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Abstract. In this paper, we propose an orientation-matching minimiza-
tion for denoising digital images with an additive noise. Inspired [1–3]
by the two-step algorithm in the TV-Stokes denoising process, the regu-
larized tangential vector field with the zero divergence condition is used
in the first step. The present work suggests a different approach in or-
der to reconstruct a denoised image in the second step. Namely, instead
of finding an image that fits the regularized normal direction from the
first step, we minimize an orientation between the image gradient and
the regularized normal direction. It gives a nonlinear partial differential
equation (PDE) for reconstructing denoised images, which has the dif-
fusivity depending on an orientation of a regularized normal vector field
and the weighted self-adaptive force term depending on the direction
between the gradient of an image and the vector field. This allows to ob-
tain a denoised image which has sharp edges and smooth regions, even
though an original image has smoothly changing pixel values near sharp
edges. The additive operator splitting scheme is used for discretizing
Euler-Lagrange equations. We show improved qualities of results from
various numerical experiments.

1 Introduction

Digital image denoising processes based on partial differential equations (PDEs)
and energy minimization have been extensively studied for last 20 years in both
theoretical and practical ways. From the Gaussian filtering to the anisotropic
diffusion [4–6] and the total variation (TV) minimization [7,8], a noisy image has
been denoised from poorly estimated derivative information. The TV-filtering
is very effective for piecewise constant images and the anisotropic diffusion is
adjustable to flow-like images. However, both approaches are not suitable for an
image which has smoothly changing pixel values near sharp edges.

Since qualities of denoised images are seriously dependent on estimated deriva-
tive information, it has been a crucial topic to regularize derivatives of an im-
age [9], that is, an orientational information [1, 10–12]. Inspired by [1–3], we
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also use a regularization of the tangent vector field of an image with the zero
divergence condition. The present work propose a different approach in order to
reconstruct a denoised image from the regularized normal vector field, which we
call an orientation-mathching minimization. That is, we minimize an orienta-
tion between the image gradient and the regularized normal direction. It gives a
nonlinear PDE for reconstructing denoised images, which has the diffusivity de-
pending on an orientation of the regularized normal vector field and the weighted
self-adaptive force term depending on the direction between the gradient of an
image and the vector field. This allows to obtain a denoised image which has
sharp edges and smooth regions, even though an original image has smoothly
changing pixel values near sharp edges.

The paper is organized as follows. In Section 2, we introduce the proposed
model with a review of TV-Stokes (TVS) denoising algorithm [1,2]. Some numer-
ical aspects are explained in Section 3. Several numerical examples are shown and
different models are compared in Section 4. The paper is concluded in Section 5.

2 Two-step denoising model

2.1 Review of TV-Stokes denoising algorithm

Let us consider a gray true image d: Ω ⊂ R2 → [0, 1]. We assume that a given
noisy image d0 has an additive Gaussian white noise η with the relation

d0(p) = d(p) + η(p), p = (x, y) ∈ Ω.

The normal and tangential vectors of the level curves of an image d are given by

n = ∇d(p) =

(

∂d

∂x
,
∂d

∂y

)T

and t = ∇⊥d(p) =

(

∂d

∂y
,−∂d

∂x

)T

, (1)

where T is a transpose. Then, the vector fields are satisfied with the following
conditions

∇× n = 0 and ∇ · t = 0, (2)

which means n is the irrotational vector field and t is the incompressible vector
field. This property is very crucial when an image is reconstructed from the
information of n or t.

The TVS denoising model [1] consists of two steps to obtain a denoised
image, which uses the same process in the second step as the Lysaker-Osher-
Tai (LOT) model [10]. However, for the first step, instead of regularizing the
normal vector field in the LOT model, a tangential vector field is regularized
with the constraint of incompressibility. The regularized tangential vector field
t is obtained by minimizing a functional:

min
∇·t=0

∫

Ω

(

|∇t| + δ

2
|t − t0|2

)

dp, (3)



where t0 = ∇⊥d0, δ is a positive parameter, and |∇t| is defined by

|∇t| =

√

(

∂u

∂x

)2

+

(

∂u

∂y

)2

+

(

∂v

∂x

)2

+

(

∂v

∂y

)2

, ∇t =

(

∇u
∇v

)

, t =

(

u
v

)

.

