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Multilevel Triangulations

1. Triangulations

T =
⋃

m∈Z
Tm is a triangulation of R2 if

(a) R2 =
⋃

∆∈Tm
∆.

(b) The levels (Tm)m∈Z of T are nested. Tm+1 is a refinement of
Tm

(c) Each triangle ∆ ∈ Tm has at least two and at most M0 children
in Tm+1, where M0 ≥ 4.
(d) The valence Nv of each vertex is ≤ N0.
(e) No hanging vertices condition: No vertex of any triangle
∆ ∈ Tm lies in the interior of an edge of another triangle from Tm.
(f) For any compact K ⊂ R2 and any fixed m ∈ Z, there is a finite
collection of triangles from Tm which cover K .
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Multilevel Triangulations

2. Locally regular (LR) triangulations.

Definition.

T =
⋃

m∈Z Tm is locally regular if:

There exist constants 0 < r < ρ < 1 s.t. for each ∆ ∈ T and
any child ∆′ ∈ T of ∆

r |∆| ≤ |∆′| ≤ ρ|∆|.

There exists a constant 0 < δ1 ≤ 1 s.t. for any ∆′,∆′′ ∈ Tm

(m ∈ Z) with a common edge,

δ1 ≤ |∆′|/|∆′′| ≤ δ−1
1 .
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Multilevel Triangulations

3. Strong locally regular(SLR) triangulations.

Definition.

T =
⋃

m∈Z Tm is strong locally regular if T satisfies (i) and
There exists a constant 0 < δ2 ≤ 1/2 such that for any
∆′,∆′′ ∈ Tm sharing an edge

|conv (∆′ ∪∆′′)|/|∆′| ≤ δ−1
2 .
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Multilevel Triangulations

4. Properties of triangulations.

[Relationship]
SLR ⇒ LR.

[Invariance]
The key property of the collection of all LR-triangulations (or
SLR-triangulations) with fixed parameters is that it is invariant
under affine transforms.

[Flexibility]
These conditions, however, allow the triangles in T to change in
size, shape, and orientation quickly when moving around at a given
level or through the levels. In particular, triangles with arbitrarily
sharp angles are allowed in any location and at any level.
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Multilevel Triangulations

4. Properties of triangulations.

This is also reflected in the fact that condition (iii) in the definition
of SLR-triangulations is equivalent to the following:
[Affine transform angle condition:]
There exists a constant β = β(T ), 0 < β ≤ π/3, such that if
∆0 ∈ Tm, m ∈ Z, and A : R2 → R2 is an affine transform that
maps ∆0 one-to-one onto an equilateral reference triangle, then for
every ∆ ∈ Tm which has at least one common vertex with ∆0, we
have

min angle (A(∆)) ≥ β,

where A(∆) is the image of ∆ by the affine transform A.
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Multilevel Triangulations

4. Properties of triangulations.

Theorem.

Let T be an LR-triangulation of R2. Suppose that
∆′,∆′′ ∈ Tm,m ∈ Z, and ∆′ and ∆′′ can be connected by n
edges from Tm. Then

c−1
1 n−s ≤ |∆′|/|∆′′| ≤ c1n

s .

Let T be an SLR-triangulation of R2. Suppose that
∆′,∆′′ ∈ Tm,m ∈ Z, and ∆′ and ∆′′ can be connected by n
edges from Tm. Then

c−1
2 n−u ≤ |max edge (∆′)|

|max edge (∆′′)|
≤ c2n

u.

Kyungwon Park n-term Rational approximation and Franklin bases



Multilevel Triangulations

4. Properties of triangulations.

Theorem.

Let T be an LR-triangulation of R2. Suppose that
∆′,∆′′ ∈ Tm,m ∈ Z, and ∆′ and ∆′′ can be connected by n
edges from Tm. Then

c−1
1 n−s ≤ |∆′|/|∆′′| ≤ c1n

s .

Let T be an SLR-triangulation of R2. Suppose that
∆′,∆′′ ∈ Tm,m ∈ Z, and ∆′ and ∆′′ can be connected by n
edges from Tm. Then

c−1
2 n−u ≤ |max edge (∆′)|

|max edge (∆′′)|
≤ c2n

u.

Kyungwon Park n-term Rational approximation and Franklin bases



Multilevel Triangulations

4. Properties of triangulations.

Theorem.

Let T be an LR-triangulation of R2. Suppose that
∆′,∆′′ ∈ Tm,m ∈ Z, and ∆′ and ∆′′ can be connected by n
edges from Tm. Then

c−1
1 n−s ≤ |∆′|/|∆′′| ≤ c1n

s .

