n-term Rational approximation and Franklin bases

Kyungwon Park

Department of Mathematics Ewha University

26th August 2006

Outline

<ロ> (日) (日) (日) (日) (日)

æ

▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶

æ

Outline

- Multilevel triangulations.
- Rational Approximation.

→ ∃ → → ∃ →

A ►

Outline

- Multilevel triangulations.
- Rational Approximation.
- Franklin Bases.

→ ∃ → → ∃ →

A 10

э

∃ → < ∃</p>

$$\mathcal{T} = \bigcup_{m \in \mathbb{Z}} \mathcal{T}_m$$
 is a triangulation of \mathbb{R}^2 if

э

∃ → < ∃</p>

$$\mathcal{T} = \bigcup_{m \in \mathbb{Z}} \mathcal{T}_m$$
 is a triangulation of \mathbb{R}^2 if

(a) $\mathbb{R}^2 = \bigcup_{\Delta \in \mathcal{T}_m} \Delta$.

э

1. Triangulations

$$\mathcal{T} = \bigcup_{m \in \mathbb{Z}} \mathcal{T}_m$$
 is a triangulation of \mathbb{R}^2 if

(a) $\mathbb{R}^2 = \bigcup_{\Delta \in \mathcal{T}_m} \Delta$. (b) The levels $(\mathcal{T}_m)_{m \in \mathbb{Z}}$ of \mathcal{T} are **nested**. \mathcal{T}_{m+1} is a refinement of \mathcal{T}_m

B b d B b

$$\mathcal{T} = \bigcup_{m \in \mathbb{Z}} \mathcal{T}_m$$
 is a triangulation of \mathbb{R}^2 if

(a) $\mathbb{R}^2 = \bigcup_{\Delta \in \mathcal{T}_m} \Delta$. (b) The levels $(\mathcal{T}_m)_{m \in \mathbb{Z}}$ of \mathcal{T} are **nested**. \mathcal{T}_{m+1} is a refinement of \mathcal{T}_m

(c) Each triangle $\Delta \in T_m$ has at least two and at most M_0 children in T_{m+1} , where $M_0 \ge 4$.

$$\mathcal{T} = \bigcup_{m \in \mathbb{Z}} \mathcal{T}_m$$
 is a triangulation of \mathbb{R}^2 if

(a) $\mathbb{R}^2 = \bigcup_{\Delta \in \mathcal{T}_m} \Delta$. (b) The levels $(\mathcal{T}_m)_{m \in \mathbb{Z}}$ of \mathcal{T} are **nested**. \mathcal{T}_{m+1} is a refinement of \mathcal{T}_m

(c) Each triangle $\Delta \in T_m$ has at least two and at most M_0 children in T_{m+1} , where $M_0 \ge 4$.

(d) The valence N_v of each vertex is $\leq N_0$.

$$\mathcal{T} = \bigcup_{m \in \mathbb{Z}} \mathcal{T}_m$$
 is a triangulation of \mathbb{R}^2 if

(a) $\mathbb{R}^2 = \bigcup_{\Delta \in \mathcal{T}_m} \Delta$. (b) The levels $(\mathcal{T}_m)_{m \in \mathbb{Z}}$ of \mathcal{T} are **nested**. \mathcal{T}_{m+1} is a refinement of \mathcal{T}_m

(c) Each triangle $\Delta \in \mathcal{T}_m$ has at least two and at most M_0 children in \mathcal{T}_{m+1} , where $M_0 \geq 4$.

(d) The valence N_v of each vertex is $\leq N_0$.

(e) No hanging vertices condition: No vertex of any triangle $\Delta \in \mathcal{T}_m$ lies in the interior of an edge of another triangle from \mathcal{T}_m .

$$\mathcal{T} = \bigcup_{m \in \mathbb{Z}} \mathcal{T}_m$$
 is a triangulation of \mathbb{R}^2 if

(a) $\mathbb{R}^2 = \bigcup_{\Delta \in \mathcal{T}_m} \Delta$. (b) The levels $(\mathcal{T}_m)_{m \in \mathbb{Z}}$ of \mathcal{T} are **nested**. \mathcal{T}_{m+1} is a refinement of \mathcal{T}_m

(c) Each triangle $\Delta \in \mathcal{T}_m$ has at least two and at most M_0 children in \mathcal{T}_{m+1} , where $M_0 \geq 4$.

