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Introduction

De-
formable models are curves or surfaces defined within an 1image domain that can
move under the infiluence of internal forces, which are defined within the curve or
surface itself, and external forces, which are computed from the image data. The
internal forces are designed to keep the model smooth during deformation. The ex-
ternal forces are defined to move thizgmﬂel toward an object boundary or other de-
sired features within an image. B’gﬂ-i: r:m%{ t?ﬂ.mg extracted boundaries to be smooth

and icorporating other prior in *wjﬁsi& i‘igﬁ}j“ it the object shape. deformable mod-
els offer robustness to both im

f&:}l{ik@ sl youndary gaps and allow integrating
boundary elements into a coher

*.I'l("

=-a;?§ ﬁ@ﬁ‘iﬂant mathematical description.

The popularity of de-
formable models 1s largely due to the seminal paper “Snakes: Active Contours™ by
Kass. Witkin, and Terzopoulos [13]. Since its publication, deformable models have
grown to be one of the most active and successful research areas in 1mage seg-
mentation. Various names, such as snakes, active contours or surfaces, balloons.
and deformable contours or surfaces, have been used in the literature to refer to

deformable models.



There are basically two types of deformable models: parametric deformable

models (cf. [13.21-23]) and geometric deformable models (ct. [24-27]). Paramet-
ric deformable models represent curves and surfaces explicitly in their paramet-

ric forms during deformation. This representation allows direct interaction with
the model and can lead to a compact [E]J]‘ESE]lTEiIiDIl for fast real-time implemen-
tation. Adaptation of the model topglagy. however. such as splitting or merging
parts during the deformation. cangt f:.g;l;' fedf using parametric models. Geomet-
ric deformable models. on the o L%ghl_f;t(}**{ n handle topological changes natu-
rally. These models. based on th *ﬁiﬂ@i%{lﬂ irve evolution [28-31] and the level

set method [32. 33]. represent curtel %1 dosurfaces implicitly as a level set of a
higher-dimensional scalar function. Their parameterizations are computed only

after complete deformation. thereby allowing topological adaptivity to be easily
accommodated. Despite this fundamental difference. the underlying principles of
both methods are very similar.




Parametric Active Contours

3 major problems: (1) Topoloqy adaptation
(ret.3 i&'?s‘?:;akes level-set)

(2) i}'&%a.aﬂ" Capture range
adaptation

To overcome (2) and (3),

Balloon force, Gradient Vector Flow methods, and
Geometric Active Contours

had been proposed.



Energy Minimizing Formulation

The basic premise of the energy minimizing formulation of deformable con-
tours 1s to find a parameterized curve that minimizes the weighted sum of inter-
nal energy and potential enerey. The internal energy specifies the tension or the
smoothness of the contour. The potential energy 1s defined over the image domain
and typically possesses local minima at the image intensity edges occurring at ob-
ject boundaries ]fh.»i[umﬁi""mgbﬁhe total energy vields internal forces

and potential forces. Imema] 1 %"-‘éﬁ" ’ai'l e curve together (elasticity forces)
and keep 1t from bending too m :tqﬁhfiar: 1;1 forces). External forces attract the
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curve toward the desired object b muﬁ&uimr o find the object boundary. paramet-
ric curves are initialized within the"sgesdomain, and are forced to move toward
the potential energy minima under the influence of both these forces.

Mathematically, a deformable contour 1s a curve X (s) = (X (s),Y (s)). s €
[0, 1|. which moves through the spatial domain of an 1mage to minimize the follow-
ing energy functional:

E£(X)=8(X)+P(X). (3.1)



The first term 1s the internal energy functional and 1s defined to be

62}{

+ 5(s)

S(X) = %/ﬂ a(s)|ZX

s

The first-order derivative discourages stretching and makes the model behave like
an elastic string. The second-or de;,ﬂi'f' criydtive discourages bending and makes the

model behave like a rigidrod. The @E’ﬁh 'ﬁ“‘ rameters a(s) and 3(s) can be used
to control the strength of the mod "f'rﬁn%,( 1c111g1d1’[}r respectively. In practice.
a(s) and S3(s) are often chosen to b




The second term 1s the potential energy functional and 1s computed by integrat-
ing a potential energy function P(x, i) along the contour X (s):

The potential energy function P§

T R-:i.ﬁﬂk,‘t:*“r
,,,:’-z:* ?ved from the image data and takes
smaller values at object boundar§ds %*E,,Z

s other features of interest.



Regardless of the selection of the exact potential energy function. the proce-
dure for mimimizing the energy functional is the same. The problem of finding
a curve X (s) that minumizes the energy functional £ 1s known as a variational
problem [35]. It has been shown that the curve that minimizes £ must satisty the
following Euler-Lagrange equation [13,22]:

view Eq. (3.6) as a force balance equation

Fint(X)+Fth(X) :U:- (3—')



where the internal force 1s given by

J [ 0X d? 0?°X

Fini( X)=— a7 | — 55 3.8
(X) 33(&85) ds? (’8332) (3-8)

and the potential force is given by_ﬂi"#, & H‘b

F Rt

wdes LA I
F b 12X H'f;._‘;P(X ). (3.9)

s N

The internal force Fiy¢ discourages s hmg and bending while the potential force
F ot pulls the contour toward the desired object boundaries.