The minimization problem is originally introduced in [1,2]. The optimality con-
dition for the saddle point is obtained by the gradient descent flow which gives
the PDE

∂t

∂τ
−∇ ·

( ∇t

|∇t|

)

+ δ(t− t0) −∇λ = 0,

∇ · t = 0,

(4)

with the boundary conditions and the initial condition

( ∇t

|∇t| + λI

)

· ν = 0, t(p, 0) = t0,

where I is the identity matrix. Note that it is not straightforward to use the
Perona-Malik (PM) model [4] or Rudin-Osher-Fatemi (ROF) model [7] directly
for regularizing derivative information of an image [9]. One of reason for regular-
izing the tangential vector field is that the incompressibility condition, ∇·t = 0,
is numerically computed using the Chorin projection type method which is well
developed in the fluid dynamics; see details in Section 3. Moreover, the condition
guarantees the existence of an image d which satisfies the relation (2).

Once the regularized tangent vector field t = (u, v)T is obtained in the first
step, the regularized normal vector field n is defined by (v,−u)T. In two-step
algorithms for image denoising [1,10] and image inpainting [2], it is suggested to
solve the following minimization problem in the second step to reconstruct an
image from n:

min
‖d−d0‖2

=σ

∫

Ω

(

|∇d| − ∇d · n

|n|

)

dp, (5)

where ‖·‖
2

is the L2(Ω) norm and σ is the standard deviation of a Gaussian white
noise. From the Euler-Lagrange equation and the gradient descent method along
fictitious time τ , we obtain a PDE for reconstructing an image with the free flux
boundary condition and an initial condition d(p, 0) = d0(p):

∂d

∂τ
(p, τ) = ∇ ·

( ∇d

|∇d| −
n

|n|

)

− µ(d − d0), (6)

where µ is a positive parameter. Note that the ROF model is in the case of
n = 0, which means that TV-norm filter is very suitable for denoising a piecewise
constant image. In other words, the model suffers from a stair-case effect on
regions whose pixel values are smoothly changed. Since the TVS denoising model
and the LOT model find an image that fits the regularized normal vector field



from the PDE (6), it is natural to have a better performance than the ROF
model. However, it still has problems when the original image has smoothly
changing pixel values near sharp edges and the regularized normal vector field
on some regions is almost parallel or has some numerical errors; see Figures 2
and 4.

2.2 Orientation-matching minimization

Inspired by the two-step algorithm in the TVS denoising model, we also use the
regularized tangential vector field with the zero divergence condition in the first
step. In this paper, we propose a new approach for reconstructing a denoised im-
age in the second step. Namely, unlike finding an image that fits the regularized
normal direction (5), we minimize an orientation between the image gradient
and the regularized normal direction:

min
‖d−d0‖2

=σ

∫

Ω

(

−|∇d · n|
|∇d||n|

)

dp, (7)

where ‖·‖
2

and σ are same in (5). From the Euler-Lagrange equation and the
gradient descent method along fictitious time τ , we obtain new PDE for ob-
taining a denoised image with the free flux boundary condition and an initial
condition d(p, 0) = d0(p):

∂d

∂τ
(p, τ) = ∇ ·

( |∇d · n|
|∇d|2|n|

∇d

|∇d| −
sgn(∇d · n)

|∇d|
n

|n|

)

− µ(d − d0), (8)

where sgn(·) is the sign function and µ is a positive parameter. Unlike the diffu-
sivity term 1

|∇d| and the fixed force ∇· n

|n| term in (6), the PDE from the proposed

minimization has the diffusivity depending on an orientation of the regularized
normal vector field n and the weighted self-adaptive force term depending on
the direction between ∇d and n.

We expect two differences between the proposed model (7) and the pre-
vious one (5) for reconstructing a denoised image. The first is that we have
smaller orientation difference between the gradient of an original image and the
gradient of a denoised image. The second is that the result in our model will
have sharper edges in a denoised image, specially when the original image has
smoothly changing pixel values near sharp edges. These are easily observed in
numerical experiments and there are some plausible reasons.

In order to see the first difference, we assume that θ is the angle between
∇d/|∇d| and n/|n|. Then, the functional in the proposed model is written by

∫

Ω

(−| cos θ|)dp. (9)

and the functional in the previous model is presented by
∫

Ω

(

|∇d| − ∇d · n

|n|

)

dp =

∫

Ω

|∇d|
(

1 − ∇d · n
|∇d||n|

)

dp

=

∫

Ω

|∇d|(1 − cos θ)dp.