(d) The valence N_v of each vertex is $\leq N_0$.

(e) No hanging vertices condition: No vertex of any triangle $\Delta \in \mathcal{T}_m$ lies in the interior of an edge of another triangle from \mathcal{T}_m . (f) For any compact $K \subset \mathbb{R}^2$ and any fixed $m \in \mathbb{Z}$, there is a finite collection of triangles from \mathcal{T}_m which cover K.

2. Locally regular (LR) triangulations.

2. Locally regular (LR) triangulations.

Definition.

 $\mathcal{T} = \bigcup_{m \in \mathbb{Z}} \mathcal{T}_m$ is locally regular if:

御 と く ヨ と く ヨ と

3

2. Locally regular (LR) triangulations.

Definition.

- $\mathcal{T} = \bigcup_{m \in \mathbb{Z}} \mathcal{T}_m$ is locally regular if:
 - There exist constants $0 < r < \rho < 1$ s.t. for each $\Delta \in T$ and any child $\Delta' \in T$ of Δ

 $r|\Delta| \le |\Delta'| \le \rho|\Delta|.$

.

2. Locally regular (LR) triangulations.

Definition.

- $\mathcal{T} = \bigcup_{m \in \mathbb{Z}} \mathcal{T}_m$ is locally regular if:
 - There exist constants $0 < r < \rho < 1$ s.t. for each $\Delta \in T$ and any child $\Delta' \in T$ of Δ

$r|\Delta| \le |\Delta'| \le \rho|\Delta|.$

 There exists a constant 0 < δ₁ ≤ 1 s.t. for any Δ', Δ" ∈ T_m (m ∈ ℤ) with a common edge,

$$\delta_1 \le |\Delta'| / |\Delta''| \le \delta_1^{-1}.$$

3. Strong locally regular(SLR) triangulations.

3. Strong locally regular(SLR) triangulations.

Definition. $\mathcal{T} = \bigcup_{m \in \mathbb{Z}} \mathcal{T}_m$ is strong locally regular

(*) *) *) *)

3. Strong locally regular(SLR) triangulations.

Definition.

 $\mathcal{T} = \bigcup_{m \in \mathbb{Z}} \mathcal{T}_m$ is strong locally regular if \mathcal{T} satisfies (i) and

(*) *) *) *)

3. Strong locally regular(SLR) triangulations.

Definition.

 $\mathcal{T} = \bigcup_{m \in \mathbb{Z}} \mathcal{T}_m$ is strong locally regular if \mathcal{T} satisfies (i) and There exists a constant $0 < \delta_2 \le 1/2$ such that for any $\Delta', \Delta'' \in \mathcal{T}_m$ sharing an edge

 $|conv(\Delta'\cup\Delta'')|/|\Delta'|\leq \delta_2^{-1}.$

3. Strong locally regular(SLR) triangulations.

Definition.

 $\mathcal{T} = \bigcup_{m \in \mathbb{Z}} \mathcal{T}_m$ is strong locally regular if \mathcal{T} satisfies (i) and There exists a constant $0 < \delta_2 \le 1/2$ such that for any $\Delta', \Delta'' \in \mathcal{T}_m$ sharing an edge

 $|conv(\Delta'\cup\Delta'')|/|\Delta'|\leq \delta_2^{-1}.$

4. Properties of triangulations.

4. Properties of triangulations. [Relationship] $SLR \Rightarrow LR.$

4. Properties of triangulations. [Relationship] $SLR \Rightarrow LR.$

[Invariance]

The key property of the collection of all LR-triangulations (or SLR-triangulations) with fixed parameters is that it is invariant under affine transforms.

4. Properties of triangulations. [Relationship] $SLR \Rightarrow LR.$

[Invariance]

The key property of the collection of all LR-triangulations (or SLR-triangulations) with fixed parameters is that it is invariant under affine transforms.

[Flexibility]

These conditions, however, allow the triangles in \mathcal{T} to change in size, shape, and orientation quickly when moving around at a given level or through the levels. In particular, triangles with arbitrarily sharp angles are allowed in any location and at any level.

