Mathematical and Computational Issues on Medial Axis Transform

Sung Woo Choi

swchoi@kias.re.kr

School of Computational Sciences

Korea Institute for Advanced Study

Contents

- Introduction
- Shape
- Algorithm
- Instability
- Directions & Applications

What is Medial Axis Transform?

 $\mathbf{MAT}(\Omega) = \{(p,r) \in \mathbb{R}^n \times \mathbb{R} \mid B_r(p) \text{ is a maximal ball in } \Omega \}$ $\mathbf{MA}(\Omega) = \{p \in \mathbb{R}^n \mid \exists r \ge 0 \text{ s.t. } (p,r) \in \mathbf{MAT}(\Omega) \}$

Other Definitions

- Grass Fire Model
 - points where wave starting from the boundary meet
- Cut Locus
 - points where the distance to the boundary stop minimizing
- Set of Singularities
 - points where the distance function to the boundary is not differentiable

Relation with Voronoi Diagram

N. Amenta, et al.

Examples

More Examples

Good & Bad Aspects

- Homotopy equivalence: Preserves topological structure of domains.
- Compact representation (graph structure): Easy to store and process in computer.
- Wide range of applications (Shape Analysis) pattern recognition, computer vision, computer graphics, CAGD, mechanical engineering, biological/medical applications

Problems:

- Difficult to compute
- Sensitive to noise
- Poor mathematical analyses so far

Pathological Shapes

■ MA (MAT) can exhibit pathological behaviours even for domains with C^{∞} boundary.

<

Normal Domain

 Ω : compact & connected in \mathbb{R}^2 is a *normal domain*, if

- \blacksquare $\partial \Omega$: *finite* number of *simple closed* curves
- each boundary component: *finite* number of *real analytic* curve pieces.

Theorem (Pacific. J. Math. 1997)

 Ω : a normal domain. \Longrightarrow

■ $MA(\Omega)$ and $MAT(\Omega)$ have *finite* graph structures.

- $\mathbf{MA}(\Omega)$ is a strong deformation retract of Ω .
- Almost every domain in applications is normal.

Generic Points – 2D

 $G(\Omega)$: the set of MA points with two contact points $MA(\Omega)$ except for finitely many points

$$\theta_{\Omega} = \inf \{\theta(p) : p \in G(\Omega)\}$$

 $(0 \le \theta_{\Omega} \le \frac{\pi}{2})$

Definition: Ω is weakly injective, if $\theta_{\Omega} > 0$.

Three Types of 1-Prong Points – 2D

• $\theta_{\Omega} = 0 \iff \mathbf{MA}(\Omega)$ has a 1-prong point of type (c). • Ω is weakly injective \iff only (a) and (b)

weakly injective

not weakly injective (normal)

Generic Points – 3D

 $\theta_{\Omega} = \inf \left\{ \theta(p) \, : \, p \in G(\Omega) \right\}$

Definition: Ω is weakly injective, if $\theta_{\Omega} > 0$.

Types of 1-Prong Points – 3D

Examples

weakly injective

not weakly injective (pseudonormal)

<

Algorithm

Essentially the first for domains *with free-form boundary* and *non-trivial homology* (*GMIP* 1997)

 \Rightarrow

approximation/interpolation (transcendental curves)

domain decomposition (fast)

 \Rightarrow

updating tree data structure (topologically correct)

3D extension – need extensive theoretical analysis

 \triangleleft

Instability of MAT

No explicit and quantitative error analyses before.

One-sided Hausdorff Distance

A, B: compact sets in \mathbb{R}^n

 $\mathcal{H}(A|B)$ measures how much A is *contained* in B.

(Two-sided) Hausdorff Distance

A, B : compact sets in \mathbb{R}^n .

$$\mathcal{H}(A,B) = \max \{\max_{p \in A} d(p,B), \max \{\max_{q \in B} d(q,A)\}\}$$
$$= \max \{\mathcal{H}(A|B), \mathcal{H}(B|A)\}.$$

 $\mathcal{H}(A, B)$ measures how similar A and B are.

One-sided Stability of MAT

Theorem (*ICPR* 2000, *DAGM* 2001, *ACM Symp.* Solid Modeling 2002, *J. Math. Imaging* & Vision 2002) Let Ω be a weakly injective domain (2D & 3D). Then we have $\mathcal{H}(\mathbf{MAT}(\Omega)|\mathbf{MAT}(\Omega')) \leq g(\theta_{\Omega}) \cdot \epsilon + o(\epsilon),$ $\mathcal{H}(\mathbf{MA}(\Omega)|\mathbf{MA}(\Omega')) \leq g(\theta_{\Omega}) \cdot \epsilon + o(\epsilon),$

for every pseudonormal domain Ω^\prime such that

 $\max\left\{\mathcal{H}(\Omega, \Omega'), \mathcal{H}(\partial \Omega, \partial \Omega')\right\} \leq \epsilon.$