(10)



The previous energy functional minimizes both |∇d| and the angle θ. If an image
d has some regions where |∇d| is large enough, the minimization of the angle
difference between ∇d/|∇d| and n/|n| has quite an weak effect. In case of very
small |∇d|, any angle will fit to n/|n|. Even though there exists a small amount of
the angle difference, the graph of a denoised image is easily affected to generate
a different shape to the original image. Since the proposed energy functional
only minimizes the orientation difference, the shape of a denoised result is more
sensitively changed in order to fit the original image regardless of the magnitude
of |∇d|. We numerically show the orientation difference in Table 1 using different
methods.

When we assume that ∇d is approximately parallel to n, the second difference
is expected because the proposed PDE can be written by

∇ ·
( |∇d · n|
|∇d|2|n|

∇d

|∇d| −
sgn(∇d · n)

|∇d|
n

|n|

)

≃ ∇ ·
(( ∇d

|∇d| − (±)
n

|n|

)

1

|∇d|

)

.

From the approximation, if |∇d| is large, we observe that the proposed model (8)
is dominantly influenced by a data fidelity term and slightly affected by a regu-
larization term. However, the previous model (6) is still affected by an additional
force term from the regularized normal vector field. Since we may have some nu-
merical errors of the vector field in a numerical computation of (3), it is difficult
to know whether the additional force will generate a good result or not. Even
though the extra force reduces a stair-case effect comparing to the TV-filtering
method in smooth regions, it may derive an erroneous effect near edges where
|∇d| is large. We numerically show qualities of a denoised image when the origi-
nal image has smoothly changing pixel values near sharp edges; see Figure 2, 3,
and 4.

3 Numerical Aspects

For the discretization, we use the standard staggered grid which is suggested
in [2]. In this section, we briefly note some issues of discretization in the first
and second steps.

3.1 A regularization of the tangent vector field

The minimization problem (3) for regularizing the tangent vector filed with the
constraint of the incompressibility condition is solved by the method of Lagrange
and the Chorin projection type method. We apply the Chorin projection type
method and the AOS method [13, 14] to solve the PDE (4).

1. Calculation for an intermediate tangent field t∗ which is not incompressible
vector field.

t∗ − tn

∆τ
= ∇ ·

( ∇t∗

|∇tn|ǫ

)

− δ(t∗ − t0),



with the boundary condition

∇t∗ · ν = 0,

where |∇tn|ǫ ≡
√

ǫ + |∇tn|2 and tn is the tangent vector field at the nth time
step. The AOS method of the linearized equation for the component u and
v is used. The spatial derivatives with respect to x and y are approximated
by standard one-sided finite differences.

2. Solving for λ such that






tn+1 − t∗

∆τ
= ∇λ,

∇ · tn+1 = 0.

This gives a Poisson equation for λ with the zero Neumann boundary con-
dition:

∇ · ∇λ = − 1

∆τ
∇ · t∗.

3. Updating the tangent vector field by

tn+1 = t∗ + ∆τ∇λ.

The boundary values are updated by the incompressibility condition. More
datails are shown in [1].

For the stopping criterion, we use the steady state condition for the flow
t = (u, v)T:

max

( ||un+1 − un||∞
||un||∞

,
||vn+1 − vn||∞

||vn||∞

)

≤ α,

where n and n + 1 are consecutive time steps and || · ||∞ is the L∞(Ω) norm.
Note that α = 10−4 is fixed for all examples in the paper.

3.2 A reconstruction of a denoised image

After the regularized tangent vector field t = (u, v)T is computed from the
first step, we propose an orientation-matching minimization (7) to reconstruct
a denoised image from the regularized normal vector field n = (v,−u)T. The
optimality condition for the saddle point is obtained by the gradient descent flow
which gives a PDE (8). We also apply the AOS method to solve the proposed
PDE. Note that we use a regularized sign function:

sgnε(s) ≡ 2Hε(s) − 1, Hε(s) ≡















1 s > ε,

0 s < ε,
1

2

(

1 +
s

ε
+

1

π
sin

(πs

ε

)

)

otherwise,



and a parameter ǫ is used to avoid division by zero in numerical experiments:

|∇dn|ǫ ≡
√

ǫ + |∇dn|2, |n|ǫ ≡
√

ǫ + |n|2,

where n is the nth time step. More datails are shown in [1].
For the stopping criterion, we use the steady state condition for the relative

difference in the energy (7). That is,

|En+1 − En|
En

≤ β,

where En is the energy value at the time step n approximated by

En ≈
∑

i,j

(

− |∇dn · n|
|∇dn|ǫ|n|ǫ

)

.