4. Properties of triangulations.

4. Properties of triangulations.

This is also reflected in the fact that condition (iii) in the definition of SLR-triangulations is equivalent to the following:

4. Properties of triangulations.

This is also reflected in the fact that condition (iii) in the definition of SLR-triangulations is equivalent to the following:

[Affine transform angle condition:]

There exists a constant $\beta = \beta(\mathcal{T})$, $0 < \beta \leq \pi/3$, such that if $\Delta_0 \in \mathcal{T}_m$, $m \in \mathbb{Z}$, and $A : \mathbb{R}^2 \to \mathbb{R}^2$ is an affine transform that maps Δ_0 one-to-one onto an equilateral reference triangle, then for every $\Delta \in \mathcal{T}_m$ which has at least one common vertex with Δ_0 , we have

 $\min \operatorname{angle} (A(\Delta)) \geq \beta,$

where $A(\Delta)$ is the image of Δ by the affine transform A.

4. Properties of triangulations.

4. Properties of triangulations.

Theorem.

• Let \mathcal{T} be an LR-triangulation of \mathbb{R}^2 . Suppose that $\Delta', \Delta'' \in \mathcal{T}_m, m \in \mathbb{Z}$, and Δ' and Δ'' can be connected by n edges from \mathcal{T}_m . Then

$$c_1^{-1}n^{-s} \leq |\Delta'|/|\Delta''| \leq c_1n^s.$$

4. Properties of triangulations.

Theorem.

• Let \mathcal{T} be an LR-triangulation of \mathbb{R}^2 . Suppose that $\Delta', \Delta'' \in \mathcal{T}_m, m \in \mathbb{Z}$, and Δ' and Δ'' can be connected by n edges from \mathcal{T}_m . Then

$$c_1^{-1}n^{-s} \leq |\Delta'|/|\Delta''| \leq c_1n^s.$$

• Let \mathcal{T} be an SLR-triangulation of \mathbb{R}^2 . Suppose that $\Delta', \Delta'' \in \mathcal{T}_m, m \in \mathbb{Z}$, and Δ' and Δ'' can be connected by n edges from \mathcal{T}_m . Then

$$c_2^{-1}n^{-u} \leq rac{|\mathsf{max}\operatorname{edge}\left(\Delta'
ight)|}{|\mathsf{max}\operatorname{edge}\left(\Delta''
ight)|} \leq c_2 n^u.$$

A 3 3 4

Muliresolution Analysis

1. Hierarchical families of bases. (Multiresolution analysis)

 $\label{eq:triangulations: ... } \mathcal{T}_{-1} \qquad \mathcal{T}_0 \qquad \mathcal{T}_1 \qquad \dots$

3

1. Hierarchical families of bases. (Multiresolution analysis)

$$\begin{array}{ccccc} \mathrm{Triangulations}:&\ldots &\mathcal{T}_{-1} &\mathcal{T}_0 &\mathcal{T}_1 &\ldots\\ \mathrm{Spaces}:&\cdots &\subset &\mathcal{S}_{-1} \subset &\mathcal{S}_0 \subset &\mathcal{S}_1 \subset &\ldots \end{array}$$

1. Hierarchical families of bases. (Multiresolution analysis)

$$\begin{array}{cccccc} \mathrm{Triangulations}:&\ldots &\mathcal{T}_{-1} &\mathcal{T}_{0} &\mathcal{T}_{1} &\ldots\\ \mathrm{Spaces}:&\cdots &\subset &\mathcal{S}_{-1} \subset &\mathcal{S}_{0} \subset &\mathcal{S}_{1} \subset &\ldots\\ \mathrm{Bases}:&\ldots &\Phi_{-1} &\Phi_{0} &\Phi_{1} &\ldots \end{array}$$

$$\begin{array}{ccccc} \mathrm{Triangulations:} & \ldots & \mathcal{T}_{-1} & \mathcal{T}_{0} & \mathcal{T}_{1} & \ldots \\ \mathrm{Spaces:} & \cdots \subset & \mathcal{S}_{-1} \subset & \mathcal{S}_{0} \subset & \mathcal{S}_{1} \subset & \ldots \\ \mathrm{Bases:} & \ldots & \Phi_{-1} & \Phi_{0} & \Phi_{1} & \ldots \end{array}$$