To find a solution to Eq. (3.6). the deformable contour i1s made dynamic by
treating X (s) as a function of time ¢ as well as s — 1.e.. X(s,f). The partial
derivative of X with respect to ¢ 1s then set equal to the left-hand side of Eq. (3.6)

as follows:
0.4 0 00X\ 02X
JOX ( ;; ( 8 ) _VP(X). 3.10)
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The coeflicient v 1s mfroduced t wﬂ‘ﬁmg 'mits on the left side consistent with
the right side. When the solution Xelg* .,.,a.mbﬂlzea the left side vanishes and we
achieve a solution of Eq. (3.6). We note that this approach of making the time
derivative term vanish 1s equivalent to applying a gradient descent algorithm to find
the local minimum of Eq. (3.1) [34]. Thus, the minimization is solved by placing
an initial contour on the image domain and allowing it to deform according to

Eq. (3.10).



External Forces

(1) Gau _"_m-:i?’ tential Force
(2) Pre “gm&‘g% iloon) Force
'“R,,ge_ﬁﬁﬂtentlal Force
(4) Gradieftt\/ector Flow




Gaussian Potential Forces

a gray-level image I(x,y) viewed as a function of continuous position variables
(z,y), a typical potential energy function designed to lead a deformable contour
toward step edges 1s

P(z,y) = —w, |V[Go(z,y) * I(z,9)]I , (3.4)

where w, 1s a positive weighting fgﬁ}%& Gy (x,y) 1s a two-dimensional Gaus-
sian function with standard dev Eﬁ}gﬁ;‘f{fﬁ}s the gradient operator, and = is the
2D 1mage convolution operator. %{ﬂg&fﬁ_&’g ed 1mage features are lines. then the
appropriate potential energy functhg iﬁﬁﬁe defined as follows:

P(:{:,y}:w;[(}'g(:s?y) *I(:E:-y)]:' (35)

where w; 1s a weighting parameter. Positive w; 1s used to find black lines on a white
background, while negative w; 1s used to find white lines on a black background.
For both edge and line potential energies. increasing ¢ can broaden its attraction
range. However, larger ¢ can also cause a shift in the boundary location, resulting
in a less accurate result (this problem can be addressed by using potential energies
calculated with different values of o ).



Pressure (Balloon) Force

Cohen [22] proposed to increase the attraction range by using a pressure force

together with the Gaussian potential force. The pressure force can either inflate or
deflate the model. hence, 1t removes the requirement to initialize the model near

the desired object boundaries. Deformable models that use pressure forces are also
known as balloons [22].

: ‘”ﬂ'. as L€ ?
The pressure force 1s defined ; “'.-ﬂg.a_ _f_;??"l

(X), (3.13)

where IV (X)) 1s the inward unit norma Df the model at the point X and w,, 15 a

constant weighting parameter. The sign of w,, determines whether to inflate or de-
flate the model and 1s typically chosen by the user.



The value of w, determines
the strength of the pressure force. It must be carefully selected so that the pressure
force 1s slightly smaller than the Gﬂm% ;;D'[E‘Iltlﬂl force at significant edges. but
large enough to pass through weg ‘Fx,;. %f us edges. When the model deforms.
the pressure force keeps inflatin ,‘ il
Gaussian potential force.

that tllE} may cause the deformable model to cross 1tae]f 311{1 form lmops (cf. [’%9])



Area Revisit

(1) The lengh of a line segment with its end points x,, X, :%
X Y (X3’ y3)

(2) The area of triangle in the xy plane: % X, Yy, 1.

ok (%1 Y1)
X,y

y, .
A
(3) The area of parallelogram in the xy plane: % 'yh {;;hﬂ_ ()(2 , y2)
i . )
f% £5 ey (X3’ Ys
(4) The enclosed area of a simple curve in th xr{;{aheﬂ\fﬂ\,ﬂ,
= W
If we approximate the curve by poltgons I \;gf“;g.urli Li‘];(“éagy y
number of shorter and shorter sides and caléyz" L‘[:v ;} of

the areas of these polygons. If P(x,y) and P, (x + dX, y+ dy) are
two neighboring vertices of such an approximating polygon, ( )
then its area consists of a sum of elementary triangles(OPP,),

that is of summands:

(X2, ¥2)

0 0 1
= X y 1= %(xdy— ydx),
X+dx y+dy 1
P

In the limit, this sum becomes the line integrals

%j(xdy — ydx). Pl



%CJSCdeS = %cﬁC-Nds

where C=C(p)=C(x(p),y(p)), T :%ép),T-N =0

Lagrange-Euler Equatjsg i o




Distance Potential Force

Another approach for extending attraction range is to define the potential energy
function using a distance map as proposed by Cohen and Cohen [40]. The value
of the distance map at each pixel 1s obtained by calculating the distance between
the pixel and the closest boundary Ey,u‘}bas.ed either on Euclidean distance [41]
or Chamfer distance [42]. By defug Ei‘@% ptential energy function based on the
distance map. one can obtain a p »E:_&a ﬁ?&ﬂﬁ&%ﬁ* feld that has a large attraction range.