Let T be an SLR-triangulation of R2. Suppose that
∆′,∆′′ ∈ Tm,m ∈ Z, and ∆′ and ∆′′ can be connected by n
edges from Tm. Then

c−1
2 n−u ≤ |max edge (∆′)|

|max edge (∆′′)|
≤ c2n

u.

Kyungwon Park n-term Rational approximation and Franklin bases



Muliresolution Analysis

1. Hierarchical families of bases. (Multiresolution analysis)

Triangulations : . . . T−1 T0 T1 . . .
Spaces : · · · ⊂ S−1 ⊂ S0 ⊂ S1 ⊂ . . .
Bases : . . . Φ−1 Φ0 Φ1 . . .

{Tm}m∈Z nested triangulation of R2.
Sm ⊂ Sk,r (Tm) the splines of degree < k, smoothness r .
Φm = {ϕθ : θ ∈ Θm} ⊂ Sm is a basis for Sm.
suppϕθ ⊂ star`(v) =: Eθ compact.
Existence of suppϕθ is guaranteed by No hanging vertices
condition.
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Muliresolution Analysis

2. Hierarchical families of bases. Splines. (Multiresolution
analysis)

Define Φ :=
⋃

m∈Z Φm,(Φ is redundant) and

Σn(Φ) := {s =
n∑

cjϕj : ϕj ∈ Φ},

σn(f ,Φ) := inf
s∈Σn(Φ)

‖f − s‖p

Problem: Characterize the approximation spaces generated by
n-term approximation from Φ such as
{f ∈ Lp : σn(f ,Φ) = O(n−α)} (0 < α < ∞).
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Characterization of approximation space

Approximation spaces.

Aγ
q := Aγ

q(Φ, Lp), α > 0, 0 < q ≤ ∞,
the space of all f ∈ Lp such that

‖f ‖Aγ
q

:= ‖f ‖p +

( ∞∑
n=1

(nγσn(f ,Φ)p)
q 1

n

)1/q

< ∞.
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Smoothness space

1. Interpolation space

Definition. (Real method of interpolation by Peetre K-functional)

For 0 < θ < 1, 0 < q ≤ ∞, the interpolation space (X ,Y )θ,q:
the set of all functions f ∈ X s.t

|f |(X ,Y )θ,q
:=

{ (∫∞
0 (t−θK (f ; t))q dt

t

)1/q
, 0 < q < ∞

supt>0 t−θK (f ; t), q = ∞

is finite.
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Smoothness space

2. Smoothness space(Besov)

Definition. (Besov Spaces)

Let α > 0, 0 < p, q ≤ ∞, take k := [α] + 1. The Besov space
Bα

q (Lp) is defined as the set of all f such that

|f |Bα
q (Lp) :=

{ (∫∞
0 (t−αωk(f , t)p)

q dt
t

)1/q
, 0 < q < ∞

supt>0 tαωk(f , t)p, q = ∞

is finite, where ωk(f , t)p := sup|h|≤t ‖∆k
h(f , ·)‖p is the k-th

modulus of smoothness of f in Lp.
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Smoothness space

3. B-spaces

0 < p < ∞, α > 0, k ≥ 1, and τ is determined from
1/τ := α + 1/p.
We define the Bαk

τ (T ) as the set of all f ∈ Lτ such that

‖f ‖Bαk
τ (T ) := (

∑
∆∈T

[|∆|−αEk(f ,∆)τ ]
τ )1/τ

≈ (
∑
∆∈T

[|∆|−αωk(f ,∆)τ ]
τ )1/τ < ∞,

where Ek(f ,∆)τ is the error of Lτ -approximation on ∆ from Πk

and ωk(f ,∆)τ is the Lτ -modulus of smoothness of f on ∆. •
Similarity

Spaces : Aα
q (X ,Y )θ,q Bα

q,p

Tools : σn k(f , t) wk(f , t)p
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Spline approximation

3. Nonlinear n-term spline approximation.
Let Φ := ΦT be a sequence of basis functions over T a LR or SLR
triangulation.

Denote by Σn(Φ) the set of all splines s of the form

s =
∑
θ∈M

aθϕθ,

where M⊂ ΘT , #M≤ n. Denote

σn(f ,Φ)p := inf
s∈Σn(Φ)

‖f − s‖p.

Let 0 < p < ∞ and α > 0 or p = ∞ and α ≥ 1, and
1/τ := α + 1/p.
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Spline approximation (general approach)

Theorem.

[Jackson] If f ∈ Bαk
τ (Φ), then

σn(f ,Φ)p ≤ cn−α‖f ‖Bα
τ (Φ).

Theorem.