 $\{\mathcal{T}_m\}_{m\in\mathbb{Z}}$ nested triangulation of \mathbb{R}^2 .

$$\begin{array}{ccccc} \mathrm{Triangulations:} & \ldots & \mathcal{T}_{-1} & \mathcal{T}_{0} & \mathcal{T}_{1} & \ldots \\ \mathrm{Spaces:} & \cdots \subset & \mathcal{S}_{-1} \subset & \mathcal{S}_{0} \subset & \mathcal{S}_{1} \subset & \ldots \\ \mathrm{Bases:} & \ldots & \Phi_{-1} & \Phi_{0} & \Phi_{1} & \ldots \end{array}$$

 $\{\mathcal{T}_m\}_{m \in \mathbb{Z}}$ nested triangulation of \mathbb{R}^2 . $\mathcal{S}_m \subset \mathcal{S}^{k,r}(\mathcal{T}_m)$ the splines of degree < k, smoothness r.

$$\begin{array}{ccccc} \mathrm{Triangulations:} & \ldots & \mathcal{T}_{-1} & \mathcal{T}_0 & \mathcal{T}_1 & \ldots \\ & \mathrm{Spaces:} & \cdots \subset & \mathcal{S}_{-1} \subset & \mathcal{S}_0 \subset & \mathcal{S}_1 \subset & \ldots \\ & \mathrm{Bases:} & \ldots & \Phi_{-1} & \Phi_0 & \Phi_1 & \ldots \end{array}$$

 $\begin{aligned} \{\mathcal{T}_m\}_{m \in \mathbb{Z}} \text{ nested triangulation of } \mathbb{R}^2. \\ \mathcal{S}_m \subset \mathcal{S}^{k,r}(\mathcal{T}_m) \text{ the splines of degree } < k \text{, smoothness } r. \\ \Phi_m = \{\varphi_\theta : \theta \in \Theta_m\} \subset \mathcal{S}_m \text{ is a basis for } \mathcal{S}_m. \end{aligned}$

$$\begin{array}{ccccc} \mathrm{Triangulations:} & \ldots & \mathcal{T}_{-1} & \mathcal{T}_0 & \mathcal{T}_1 & \ldots \\ & \mathrm{Spaces:} & \cdots \subset & \mathcal{S}_{-1} \subset & \mathcal{S}_0 \subset & \mathcal{S}_1 \subset & \ldots \\ & \mathrm{Bases:} & \ldots & \Phi_{-1} & \Phi_0 & \Phi_1 & \ldots \end{array}$$

 $\begin{aligned} \{\mathcal{T}_m\}_{m\in\mathbb{Z}} \text{ nested triangulation of } \mathbb{R}^2. \\ \mathcal{S}_m \subset \mathcal{S}^{k,r}(\mathcal{T}_m) \text{ the splines of degree } < k \text{, smoothness } r. \\ \Phi_m = \{\varphi_\theta : \theta \in \Theta_m\} \subset \mathcal{S}_m \text{ is a basis for } \mathcal{S}_m. \\ \mathrm{supp}\varphi_\theta \subset \mathrm{star}^\ell(v) =: E_\theta \text{ compact.} \end{aligned}$

$$\begin{array}{ccccc} \mathrm{Triangulations:} & \ldots & \mathcal{T}_{-1} & \mathcal{T}_{0} & \mathcal{T}_{1} & \ldots \\ & \mathrm{Spaces:} & \cdots \subset & \mathcal{S}_{-1} \subset & \mathcal{S}_{0} \subset & \mathcal{S}_{1} \subset & \ldots \\ & \mathrm{Bases:} & \ldots & \Phi_{-1} & \Phi_{0} & \Phi_{1} & \ldots \end{array}$$

 $\{\mathcal{T}_m\}_{m\in\mathbb{Z}}$ nested triangulation of \mathbb{R}^2 . $\mathcal{S}_m \subset \mathcal{S}^{k,r}(\mathcal{T}_m)$ the splines of degree < k, smoothness r. $\Phi_m = \{\varphi_\theta : \theta \in \Theta_m\} \subset \mathcal{S}_m$ is a basis for \mathcal{S}_m . $\operatorname{supp}\varphi_\theta \subset \operatorname{star}^\ell(v) =: E_\theta$ compact. Existence of $\operatorname{supp}\varphi_\theta$ is guaranteed by No hanging vertices condition.