Given a computed distance mii 2535 one way of defining a corresponding
potential energy. introduced in [40 f".'i}a .31101&5

Py(x,y) = —wy exp[—d(m,y)g] . 3.14)

The corresponding potential force field 1s given by —V Py(x, ).



The distance potential force is based on the principle that the model point

should be attracted to the nearest e&[ﬁéj@ﬁ&a This principle. however. can cause
difficulties when deforming a ¢ m}ﬁ s30-sHace mto boundary concavities [43].

N“J‘n }ﬁ‘tkq.-"'!
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Gradient Vector FIow rioja3)

- . We define

below a new static external force field F.. g = vixz, y).

which we call the gradient vector flow {GYF) ﬁeld. To obtain

the corresponding dynamic snake equation. we replace the

potential force =V Eey;  wnbagith v(x, y). vielding
Fatid

i (s, 1) + V.

‘r.'l.-::-::n;-;t ‘-;'J.

W dﬂ«{&ﬂg'ﬁ field to be the vector

"*'”}}ﬂnt minimizes the energy

Xt (3? t} =

ik o

We define the gradie
field v(z, y) = [u(x: y)

functional

£ = // (e + uy® 4+ v + v, 2) + V%V = V£|? daody,



This wvariational formulation follows a standard principle.
that of making the result smooth when there 1s no data. In
particular. we see that when |V f| is small, the energy is
dominated by sum of the squares of the partial derivatives
of the vector field. yielding a slowly varying field. On the
other hand. when |V f| is large. the second term dominates the
integrand. and 1s 11111111111,3»“{13%‘%‘5511& v = V [. This produces

the desired effect of k f’Iﬁ@Z? a_l v equal to the gradient of
the edge map when §

{ﬂkafééf:{n t forcing the field to be
slowly-varying in hom hfﬂj,em}.i-,géimm The parameter p 1s
a regularization parametetfgeeriing the tradeoff between the
first term and the second term in the imntegrand. This parameter
should be set according to the amount of noise present in the
image (more noise, increase fi).

We note that the smoothing term—the first term within
the integrand —is the same term used by Horn and
Schunck in their classical formulation of optical flow




Using the calculus of variations 1t can be shown that

the GVF field can be found by solving the following Euler
equations

1V = (u= fm)[fa:z + fyj) =0

pV2 = (ymfiy5? + f,7) =0
where V2 is the Lapl :ﬁ‘iﬁf}%{%@ - These equations provide
further intuition behing ﬁfb,ﬁ;;%‘;j mulation. We note that in
a homogeneous region %’féfé@{f{:@ y) is constant], the second
term in each equation 1s eigeecause the gradient of f(x, )
1s zero. Therefore, within such a region, u and v are each
determined by Laplace’s equation, and the resulting GVF field
1s mterpolated from the region’s boundary, reflecting a kind of
competition among the boundary vectors. This explains why

GVF vyields vectors that point into boundary concavities.
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(a) Convergence of a snake using (b) distance potential forces, and (c) shown close-up within the bou
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Numerical Implementation

Various numerical implementations of deformable models have been reported
in the literature. For examples. the finite difference method [13]. dynamic program-
ming [21]. and greedy algorithm [46] have been used to implement deformable con-
tours. while finite difference methods [15] and finite element methods [23.34.47]
have been used to implement defﬂu&rﬂf[s;‘gujace& The finite difference method re-
quires only local operations and 1§ ¥ ro%-ompute. The finite element method.
on the other hand. 1s more costl t_p.‘t:aﬁ_ig?g&.#}tnlt has the advantage of being well
adapted to the irregular mesh rept “és:.crx
tion. we present the finite difference 1
tours as described 1 [13].

Since the numerical scheme proposed by [13] does not require external forces
to be potential forces, it can be used to implement deformable contours using ei-
ther potential forces or nonpotential forces. By approximating the derivatives in
Eq. (3.12) with finite differences. and converting to the wvector notation

f%ﬁm;ﬂ of deformable surfaces. In this sec-
thod implementation for deformable con-



X! =(X1Y") = (X(th,nAt),Y (ih,nAt)), we can rewrite Eq. (3.12) as

X?_X{I_l 1 n n
: h_g[ﬂi-l-l(xz—l—l_x) oi( X7 — X7 )]

T At

where ~ 1s the damping coefficient. a; = &(ih) B; = B(th), h the step size in
space. and At the step size in time. In general, the external force F oy 15 stored as a
discrete vector field. 1.e., a finite set of vectors defined on an image grid. The value
of Foyt at any location X ; can be obtained through a bilinear interpolation of the
external force values at the grid points near X ;.