Examples

 $\theta_{\Omega} = 45^{\circ}$, $g(\theta_{\Omega}) = 28.089243...$

$$\theta_{\Omega} = 45^{\circ}$$
, $g(\theta_{\Omega}) = 28.089243...$

 $\theta_{\Omega} = 54.73561...^{\circ}, g(\theta_{\Omega}) = 19.3923...$

 $\theta_{\Omega} = 90^{\circ}, g(\theta_{\Omega}) = 9$

θ_Ω and the Level of Detail

Level of Detail

Pruning Scheme

- no need to compute the whole complex noisy MAT
- precise error analysis

Independence of Approximations

Corollary

Let Ω be a pseudonormal 3D domain, and let Ω_1 and Ω_2 be two weakly injective 3D domains such that

 $\max\left\{\mathcal{H}(\Omega_i, \Omega), \mathcal{H}(\partial \Omega_i, \partial \Omega)\right\} \le \epsilon$

for i = 1, 2. Let $\theta = \min \{\theta_{\Omega_1}, \theta_{\Omega_2}\}$. Then we have

 $\mathcal{H}(\mathbf{MAT}(\Omega_1), \mathbf{MAT}(\Omega_2)) \leq 2g(\theta) \cdot \epsilon + o(\epsilon),$ $\mathcal{H}(\mathbf{MA}(\Omega_1), \mathbf{MA}(\Omega_2)) \leq 2g(\theta) \cdot \epsilon + o(\epsilon).$

General Case of Normal Domains

Theorem (*VMV* 2001)

Let Ω be a normal domain (2D) which is not weakly injective. Then we have

 $\mathcal{H}(\mathbf{MA}(\Omega)|\mathbf{MA}(\Omega'))$

$$\leq K_{\Omega} \cdot \epsilon^{\frac{N_{\Omega}-1}{N_{\Omega}+1}} + o\left(\epsilon^{\frac{N_{\Omega}-1}{N_{\Omega}+1}}\right),$$

 $\mathcal{H}(\mathbf{MAT}(\Omega)|\mathbf{MAT}(\Omega'))$

$$\leq K_{\Omega} \cdot \epsilon^{\frac{N_{\Omega}-1}{N_{\Omega}+1}} + o\left(\epsilon^{\frac{N_{\Omega}-1}{N_{\Omega}+1}}\right),$$

for every normal domain Ω' such that $\max \{\mathcal{H}(\Omega, \Omega'), \mathcal{H}(\partial\Omega, \partial\Omega')\} \leq \epsilon.$

In nonlinear bound: $\frac{N_{\Omega}-1}{N_{\Omega}+1} = \frac{1}{3}, \frac{1}{2}, \frac{3}{5}, \dots \nearrow 1$, $N_{\Omega} = 2, 3, 4, \dots$ K_{Ω} , N_{Ω} can be explicitly calculated from the boundary.

Asymptotic Constants

 $P = (p, r) \in \mathbf{MAT}(\Omega)$: non-degenerate 1-prong point $f(t) = \sum_{n=2} a_n t^n$, $a_2 = \frac{1}{2r} = \frac{k}{2}$. $A_n = k^{n-1}Q_n - a_n, n = 2, 3, \cdots$ N_P : the largest integer such that $A_2 = A_3 = \cdots = A_{N_P} = 0$. \implies $N_P \geq 2$ and $A_{N_P+1} > 0$. $N_{\Omega} = \min \{N_P : P \text{ is a non-degenerate } 1\text{-prong of } \mathbf{MAT}(\Omega)\}.$ $K_{P} = \begin{cases} \frac{\sqrt{2} \cdot 12^{\frac{N_{P}-1}{N_{P}+1}} (N_{P}+1)}{\frac{N_{P}-1}{N_{P}+1}} \cdot r^{2} A_{N_{P}+1}^{\frac{2}{N_{P}+1}}, & P: \text{ type (i)} \\ \frac{\sqrt{2} \cdot 2^{\frac{3N_{P}-1}{N_{P}+1}} \cdot 6^{\frac{N_{P}-1}{N_{P}+1}} \cdot N_{P}^{\frac{2N_{P}}{N_{P}+1}}}{\frac{\sqrt{2} \cdot 2^{\frac{3N_{P}-1}{N_{P}+1}} \cdot 6^{\frac{N_{P}-1}{N_{P}+1}}} \cdot r^{2} A_{N_{P}+1}^{\frac{2}{N_{P}+1}}, & P: \text{ type (ii), (iii)} \end{cases}$

 $K_{\Omega} = \max \{ K_P : P \text{ is a non-degenerate} \}$

1-prong point of $MAT(\Omega)$ s.t. $N_P = N_{\Omega}$ }.

Conclusions – Instability

- Analyzed quantitatively the effect of boundary perturbation on MAT (weakly injective).
- Proved the stability of MAT under one-sided Hausdorff distance.
- Introduced the indicators θ_{Ω} , K_{Ω} , N_{Ω} for *level of detail*.
- Suggested a new pruning strategy with error analysis.

Problems:

- Systematic method for approximation
- Too large bounds : bounds for specific applications, introduction of probability measure
- Other distances : topological information, normal information

Directions

Extension to 3D

- shape, algorithm, instability
- need deeper mathematics : differential geometry, (real) algegraic/analytic geometry, differential topology, singularity theory, *etc.*
- Relation with Subdivision
- Real-world applications

Surface Reconstruction

"Power Crust", N. Amenta, et al.

MAT and Feature Extraction

"Ridges & Ravines" A. G. Belyaev, *et al.*

Global Shape Deformation

