , ))z f x yc c cc
- -Â 1

2 . The solution can be computed

by simple linear algebra [42] using the pseudoinverse of A:

x A A A b=
-T Te j

1
,                                    (7)

where AT  is the transpose of matrix A . The product A AT

yields a 3 � 3 matrix whose inverse can be computed effi-
ciently. The resulting function f-1  is the best linear ap-
proximation to data P in terms of the squared approxima-
tion errors.



242 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS,  VOL.  3,  NO.  3,  JULY-SEPTEMBER  1997

When we use an initial linear approximation, we first
derive function f-1  from the original data P by (7). Then, the

MBA algorithm is applied to the deviations P0 of f-1  from P,

where P x y z z z f x yc c c c c0
0 0

1= = - -{( , , ) ( , )}D D . The final

approximation function is the sum of f-1  and the function

obtained by the MBA algorithm from P0. With this proce-
dure, every level in the MBA algorithm, including the
coarsest level, approximates the deviations between the
current intermediate function and the data points. This jus-
tifies the use of a minimal norm solution (4) and assigning
zero to control points having empty proximity data sets in
the BA algorithm.

Fig. 12 demonstrates the role of a least squares linear fit
as an initial approximation in the MBA algorithm. Fig. 12a
shows the same data given in Fig. 4a. Fig. 12b depicts the
linear approximation function f-1  fitted to the data. In Fig.
12c, the initialization is applied to the case in Fig. 4c. The
approximation function in Fig. 12c continues to have peaks
and valleys near the data points, as in Fig. 4c. Note, how-
ever, that the function values are no longer zero away from
the data. They are now derived from the underlying plane
f-1 . Fig. 12d shows the result of applying the linear initiali-
zation to the case in Fig. 4b. The resulting approximation
function remains virtually the same as that in Fig. 4b. In
this case, the coarsest level in the MBA algorithm generates
a reasonable global approximation of data points, and the
linear fit is not warranted.

7.4 Comparison to Hierarchical B-Spline Refinement
Forsey and Bartels proposed hierarchical B-spline refinement
in [16] to gain finer control in editing a surface. The pur-
pose of the control lattice hierarchy is to restrict refinement
to the locality at which an editing effect is desired. That pa-
per, however, did not describe how to manipulate the hier-
archy to interpolate a set of data points. To address this
problem, they presented a technique in [17], [18] that augments

B-spline approximation with hierarchical B-spline refinement to
interpolate a grid of data using a control lattice hierarchy. Their
method, however, cannot handle scattered data.

In this paper, we presented multilevel B-splines to han-
dle scattered data. Instead of locally refining control lat-
tices, we maintain all control points in the hierarchy to ap-
ply B-spline refinement. This allows us to reduce a se-
quence of B-spline functions, defined by a control lattice
hierarchy, as one equivalent B-spline function, defined by
one control lattice. In addition to the performance gains in
evaluating the approximation function, this reduction
makes the final approximation function suitable for any
conventional modeling and rendering system. In contrast,
the hierarchical B-spline refinement technique needs a
complicated data structure to maintain the local refine-
ments of control lattices. In this paper, even when an adap-
tive control lattice hierarchy is used, a control lattice can be
represented by a simple set of necessary control points.

8 CONCLUSION AND FUTURE WORK

This paper has presented a fast approximation and inter-
polation algorithm for scattered multivariate data. The al-
gorithm is based on B-spline approximation. A B-spline
control lattice is efficiently determined by minimizing a
local approximation error for each control point. The re-
sulting C2 -continuous function passes near densely distrib-
uted data points and interpolates isolated points. However,
a tradeoff exists between the shape smoothness and ap-
proximation accuracy of the function, depending on the
control lattice density.

Multilevel B-spline approximation was introduced to
circumvent this tradeoff. The algorithm makes use of a hi-
erarchy of control lattices to generate a sequence of func-
tions whose sum approaches the desired approximation
function. In the sequence, a function from the coarsest con-
trol lattice provides an initial estimate, which is further re-
fined in accuracy by functions derived at finer levels. Large

    
                                                       (a) given data                                                               (b) initial linear approximation

    
                                          (c) m n m nh h0 0 16, 64= = = =                                              (d) m n m nh h0 0 1, 64= = = =

Fig. 12. Reconstructed surfaces using the MBA algorithm with an initial linear approximation.
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performance gains are realized by applying B-spline re-
finement to reduce the sum of these functions into one
equivalent B-spline function.

We also presented a sufficient condition for multilevel B-
spline approximation to generate an interpolation function
through scattered data points. Interpolation is achieved
when the control point spacing in the finest lattice becomes
sufficiently small relative to the data distribution. We pro-
posed an adaptive representation of the control lattice hier-
archy to minimize the memory overhead that may be in-
troduced at finer levels.

In his work comparing several scattered data interpola-
tion methods, Franke used accuracy, visual aspects, sen-
sitivity to parameters, timing, storage requirements,
and ease of implementation as the tested characteris-
tics of the methods [20]. In Section 7.1 and Section 7.2, we
showed that the MBA algorithm has good performance
with respect to the timing and accuracy characteristics, re-
spectively. In terms of visual aspects, the algorithm gener-
ates an approximation function with a smooth shape. The
parameters of the algorithm are the sizes of the coarsest
and finest control lattices in the control lattice hierarchy.
The effects of those parameters are quite intuitive as illus-
trated in Fig. 4. The storage requirement of the MBA algo-
rithm relates to the size of the finest control lattice, which
can be controlled by the user. As demonstrated by the
pseudocodes in this paper, the MBA algorithm is very easy
to implement.

The multilevel B-spline approximation can reconstruct a
planar surface when we apply an initial linear approxima-
tion to the data, as described in Section 7.3. When data
points are sampled from a nonplanar surface (e.g., a piece-
wise bicubic surface), the algorithm does not exactly recon-
struct the original surface. However, the algorithm is guar-
anteed to generate a C2 -continuous piecewise bicubic sur-
face interpolating the data points, which is expected to be a
nice approximation of the original surface. On the other
hand, the algorithm is not affine-invariant. Since data
points are projected to underlying lattices of varying resolu-
tion, the relative positioning between the data points and
the lattices affects the approximation function. In future
work, we will conduct a complete analysis of the recon-
struction class of the algorithm and investigate modifica-
tions to satisfy the affine-invariance property.

The scattered data interpolation technique introduced
here can be applied to other areas of computer graphics. We
have demonstrated its use for warp generation in image
warping. This has direct impact on image morphing as well.
Furthermore, the algorithm may play a significant role in
data compression. We have demonstrated that high fidelity
image and object reconstruction is possible from a selected set
of sparse and irregular samples. Future work will address
techniques to uniquely determine a minimal set of samples
necessary to achieve high quality reconstruction within a
specified error tolerance.
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