Equation (3.20) can be written in a compact matrix form as

= AX" + Foe(X™ ), (3.21)

where 7 = At/y. X™ X" ', and E—gx"f X" 1) are m x 2 matrices. and A is an
m X m pentadiagonal banded m ,-qu ;. ‘t:reing the number of sample points.
Equation (3.21) can then be s.c::ulve 8y matrix mversion using the follow-
ing equation:

X" = (I-71A) 1[}(“ L 7Fee (X" 1) 3.22)

The inverse of the matrix I — 7A can be calculated efficiently by LU decom-
position?. The decomposition needs only to be performed once for deformation
processes that do not alter the elasticity or rigidity parameters.



Discussion

So far, we have formulated the deformable model as a continuous curve or
surface. In practice, however. it 1s sometimes more straightforward to design the
deformable models from a discrete point of view. Example of work in this area
includes [48-53]. ““"i\

Parametric deformable mod %Wé—?ﬁ;@é applied successtully in a wide range

of applications: however. they have "h&tﬁﬁ’n;‘l immitations. First, i situations where
the initial model and the desired*

-éwgﬁiﬁ";ildal}f differ greatly in size and shape.
the model must be reparameterize amically to faithfully recover the object

‘( =

-

boundary. Methods for reparameterization in 2D are usually straightforward and
require moderate computational overhead. Reparameterization in 3D, however, re-
quires complicated and computationally expensive methods. The second limitation



with the parametric approach is that 1t has difficulty dealing with topological adap-
tation such as splitting or merging model parts, a useful property for recovering ei-
ther multiple objects or an object wig;,uaégmwn topology. This difficulty 1s caused

by the fact that a new parameteriz ﬁ@;&@ﬁﬁ e constructed whenever the topology
change occurs, which requires sop &1:?;,5}1%‘:";1 hemes [54.55].
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Geometric deformable models, proposed mdependently by Caselles et al. [24]
and Malladi et al. [25]. provide an elegant solution to address the primary limita-
tions of parametric deformable models. These models are based on curve evolution
theory [28-31] and the level set method [32,33]. In particular, curves and sur-

Sty
faces are evolved using only ge H;ft._,kwﬁﬂ"ssursa resulting m an evolution that
15 independent of the parameter “gmgm,&*g,,l parametric deformable models, the
evolution 15 coupled with the 1m 'ﬁ"f i:h ﬁ&:té «recover object boundaries. Since the
evolution 1 independent of the parai fization, the evolving curves and surfaces
can be represented 1mplicitly as a level set of a higher-dimensional function. As a

result, topology changes can be handled automatically.




Curve Evolution Theory Revisit

The purpose of curve evolution theory is to study the deformation of curves
using only geometric measures such as the unit normal and curvature as opposed
to the quantities that depend on parameters such as the derivatives of an arbitrary
parameterized curve. Let us consider a moving curve X (s, t) = [X(s,t), Y (s,t)].
where s 15 any parameterization and«ﬁa"{l‘%v@}m& and denote 1ts inward unit normal
as IN and its curvature as x, e )g:’ﬁmci.,.mg*le evolution of the curve along its
normal direction can be character llowing partial differential equation:

(k)N , (3.23)

where V (k) 1s called speed function. since it determines the speed of the curve
evolution. We note that a curve moving in some arbitrary direction can always be
reparameterized to have the same form as Eq. (3.23) [56]. The intuition behind this

fact 1s that the tangent deformation affects only the curve’s parameterization. not
its shape and geometry.



The most extensively studied curve deformations in curve evolution theory are
curvature deformation and constant deformation. Curvature deformation 1s given
by the so-called geometric heat equation

0X
— =akN,

ot

where « 1s a positive constant. This equation will smooth a curve, eventually
shrinking 1t to a circular point [57]. The use of the curvature deformation has

where Vj 1s a coefficient determining the speed and direction of deformation. Con-

stant deformation plays the same role as the pressure force in parametric deformable

models. The properties of curvature deformation and constant deformation are
complementary to each other. Curvature deformation removes singularities by
smoothing the curve, while constant deformation can create singularities from an
initially smooth curve.



The basic 1dea of the geometric deformable model 15 to couple the speed of
deformation (using curvature and/oreomsmyt deformation) with the image data, so
that the evolution of the curve 5;:"!1,; zﬂﬁirj boundaries. The evolution 15 1m-
plemented using the level set magod: ﬁ?y, most of the research in geometric

.,_g-
deformable models has been focuseits

v desien of speed functions.