э

2. Hierarchical families of bases. Splines. (Multiresolution analysis)

Define $\Phi := \bigcup_{m \in \mathbb{Z}} \Phi_m$,

A B M A B M

3

2. Hierarchical families of bases. Splines. (Multiresolution analysis)

Define $\Phi := \bigcup_{m \in \mathbb{Z}} \Phi_m$, (Φ is redundant) and

· • E • • E • E

2. Hierarchical families of bases. Splines. (Multiresolution analysis)

Define $\Phi := \bigcup_{m \in \mathbb{Z}} \Phi_m$, (Φ is redundant) and

$$\Sigma_n(\Phi) := \{ s = \sum^n c_j \varphi_j : \varphi_j \in \Phi \},$$

$$\sigma_n(f,\Phi) := \inf_{s \in \Sigma_n(\Phi)} \|f - s\|_p$$

高 とう きょう く ほ とう ほう

2. Hierarchical families of bases. Splines. (Multiresolution analysis)

Define $\Phi := \bigcup_{m \in \mathbb{Z}} \Phi_m$, (Φ is redundant) and

$$\Sigma_n(\Phi) := \{ s = \sum_{j=1}^n c_j \varphi_j : \varphi_j \in \Phi \},$$

$$\sigma_n(f,\Phi) := \inf_{s \in \Sigma_n(\Phi)} \|f - s\|_p$$

Problem: Characterize the approximation spaces generated by n-term approximation from Φ such as $\{f \in L_p : \sigma_n(f, \Phi) = O(n^{-\alpha})\}$ $(0 < \alpha < \infty).$

Characterization of approximation space

 $A_q^{\gamma} := A_q^{\gamma}(\Phi, L_p), \ \alpha > 0, \ 0 < q \leq \infty,$ the space of all $f \in L_p$ such that

$$\|f\|_{A_q^{\gamma}}:=\|f\|_p+\left(\sum_{n=1}^{\infty}(n^{\gamma}\sigma_n(f,\Phi)_p)^q\frac{1}{n}\right)^{1/q}<\infty.$$

1. Interpolation space

э

1. Interpolation space

Definition. (Real method of interpolation by Peetre K-functional)

For $0 < \theta < 1$, $0 < q \le \infty$, the interpolation space $(X, Y)_{\theta,q}$: the set of all functions $f \in X$ s.t

$$|f|_{(X,Y)_{\theta,q}} := \begin{cases} \left(\int_0^\infty (t^{-\theta} \mathcal{K}(f;t))^q \frac{dt}{t} \right)^{1/q}, & 0 < q < \infty \\ \sup_{t>0} t^{-\theta} \mathcal{K}(f;t), & q = \infty \end{cases}$$

is finite.

2. Smoothness space(Besov)

2. Smoothness space(Besov)

Definition. (Besov Spaces)

Let $\alpha > 0$, $0 < p, q \le \infty$, take $k := [\alpha] + 1$. The Besov space $B_q^{\alpha}(L_p)$ is defined as the set of all f such that

$$egin{aligned} &|f|_{B^lpha_q(L_p)} := \left\{ egin{aligned} &(\int_0^\infty (t^{-lpha} \omega_k(f,t)_p)^q rac{dt}{t})^{1/q}, & 0 < q < \infty \ &\sup_{t>0} t^lpha \omega_k(f,t)_p, & q = \infty \end{aligned}
ight. \end{aligned}$$

is finite, where $\omega_k(f, t)_p := \sup_{|h| \le t} \|\Delta_h^k(f, \cdot)\|_p$ is the k-th modulus of smoothness of f in L_p .

2. Smoothness space(Besov)

Definition. (Besov Spaces)

Let $\alpha > 0$, $0 < p, q \le \infty$, take $k := [\alpha] + 1$. The Besov space $B_q^{\alpha}(L_p)$ is defined as the set of all f such that

$$egin{aligned} &|f|_{B^lpha_q(L_p)} := \left\{ egin{aligned} &(\int_0^\infty (t^{-lpha} \omega_k(f,t)_p)^q rac{dt}{t})^{1/q}, & 0 < q < \infty \ &\sup_{t>0} t^lpha \omega_k(f,t)_p, & q = \infty \end{aligned}
ight. \end{aligned}$$

is finite, where $\omega_k(f, t)_p := \sup_{|h| \le t} \|\Delta_h^k(f, \cdot)\|_p$ is the k-th modulus of smoothness of f in L_p .