The value of β may be different for images and we use 10−2 ≤ β ≤ 10−4. The
energy (5) is similarly computed and it is used for the stopping criterion of the
second step in the previous model.

Remark 1. The right choice of parameters is crucial for qualities of a denoised
image. The parameters, δ and µ, they control a balance between a data smooth-
ing and a fidelity therm. The parameter ǫ is used to avoid a division by zero,
which also controls the diffusivity for smoothing a data. The AOS scheme pro-
vides us a wide range of the time step. However, if ∆τ is too large, then visual
qualities of a denoised image are deteriorated.

4 Examples

In this section, we show numerical experiments for denoising an image based on
the proposed method. With synthetic images and real images, we discuss about
the strength of the proposed orientation-matching minimization and compare
with results from other methods. For the simplicity, the following notations are
used to indicate parameters in different methods.

– V (∆τ, δ, ǫ): a regularization of the tangent vector field (4).
– M1(∆τ, µ, ǫ): a reconstruction of a denoised image from (8).
– M2(∆τ, µ, ǫ): a reconstruction of a denoised image from (6).
– M3(λ): the TV-filtering method in [8].
– M4(µ, ρ, ǫ): a reconstruction of a denoised image from (11).

We also include an interesting numerical experiment to combine the anisotropic
nonlinear diffusion [5, 6] with the regularized tangent vector field t = (u, v)T in
the first step (3). That is, the diffusivity tensor is constructed from n = (v,−u)T

and we solve a PDE with the free flux boundary condition:

∂d

∂τ
(p, τ) = ∇ ·

(

g
(

Gρ ∗ nnT
)

∇d
)

− µ(d − d0), (11)



(test 1) (test 2) (test 3) (test 4) (test 5)

Fig. 1. Results from the proposed method: the first row is original images, we add a
Gaussian white noise with zero mean and the standard deviation 10 for all images in
the second row, and the last row is the result from the proposed method.

where (Gρ∗M)ij = Gρ∗mij for a matrix M = (mij) and Gρ∗f is the convolution
of f with the two-dimensional Gaussian kernel with the standard deviation ρ.
The function g is defined on a set S of real semi-positive symmetric 2×2 matrices:

g(M) ≡ 1√
ǫ + Λ1

vΛ1
vΛ1

T +
1√

ǫ + Λ2

(Λ2) vΛ2
vΛ2

T,

where (Λ1, vΛ1
) and (Λ2, vΛ2

) are eigenpairs of M ∈ S, Λ1 ≥ Λ2.

Table 1. Comparison of the orientation difference γ in (12): (A) is the result of the
proposed method, (B) is the result of TVS denoising method, (C) is the result of TV-
filter method. The denoised image from the prosed method is shown in the third row
of Figure 1.

images (A) (B) (C)

test 1 0.9706 0.9316 0.7466
test 2 0.8693 0.8478 0.6825
test 3 0.7668 0.6304 0.6218
test 4 0.5681 0.4983 0.3891
test 5 0.4936 0.4051 0.3228

Example 1. We numerically check how well the orientation of the gradient
of a denoised image is fitted to the gradient of the original image. In Table 1,



(a) (b) (c) (d) (e) (f)

Fig. 2. Comparison with other methods: (a), (b), and (c) are the graph of images
from top to bottom of the test 5 in Figure 1, respectively. (d) is the result of TVS
denoising model and (e) is the result of TV-filtering model. (f) is the result from (11).
The parameters are shown in Example 1. Note that (b) is the result from the proposed
model.

(a) (b) (c) (d) (e) (f)

Fig. 3. (a) is an original image. We add a Gaussian white noise with zero mean and
the standard deviation 20 in (b) which is larger noise than in test 4 in Figure 1. (c) is
the result of the proposed model. (d) is the result of TVS denoising model and (e) is
the result of TV-filtering model. (f) is the result from (11).

we measure the orientation difference for different test images:

γ =
1

|Ω|

∫

Ω

∣

∣

∣

∣

∇de

|∇de|
· ∇dc

|∇dc|

∣

∣

∣

∣

dp, (12)

where de is the original image, dc is the computed denoised image, and |Ω|
is the area of the domain. In the first step in (A) and (B), V (10−1, 1, 104) is
fixed for all test images. In the second step in (A) and (B), M1(10−3, 1, 10−3)
and M2(10−3, 1, 10−6) for test 1, M1(10−3, 1, 5 · 10−3) and M2(10−3, 1, 2.5 ×
10−5) for test 2, M1(10−3, 1, 2.5 · 10−5) and M2(103, 1, 5 · 10−3) for test 3,
M1(10−3, 1, 10−3) and M2(10−3, 5, 10−3) for test 4, and M1(10−3, 2, 3 × 10−3)
and M2(103, 3, 3 × 10−3) for test 5 are used, respectively. In (C), all results are
obtained by M3(60). As we explain in Section 2.2, the proposed model has bet-
ter performance for fitting the orientation. In Figure 2, the graph of computed
results are presented in order to see visual difference. The result (f) is obtained
by (11) with M4(0.4, 0.1, 10−3). A denoised image from the proposed method
has very clean shape, even though an original image has smoothly changing pixel
values near edges. We observe that results from other methods do not have very
sharp edges. The result (e) from the TV-filtering model has has a stair-case effect
on smooth regions. These results are expected in Section 2.2.



(a) (a1) (a2) (a3)

(b) (b1) (b2) (b3)

Fig. 4. (a) is a part of a tangent vector field from (3). (a1), (a2), and (a3) in the first
row are a part of the images (c), (d), (f) in Figure 3, respectively. In the second row, we
compute less smooth tangent vector field (b) in the first step and use the same method
for the second step as the first row.

Example 2. In Figure 3, we compare results from different methods with
larger noise in Figure 1. For a regularization of the tangent vector field in (c) and
(d), V (5×10−2, 1, 10−4) is used. The result of the proposed method in (c) is ob-
tained by M1(10−3, 2, 10−3). (d), (e), and (f) are obtained by M2(10−3, 4, 10−4),
M3(80), and M4(0.5, 1, 10−3). Now, we observe the effect of the first step (3) to
the second step in (8), (6), and (11) is numerically shown. The first row in Fig-
ure 4 is a part of images in Figure 3. In the second row, we obtain a relatively less
smooth vector field with V (10−1, 3, 10−4). (b2) is obtained by M1(10−3, 2, 10−3

and we use same parameters for (b1) and (b3) as (a1) and (a3). Note that the
result (b2) does not have very clean edge even if we use smaller µ in the second
step for the previous model (6). The other methods, (6) and (11), are responded
by a small change of the vector field because the field is directly used in the
formulation without considering any relation with an image data.

Example 3. For real images, we compare with denoised images from different
methods. In Figure 5, the image (a) is obtained by the proposed method with
V (10−1, 5, 10−4) and M1(5× 10−4, 5, 5× 10−4). (b) is from V (5× 10−2, 5, 10−4)
and M2(10−3, 1, 5 × 10−3). (c) is from M3(60). In Figure 6, the image (a) is
obtained by the proposed method with V (10−1, 2, 10−4) and M1(10−4, 30, 10−3).
(b) is from V (10−1, 2, 10−4) and M2(10−3, 2, 10−3). (c) is from M3(60). For these
images, two models (5) and (7) give similar results which are better than the
TV-filtering model.



(a) (b)

(c) (d)

Fig. 5. There is a Gaussian white noise with zero mean and the standard deviation
10 in (a) from [15]. (b) is the result from the proposed model. (c) is the result of
TVS denoising model and (d) is the result of TV-filtering model. The size of image is
240× 124.

(a) (b) (c) (d)

Fig. 6. There is a Gaussian white noise with zero mean and the standard deviation 10 in
(a) from [15]. (b) is the result of the proposed model. (c) is the result of TVS denoising
model and (d) is the result of TV-filtering model. The size of image is 181× 274.

5 Conclusions.

We proposed an orientation-matching minimization for denoising digital images.
Our algorithm consisted of two steps. In the first step, we use the regularized
tangent vector field with the incompressibility condition which is suggested in [2].
The condition is crucial for reconstructing an image from the vector field. In the
second step, the present work proposed a minimization of an orientation between
the image gradient and the regularized normal direction. It gives a nonlinear PDE
for reconstructing a denoised images, which has the diffusivity depending on an
orientation of the regularized normal vector field and the weighted self-adaptive



force term depending on the direction between the gradient of an image and
the vector field. This allows to obtain a denoised image which has sharp edges
and smooth regions, even though an original image has smoothly changing pixel
values near sharp edges. We show improved qualities of results from various
numerical experiments.
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