Level Set Method

We now review the level set method for implementing curve evolution. The
level set method 1s used to account for automatic topology adaptation, and it also
provides the basis for a numerical scheme that 1s used by geometric deformable
models. The level set method for evolving curves 1s due to Osher and Sethian [32.
58.59]. ey

In the level set method. the ¢ rﬁﬁﬁg i@gﬁﬂned implicitly as a level set ofa 2D
scalar function — referred to as §1devsksas function — which is usually defined
on the same domain as the 1mag mff%ii%f&%f!’ziet 1s defined as the set of points that
have the same function value. Figuré3*9‘Shows an example of embedding a curve
as a zero level set. It 1s worth noting that the level set function is different from the
level sets of images. which are sometimes used for image enhancement [60]. The
sole purpose of the level set function is to provide an implicit representation of the

evolving curve.




(©)

Figure 3.9. An example of embedding a curve as a level set. (a) A single curve. (b) The
level set function where the curve is embedded as the zero level set (in black). (c) The
height map of the level set function with its zero level set depicted in black.



Instead of tracking a curve through time. the level set method evolves a curve by
updating the level set function at fixed coordinates through time. This perspective
1s similar to that of an Eulerian formulation of motion as opposed to a Lagrangian
formulation, which 1s analogous to the parametric deformable model. A useful
property of this approach 1s that the level set function remains a valid function

while the embedded curve can change its topology. This situation 1s depicted in
Fig 3.10.

Figure 3.10. From left to right, the zero level set splits into two curves while the level set
function still remains a valid function.



We now derive the level set embedding of the curve evolution equation (3.23).
Given a level set function ¢(x, y, ¢) with the contour X (s, ¢) as its zero level set,
we have

S[X (s,8),8] = 0.

Differentiating the above -f:quatmn wft aBspect to ¢ and using the chain rule, we

obtain ¥ ﬁ:”:’}
: .*;;:.*

1- ,."." I' : - 1 ..r_‘:} 'f- _ 3 . 24

. .;.;_5 0, (3.24)

where V¢ denotes the gradient of ¢.



#(X(t), y(t),t) = costant




We assume that ¢ 1s negative inside the zero level set and positive outside.
Accordingly, the inward unit normal to the level set curve 1s given by

(3.25)

(3.26)

o Vo Pt — 202Bybuy + dyydi
Vel (42 + ¢2)3/2 |

The relationship between Eq. (3.23) and Eq. (3.26) provides the basis for perform-
ing curve evolution using the level set method.

k =

(3.27)



Three 1ssues need to be considered in order to implement geometric deformable
contours:

1. An nitial function ¢(z, y, ¢t = 0) must be constructed such that its zero level
set corresponds to the position of the initial contour. A common choice 1s
to set ¢(x,y,0) = D(x,y). wj‘l" f"é:f)\,, y) 1s the signed distance from each
grid point to the zero level 'j:”ﬁm{i'm utation of the signed distance for an
arbitrary initial curve 1s expi:t :‘isﬁﬁ'%; atly. Sethian and Malladi developed
a method called the fast ma mx;_ﬁlﬁéﬂmd which can construct the signed
distance function in O(N log N). W fere N is the number of pixels.




2. Since the evolution equation (3.26) 1s derived for the zero level set only. the
speed function V' (k). in general. 1s not defined on other level sets. Hence.

we need a method to extend the speed function V (k) to all of the level sets.

We note that the expressions for the unit normal and the curvature. however.
hold for all level sets. Many approaches for such extensions have been de-
veloped (see [33] for a detailed discussion on this topic). However. the level
set function that evolves ll"':lll”,,kﬁmi\ extended speed functions can lose its
property of being a signed di f@;gﬁiﬁ@; 101, causing inaccuracy in curvature
and normal calculations. As Hgifiiﬂ E};ﬁ‘i itialization of the level set function
to a signed distance function$§ éaf&i{ ;g;@ ured for these schemes. Recently, a
method that does not suffer fréfuais=problem was proposed by Adalsteins-
son and Sethian [61]. This method casts the speed extension problem as a
boundary value problem, which can then be solved efficiently using the fast

marching method.




3. In the application of geometric contours, constant deformation is often used

to account for large-scale deformation and narrow boundary indentation and
protrusion recovery. Constant dWTiDH however. can cause the formation
of sharp corners from an inifg .gﬁﬁé}i zero level set. Once the corner 1s
developed, it 1s not clear how 15;,3:;1.&("&% e deformation, since the definition
of the normal direction beco 3;%?« _ﬁi’l};l ous. A natural way to continue the
deformation is to impose the sdw;

sobledentropy condition originally proposed
in the area of interface propagation by Sethian [62]. In Section 3.3.5. we
describe an entropy satisfying numerical scheme. proposed by Osher and
Sethian [32]. which implements geometric deformable contours.



Speed Functions

The geometric deformable contour formulation. proposed by Caselles et al. [24]
and Malladi et al. [25]. takes the following form:

¢
ot

=c(k+ W)V, 3.28)

sol=

where

(3.29)

Positive 1 shrinks the curve, and negative Vp expands the curve. The curve evolu-
tion 1s coupled with the image data through a multiplicative stopping term ¢. This
scheme can work well for objects that have good contrast. However, when the ob-
ject boundary i1s indistinct or has gaps. the geometric deformable contour may leak
out because the multiplicative term only slows down the curve near the boundary
rather than completely stopping the curve. Once the curve passes the boundary. it
will not be pulled back to recover the correct boundary.