3. B-spaces

æ

Image: Image:

3. B-spaces

 $0 0, \ k \ge 1$, and au is determined from 1/ au := lpha + 1/p.

() <) <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <

3

3. B-spaces

 $0 , <math>\alpha > 0$, $k \ge 1$, and τ is determined from $1/\tau := \alpha + 1/p$. We define the $B_{\tau}^{\alpha k}(\mathcal{T})$ as the set of all $f \in L_{\tau}$ such that

3. B-spaces

 $0 , <math>\alpha > 0$, $k \ge 1$, and τ is determined from $1/\tau := \alpha + 1/p$. We define the $B_{\tau}^{\alpha k}(\mathcal{T})$ as the set of all $f \in L_{\tau}$ such that

$$\|f\|_{\mathcal{B}^{lpha k}_{ au}(\mathcal{T})} \hspace{2mm} := \hspace{2mm} (\sum_{\Delta \in \mathcal{T}} [|\Delta|^{-lpha} \mathcal{E}_k(f,\Delta)_{ au}]^{ au})^{1/ au}$$

3. B-spaces

 $0 < \rho < \infty$, $\alpha > 0$, $k \ge 1$, and τ is determined from $1/\tau := \alpha + 1/\rho$. We define the $B_{\tau}^{\alpha k}(\mathcal{T})$ as the set of all $f \in L_{\tau}$ such that

$$egin{array}{rcl} \|f\|_{\mathcal{B}^{lpha k}_{ au}(\mathcal{T})} &:=& (\sum_{\Delta\in\mathcal{T}}[|\Delta|^{-lpha} E_k(f,\Delta)_{ au}]^{ au})^{1/ au}\ &pprox& (\sum_{\Delta\in\mathcal{T}}[|\Delta|^{-lpha} \omega_k(f,\Delta)_{ au}]^{ au})^{1/ au}<\infty, \end{array}$$

where $E_k(f, \Delta)_{\tau}$ is the error of L_{τ} -approximation on Δ from Π_k and $\omega_k(f, \Delta)_{\tau}$ is the L_{τ} -modulus of smoothness of f on Δ . • Similarity

Spaces :
$$A^{\alpha}_{q}$$
 $(X,Y)_{\theta,q}$ $B^{\alpha}_{q,p}$

3. B-spaces

 $0 < \rho < \infty$, $\alpha > 0$, $k \ge 1$, and τ is determined from $1/\tau := \alpha + 1/\rho$. We define the $B_{\tau}^{\alpha k}(\mathcal{T})$ as the set of all $f \in L_{\tau}$ such that

$$egin{array}{rcl} \|f\|_{\mathcal{B}^{lpha k}_{ au}(\mathcal{T})} &:=& (\sum_{\Delta\in\mathcal{T}}[|\Delta|^{-lpha} E_k(f,\Delta)_{ au}]^{ au})^{1/ au}\ &pprox& (\sum_{\Delta\in\mathcal{T}}[|\Delta|^{-lpha} \omega_k(f,\Delta)_{ au}]^{ au})^{1/ au}<\infty, \end{array}$$

where $E_k(f, \Delta)_{\tau}$ is the error of L_{τ} -approximation on Δ from Π_k and $\omega_k(f, \Delta)_{\tau}$ is the L_{τ} -modulus of smoothness of f on Δ . • Similarity

3. B-spaces

 $0 < \rho < \infty$, $\alpha > 0$, $k \ge 1$, and τ is determined from $1/\tau := \alpha + 1/\rho$. We define the $B_{\tau}^{\alpha k}(\mathcal{T})$ as the set of all $f \in L_{\tau}$ such that

$$egin{array}{rl} \|f\|_{\mathcal{B}^{lpha k}_{ au}(\mathcal{T})} &:= & (\sum_{\Delta \in \mathcal{T}} [|\Delta|^{-lpha} E_k(f,\Delta)_{ au}]^{ au})^{1/ au} \ &pprox & (\sum_{\Delta \in \mathcal{T}} [|\Delta|^{-lpha} \omega_k(f,\Delta)_{ au}]^{ au})^{1/ au} < \infty, \end{array}$$

where $E_k(f, \Delta)_{\tau}$ is the error of L_{τ} -approximation on Δ from Π_k and $\omega_k(f, \Delta)_{\tau}$ is the L_{τ} -modulus of smoothness of f on Δ . • Similarity