[Bernstein] If s ∈ Σn(Φ), then

‖s‖Bαk
τ (Φ) ≤ cnα‖s‖p.
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Characterization

Approximation spaces.

Theorem.

If 0 < γ < α and 0 < q ≤ ∞, then

Aγ
q(Φ, Lp) = (Lp,B

αk
τ (Φ)) γ

α
,q

with equivalent norms.

One specific case:

Theorem.

Suppose 0 < p < ∞ and α > 0 or p = ∞ and α > 1, and let
τ := (α + 1/p)−1.Then we have

Aαk
τ (Φ, Lp) = Bα

τ (Φ)

with equivalent norms.
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n-term rational approximation

Goal:
1. Relate spline approximation to rational approximation.
2. Generalize 1-d results to bivariate case.

Rn : the set of all
n-term rational functions on R2 of the form

R =
n∑

m=1

rm,

where each rm is of the form

r(x) =
K∏

j=1

ajx1 + bjx2 + cj

(αjx1 + βjx2 + γj)2 + 1
,

where aj , . . . , γj ∈ R, x := (x1, x2) ∈ R2, and K is fixed. (Every
R ∈ Rn depends on < cn parameters.)
Rn(f )p : the error of Lp-approximation to f from Rn:

Rn(f )p := inf
R∈Rn

‖f − R‖p.
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n-tern rational approximation

Theorem

Let f ∈ Lp(R2), 0 < p < ∞, α > 0, and k ≥ 1. Then

Rn(f )p ≤ cn−α
( n∑

m=1

1

m
(mασm(f , T )p)

p∗ +‖f ‖p∗
p

)1/p∗

, n = 1, . . . ,

(1)
where p∗ = min{1, p} and c depends only on α, p, k, and the
parameters of T .

Corollary

If σn(f , T )p = O(n−γ) for an arbitrary SLR-triangulation T ,
0 < p < ∞, and γ > 0, then Rn(f )p = O(n−γ).
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n-tern rational approximation

Proof.

Construct a n-term rational function which approximate a
spline over a triangle.

Estimate the error by using a geometric vector valued
maximal function.
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Jackson type estimate

Theorem.

Suppose infT ‖f ‖Bαk
τ (ΦT ) < ∞ with α > 0, k ≥ 1, and

1/τ := α + 1/p, 0 < p < ∞. Then

Rn(f )p ≤ cn−α inf
T
‖f ‖Bαk

τ (ΦT ).
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Franklin Bases

Franklin system : FT
By applying the Gram-Schmidt orthogonalization process to
{ϕθ}θ∈Θ∗ in L2(E ) with respect to the order �.

We obtain an orthonormal system FT := {fθ}θ∈Θ∗ in L2(E )
consisting of continuous piecewise linear functions. Each
Franklin function fθ is uniquely determined (up to a multiple ±1)
by the conditions:

(a) fθ ∈ span {ϕθ′ : θ′ � θ}.
(b) 〈fθ, ϕθ′〉 = 0 for all θ′ ≺ θ,

(c) ‖fθ‖2 = 1.

Note that fθ0 = ±1̃θ0 := ±|E |−1/2 1E .
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Franklin Bases

FT := {fθ}θ∈Θ∗constitutes a decomposition system for various
spaces.

Shauder bases for Lp(E ), 1 ≤ p ≤ ∞ with L∞(E ) = C (E ).

Unconditional bases for Lp(E ), 1 < p < ∞

In fact, unconditional bases for the corresponding
(anisotropic) Hardy spaces

thus characterizes the corresponding (anisotropic) BMO.
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Nonlinear approximation from Franklin Bases

Theorem.

If f ∈ Bα
τ (T ), then

σF
n (f )p ≤ cn−α||f ||Bα

τ (T ).

Theorem.

If g ∈ Fn, then
||g ||Bα

τ (T ) ≤ cnα||g ||p.
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Approximation spaces

Theorem.

If 0 < γ < α and 0 < q ≤ ∞, then

Aγ
q(FT , Lp) = (Lp,B

α
τ (T )) γ

α
,q

with equivalent (quasi-)norms, where (Lp,B
α
τ (T )) γ

α
,q is the real

interpolation space between Lp and Bα
τ (T ) .

In one specific case, Aα
q (FT , Lp) can be identified as a B-space:

Theorem

Assuming that 1 < p < ∞, α > 0, and 1/τ := α + 1/p, we have

Aα
τ (FT , Lp) = Bα

τ (T )

with equivalent norms.
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Perspectives

Characterize the approximation space generated by Rn.
Characterize the Hardy space by more smooth functions.
Develop rational bases on this setting.
etc
Thank you
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