To remedy the latter problem, Caselles et al. [26,64] and Kichenassamy et al. [63.
65] used an energy minimization formulation to design the speed function. This
leads to the following geometric deformable contour formulation:

’;;H:‘.o:l sf"??ﬁ
9 é 1.,..#%‘25; _ﬂ_*:s’;{“ .
5 = e é—;,;.:@ﬁ_ﬁ: -V V. (3.30)
RBP4

# .rfl':.-' .

22 I .
a8 ait extra stopping term Ve - V¢ that can
pull back the contour 1f 1t passes the boundary. This term behaves in similar fashion
to the Gaussian potential force in the parametric formulation. An example of using

this type of geometrical deformable contours 1s shown in Fig. 3.11.



(c) x

Figure 1. (Geometric interpretation of the attraction force mn 1D
The original edge signal [, its smoothed version 7. and the derrved

stopping function g are given. The evolving contour 15 attracted to
the vallev created by Vg - Vi (se2e text).



Figure 3.11. Contour extraction of cyst form ultrasound breast image via merging multiple
initial level sets. Images courtesy of Yezzi [63], Georgia Institute of Technology.



The latter formulation can still generate curves that pass through boundary
gaps. Siddiqi et al. [66] partially address this problem by altering the constant
speed term through energy minimization. leading to the following geometric de-
formable contour:

0 AP SN 1
a—f = AMck|Vo| +H¥ Bk (c+ =X - V)|Vl . 3.31)

2
In this case, the constant speed it dgniisEq. (3.30) is replaced by the second
term, and the term %X . Ve provi itional stopping power that can prevent
the geometrical contour from leaking through small boundary gaps. The second
term can be used alone as the speed function for shape recovery as well. Figure 3.12
shows an example of this deformable contour model. Although this model 1s robust
to small gaps. large boundary gaps can still cause problems.




Figure 3.12. Segmentation of the brain using only the second term in (3.31). Left to right
and top to bottom: iterations 1, 400, 800, 1200, and 1600. Images courtesy of Siddiqi [66],




Relationship to PACM

we derive an
explicit mathematical relationship between a dynamic force formulation of para-
metric deformable models and a geometric deformable model formulation. thus
permitting the use of speed functions derived from nonpotential forces. 1.e.. forces
that cannot be expressed as the negatiyg eradient of potential energy functions.

For the convenience of derivagizg 1@{?’:;%; ysider a simplified but more commonly

used dynamic force formulation tfu rm?g“ ¢ deformable contours:
B3 Y rf
X RN )
E — (X 832 ‘*F {X} —|— FExt(X) . (332)

Note that since the use of a pressure force F', = w,IN can cause singularities dur-
ing deformation and requires special numerical implementation. we have separated
it from the rest of the external forces. To represent Eq. (3.32) using a level set
representation. we need to recast this formulation info the standard curve evolution
form defined m Eq. (3.23). The corresponding geometric deformable contour in
level set representation can then be obtained by using Eq. (3.26).



Since the contour’s tangential motion only affects its parameterization but not
its geometry, we modify Eq. (3.32) by considering only the normal components of
internal and external forces. leen a parameterized curve X (s,t), where s 1s the
arc-length parameterization of the curve. its inward unit normal N and curvature
k. we can use the fact that 92X /9s? = kN to rewrite Eq. (3.32) as follows:

ot ﬂw%ﬁ

.-ug.ﬁ ¢
where € = a/v. V, = w,/7. an ﬁ; b 3'}2?3%.; /~. Here, we have divided through
by ~ so that both sides have units §’w‘li“:§\ i weletV(k) = ek +Vp+ Vex - N.
where N is given by Eq. (3.25). ateSi#st; *tlte V (k) into Eq. (3.26), we obtain the
following geometric deformable contour evolution equation:

09
ot
If we allow both ¢ and V}, to be functions defined on the image domain, then

Eq. (3.34) generalizes Eq. (3.31) and can be used to implement almost any para-
metric deformable model as a geometric deformable model.

=V (k)|Ve| = (5 + V,,)|VP| — Vext - V. (3.34)



Numerical Implementation

we provide a numerical implementation that 1s adapted from [33]
for Eq. (3.34), in which e and V, are allowed to be functions. The spatial derivatives
are i111p1e1neuted 115i112 a apecial mlmerical scheme that can handle the formation
s Jumer ical implementation is given as

ﬁ" +miﬂ(Vpa‘j10)?