3. B-spaces

 $0 , <math>\alpha > 0$, $k \ge 1$, and τ is determined from $1/\tau := \alpha + 1/p$. We define the $B_{\tau}^{\alpha k}(\mathcal{T})$ as the set of all $f \in L_{\tau}$ such that

$$egin{array}{rl} \|f\|_{\mathcal{B}^{lpha k}_{ au}(\mathcal{T})} &:= & (\sum_{\Delta \in \mathcal{T}} [|\Delta|^{-lpha} E_k(f,\Delta)_{ au}]^{ au})^{1/ au} \ &pprox & (\sum_{\Delta \in \mathcal{T}} [|\Delta|^{-lpha} \omega_k(f,\Delta)_{ au}]^{ au})^{1/ au} < \infty, \end{array}$$

where $E_k(f, \Delta)_{\tau}$ is the error of L_{τ} -approximation on Δ from Π_k and $\omega_k(f, \Delta)_{\tau}$ is the L_{τ} -modulus of smoothness of f on Δ . • Similarity

3. Nonlinear n-term spline approximation.

Let $\Phi:=\Phi_{\mathcal{T}}$ be a sequence of basis functions over \mathcal{T} a LR or SLR triangulation.

3. Nonlinear n-term spline approximation.

Let $\Phi := \Phi_T$ be a sequence of basis functions over T a LR or SLR triangulation. Denote by $\Sigma_n(\Phi)$ the set of all splines *s* of the form

$$s = \sum_{\theta \in \mathcal{M}} a_{\theta} \varphi_{\theta},$$

where $\mathcal{M} \subset \Theta_{\mathcal{T}}, \ \#\mathcal{M} \leq n$.

3. Nonlinear n-term spline approximation.

Let $\Phi := \Phi_T$ be a sequence of basis functions over T a LR or SLR triangulation. Denote by $\Sigma_n(\Phi)$ the set of all splines *s* of the form

$$s = \sum_{\theta \in \mathcal{M}} a_{\theta} \varphi_{\theta},$$

where $\mathcal{M} \subset \Theta_{\mathcal{T}}$, $\#\mathcal{M} \leq n$. Denote

$$\sigma_n(f,\Phi)_p := \inf_{s \in \Sigma_n(\Phi)} \|f-s\|_p.$$

3. Nonlinear n-term spline approximation.

Let $\Phi := \Phi_T$ be a sequence of basis functions over T a LR or SLR triangulation. Denote by $\Sigma_n(\Phi)$ the set of all splines *s* of the form

$$s = \sum_{\theta \in \mathcal{M}} a_{\theta} \varphi_{\theta},$$

where $\mathcal{M} \subset \Theta_{\mathcal{T}}$, $\#\mathcal{M} \leq n$. Denote

$$\sigma_n(f,\Phi)_p := \inf_{s \in \Sigma_n(\Phi)} \|f-s\|_p.$$

Let $0 and <math>\alpha > 0$ or $p = \infty$ and $\alpha \ge 1$, and $1/\tau := \alpha + 1/p$.

Spline approximation (general approach)

э

-

Spline approximation (general approach)

Theorem.

[Jackson] If $f \in B^{\alpha k}_{\tau}(\Phi)$, then

$$\sigma_n(f,\Phi)_p \leq cn^{-\alpha} \|f\|_{\mathcal{B}^{\alpha}_{\tau}(\Phi)}.$$

- ∢ ≣ ▶

< ∃ >

3

Spline approximation (general approach)

Theorem.

[Jackson] If $f \in B^{\alpha k}_{\tau}(\Phi)$, then

$$\sigma_n(f,\Phi)_p \leq cn^{-\alpha} \|f\|_{B^{\alpha}_{\tau}(\Phi)}.$$

Theorem.

