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Introduction

deformable models.





Parametric Active Contours

3 major problems: (1) Topology adaptation
( ref. T snakes, level-set)

(2) Increasing Capture range
(3) Concavity adaptation

To overcome (2) and (3),
Balloon force, Gradient Vector Flow methods, and
Geometric Active Contours 
had been proposed.



Energy Minimizing Formulation













External Forces

(1) Gaussian Potential Force
(2) Pressure (Balloon) Force
(3) Distance Potential Force
(4) Gradient Vector Flow



Gaussian Potential Forces



Pressure (Balloon) Force
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(3) The area of parallelogram in the  plane: 1 .
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 enclosed area of a simple curve in the  plane
      If we approximate the curve by poltgons having an increasing 
      number of shorter and shorter sides and calculate the limit of 
      the areas 
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of these polygons. If P(x,y) and P ( , ) are
      two neighboring vertices of such an approximating polygon, 
      then its area consists of a sum of elementary triangles(OPP ), 
      that is of
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     In the limit, this sum becomes the line integrals       
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Area Revisit
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Lagrange-Euler Equation of the above equation
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Distance Potential Force





Gradient Vector Flow [10][43]









Numerical Implementation







Discussion





DEMOS and Coffee Break



Geometric Active Contours





Curve Evolution Theory Revisit







Level Set Method
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Speed Functions













Relationship to PACM





Numerical Implementation





Demos and Coffee Break
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Geodesic Active Contour



Validity of 0β =
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Truncated Action:  with 
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Area and Length Minimizing 
Flows

1. Length Gradient Flow
Geometric Heat Equation: curvature motion



2. Weighted Length Gradient Flow   



3. Area Gradient Flow   



4. Weighted Area Gradient Flow   
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