[IHEIJ{( i7? D)D + Iﬂlﬂ(ﬂwj D)D—I_T
+ max(v;,0)D;.¥ + min(v]},0)D; Y]}, (3.35)



where Vex = (u,v). and &7, 1s the central difference approximation to the cur-
vature expression given in Eq. (3.27). The first-order numerical derivatives and the
gradient of the level set function ¢ are given by

no_gn o gn
D”:l‘.' _ (X ¢ 1J D‘|‘T-' — i 2] i,
L) .&.T i LY &I !
pv — P % ry _ Pijt1 ~ P
] Ay Ax ’
e Oy B — S
" 2Ax & 2Ay ]
V' = [max(D;", BEESS*,0)° + max(D;", 0)* +
mm[D%y,D
V- = [max(D;;I, 0)% + min(D;;”, 0)? + max(Dgy, 0)? +
min(Dijy,D)E]”E.

A detailed description of the principle behind this numerical method 15 de-
scribed n [33]. We note that more efficient implementations of geometric de-
formable models have been developed. including the particularly noteworthy
narrow-band level set method described 1n [25.67].



Demos and Coffee Break
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Geodesic Active Contour

Let us briefly describe the classical energy based
snakes. Let C(g): [0, 1] — R’ be a parametrized pla-
nar curve and le‘[ I: [0,a] x [0,b] — RT be a given
mmage i which we want to detect the objects bound-
aries. The classical snakes approach (Kass etal., 1988)
associates the curve C wi Mi\enﬂ oy given by

wr 54‘_‘_"3,”
mm?" q:*if%f ()P dg
i Sy
»{'. 0
’*‘f 1 dq, (1)

0

where «, £, and A are real positive constants. The first
two terms control the smoothness of the contours to be
detected (internal energy),” while the third term is re-
sponsible for attracting the contour towards the object
in the 1mage (external energy). Solving the problem of
snakes amounts to finding, for a given set of constants
a, B. and A, the curve C that minimizes E.



Validity of 5 =0

It 15
easy to prove that the curvature flow used in the new ap-
proach and presented below decreases the total curva-
ture (Angenent, 1991). The use of the curvature driven
curve motions as si ”’ﬂ}&;b&t mwas proved to be very
efficient 1n previoug &kﬁ‘@.ﬁ* (Alvarez et al., 1993;
Caselles et al., 1993 ~:]Lm i ;—-*— Niessen et al., 1993;
Malladietal.. 1994 1 - Sapiro and T’illllEllb']ll]Il
1993)

"F-



1 1
E(C) = cff C'(q)|? ch—}hf IVI(C(q))|dg. (2)
0 0
Observe that, by minjly,izigg the functional (2), we
are trying to locate t} é&tﬁ’k t the points of maxima
IVI| (acting as “ed é!d@}%ﬁ“ﬂl "), while keeping cer-
tain smoothness 1n t "«é_fti‘:f;éjrobject boundary). This
1s actually the goal in ¢ general formulation (1) as
well. The tradeoff between edge proximity and edge
smoothness 1s played by the free parameters in the

above equations.




Equation (2) can be extended by generalizing
the edge detector part m the following way: Let
g: [0, +o00[— RT be a strictly decreasing function
such that g(») — 0 as » — oo. Hence, —|V/| can
be Iephced b}; odl |?’I [),m*-' ﬁgumg a general energy

1
— f (Eint(C ij’]}‘i‘Eeﬂ f}]}]dq (3)
0



Theorem 1 (Maupertuis® Principle). Curves C(g) in
Euclidean space which are extremal corresponding fo
the Hamiltonian H = *2'5;—” + UH(C), and have a fived
enerey level Ey (law of conservation of energy), are
geodesics, with non-natural paramerter, with respect
to the new metric (i, j = 1, 2)

gij = 2m(Eo — U(C wr Hamiltonian: H = px—L
,, f:;;' a if?ﬁb.nentem p = mass x velocity = mx
UC) := —2g(IVI(O)]), V& T ';',ﬁ_ i S —ILdt _J‘ X — H)dt

and write @ = m /2. Therefore.

i;’:' =) cated Action: S, =I pxdt with H = constant = E,
s

+5Fhus, p = \/2m E,-U(C)), and

1

E(C) :f L(C(g))dq,
0

Recall arclength ds=,/g; X' dt

Thus, S, = [ pxdt = [ %,/2m(E, —U (C))dt

:J.ds =I g, X' x'dt

where L is the Lagrangian given by

m
L£C) = E|£"|1r —U(C).

The Hamiltonian (Dubrovin et al., 1984) is then given
by

P
H="—4UC), wher e (™
o T where p 1= m(’.



Theorem 2 (Fermat's Principle). In an isofropic
medium the paths taken by light rays in passing from a
point A to a point B are extrema corresponding to the
traversal-time (as action). Such paths are geodesics
with respect to the new metric (i, j = 1, 2)

where “high speed n:-i llﬂrllt corTespo Wm'f}l%)i;fesence
of an edge. while “low speed of light mnespc}nds
to a non-edge area. The result 1s equivalent then to
minimizing the intrinsic problem

1
f g(|VI(CignIC (g)] dg. (6)
0

which 1s the same formulation as in (5). having selected
Eyg=0.




Therefore, with Eg = 0., and g;; = 2mig(|VI(C)])-
;7. Eq. (4) becomes

1
Min f NV 2mAie(|VI(C(g))|C (g)| dg. (7)
0

Since the parameters aboy3 1:?:%51\5*’111’[5 without loss

of generality we can se 1§:‘i’ﬁ% g“" 1 to obtain
N“!‘n .-"'"w
I. J \h -‘tkgvr

1
Min f e(|V (8)
0

We have transformed the problem of minimizing
(2) mnto a problem of geodesic computation in a
Riemannian space, according to a new metric.



Since |C'(g)| dg = ds. we obtain

L)
Lr :=f o(|VI(C(q)|) ds. (12)
i
JC (1 oo
{ }i } = g([)«k. N — (Vg - NN, (13)
(

ubedding (H) 111 U, We

Thralefme baaed o1, ﬁ;@hg;“

) a7
o \Vu|div ( ! )
{}I

= g()|Vu|dv ( v, f| ) + Ve(l)- Vu
= g()|Vulxk +Vg(I) - Vu, (14)



Area and Length Minimizing
Flows

1. Length Gradient Flow
Geometric Heat Equation: curvature motion

Let C = C(p,t) be a smooth family of closed curves where ¢t parametrizes the family and p

the g'n en curve, say 0 < p < 1. [Note we &%Bm?ﬁ}%lat C(0,1) = C(1,t) and similarly for the first

Differentiating (taking the “first variation” WJth 1‘espect to ¢}, and using integration by parts, one

can show that

L{t) @L
L'(t =—/ —. &N ds |
where ds = f—L’ | dp denotes arc-length. Thus the direction in which L(?) is decreasing most rapidly
is when 25 = kA,

at



2. Weighted Length Gradient Flow

the standard Euclidean metric ds* = da*4dy?® of the underlying
space over which the evolution takes place is modified to a conformal metric ds? = ¢*(dz* + dy?).

Using this metric, the “¢-length” of the curve is defined as

£ 30n)

Here ¢ : R* — R is a positive differe ¢ %ﬂ?*ﬁ}a&fﬁn




3. Area Gradient Flow

In analogy to the geometric heat equation which minimizes Euclidean length, this evolution may
be derived as the gradient flow which locally minimizes area. Indeed, for the family of closed

curves defined above, the area functional is given by

Again, taking the first variation

I J‘ ! =]
Ay =5 [ (e

Using integration by parts for the second integral and changing to arc-length parametrization
L -
A'(t) = —/ (Co, N ds,
0

Thus the direction in which A(t) is decreasing most rapidly (locally) is when C; = A" and (5) also

defines a gradient flow.



4. Weighted Area Gradient Flow

20 R | —y
Ay =—5 [ ete.Nyds = —= [ @(L,( p})-:fp.
ilfp

Here ¢ : R* — R is a positive differentiable function defined on the image plane. We now derive

the flow associated with the g-area. A;. As E'hi;“e cllfferentla,tlng the tunctional with respect to ¢

..,,q&ﬁ,w
m"-')

ii.a‘f};s 2 byf L+ 1

h‘-’: - }}:_ ...

‘.1-""'

will give us the evolution equation for

with

by
-
Il

L
| (ve.c) €N ds,

L
Lo= [ eCN)d
]



For I3 using integration by parts, we get

L= [ty " |

€Iy

We will use the following notation: let V' = (a,b) be a vector, its “perp” is defined by

With respect to the scalar pro the following properties

— _{FIJ_:- IE‘)
= (V5. V2).

Using this, we rewrite I3 as follows

o= - f1<(¢cmcm>dp

|l
é-""""?_
a
-
o
=i
-~



But
(0C)p = (Vo,C)C +0C,
= (¢C)y = (V,C)C™ + 9C;,

hence

Using equation (6)

and finally changing to arc length parametrization
L . . L o
I; = f (C.,CYN Vo, N)ds + f (Ciy @) ds.
0 0
Grouping everything together, we get

L
—2AL(t) = fD (Ci, (C, NIV + 20N + (Vo , NCH) ds.

P



and finally changing to arc length parametrization

L L
Iy = ] (C.CH) (Vo . N)ds + / (Cr, 0N ds.
0 0

Grouping everything together, we get

Now decomposing V¢ and C* in the Frenet frame {7, N}, and dropping the tangential terms,

which can always be done by reparametrizing the curve, we end up with

1 . . . .
Co= {6+ 5 [(Vo.M)(€,X) + (Tah M) )] |7



The last result can be simplified further. Writing V¢ = (0., ¢,), C(p.t) = (z(p,t),y(p,t)) and

expanding the scalar products we obtain




may be derived by minimizing a weighted area functional of the form

ft“ dxdy.

Via Green’s theorem, this is equivalent to minimizing the modified area function A,(t) proposed

o | drdy.

L.
th = ;dlv ol ,
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