[Bernstein] If $s \in \Sigma_n(\Phi)$, then

 $\|s\|_{B^{\alpha k}_{\tau}(\Phi)} \leq cn^{\alpha} \|s\|_{p}.$

· • E • • E • E

.⊒ . ►

3

Theorem.

If $0 < \gamma < \alpha$ and $0 < q \le \infty$, then

∃ → < ∃</p>

э

Theorem.

If $0 < \gamma < \alpha$ and $0 < q \le \infty$, then

$$A_q^{\gamma}(\Phi, L_p) = (L_p, B_{\tau}^{\alpha k}(\Phi))_{rac{\gamma}{lpha}, q}$$

with equivalent norms.

Theorem.

If $0 < \gamma < \alpha$ and $0 < q \le \infty$, then

$$A_q^{\gamma}(\Phi, L_p) = (L_p, B_{\tau}^{\alpha k}(\Phi))_{rac{\gamma}{lpha}, q}$$

with equivalent norms.

One specific case:

Theorem.

Suppose $0 and <math>\alpha > 0$ or $p = \infty$ and $\alpha > 1$, and let $\tau := (\alpha + 1/p)^{-1}$.

Approximation spaces.

Theorem.

If $0 < \gamma < \alpha$ and $0 < q \le \infty$, then

$$A_q^{\gamma}(\Phi, L_p) = (L_p, B_{\tau}^{\alpha k}(\Phi))_{rac{\gamma}{lpha}, q}$$

with equivalent norms.

One specific case:

Theorem.

Suppose $0 and <math>\alpha > 0$ or $p = \infty$ and $\alpha > 1$, and let $\tau := (\alpha + 1/p)^{-1}$. Then we have

$$A^{\alpha k}_{\tau}(\Phi, L_p) = B^{\alpha}_{\tau}(\Phi)$$

with equivalent norms.

Goal:

- 1. Relate spline approximation to rational approximation.
- 2. Generalize 1-d results to bivariate case.

Goal:

- 1. Relate spline approximation to rational approximation.
- **2.** Generalize 1-d results to bivariate case. \mathcal{R}_n : the set of all *n*-term rational functions on \mathbb{R}^2 of the form

$$R=\sum_{m=1}^n r_m,$$

Goal:

1. Relate spline approximation to rational approximation.

2. Generalize 1-d results to bivariate case. \mathcal{R}_n : the set of all *n*-term rational functions on \mathbb{R}^2 of the form

$$R=\sum_{m=1}^n r_m,$$

where each r_m is of the form

$$r(x) = \prod_{j=1}^{K} \frac{a_j x_1 + b_j x_2 + c_j}{(\alpha_j x_1 + \beta_j x_2 + \gamma_j)^2 + 1},$$

where $a_j, \ldots, \gamma_j \in \mathbb{R}$, $x := (x_1, x_2) \in \mathbb{R}^2$, and K is fixed. (Every $R \in \mathcal{R}_n$ depends on < cn parameters.)

Goal:

1. Relate spline approximation to rational approximation.

2. Generalize 1-d results to bivariate case. \mathcal{R}_n : the set of all *n*-term rational functions on \mathbb{R}^2 of the form

$$R=\sum_{m=1}^n r_m,$$

where each r_m is of the form

$$r(x) = \prod_{j=1}^{K} \frac{a_j x_1 + b_j x_2 + c_j}{(\alpha_j x_1 + \beta_j x_2 + \gamma_j)^2 + 1},$$

where $a_j, \ldots, \gamma_j \in \mathbb{R}$, $x := (x_1, x_2) \in \mathbb{R}^2$, and K is fixed. (Every $R \in \mathcal{R}_n$ depends on < cn parameters.) $R_n(f)_p$: the error of L_p -approximation to f from \mathcal{R}_n :

$$R_n(f)_p := \inf_{R \in \mathcal{R}_n} \|f - R\|_p.$$

Theorem

Let $f \in L_p(\mathbb{R}^2)$, $0 , <math>\alpha > 0$, and $k \ge 1$. Then

< ≣ > <

Theorem

Let $f \in L_p(\mathbb{R}^2)$, $0 , <math>\alpha > 0$, and $k \ge 1$. Then

 $R_n(f)_p$

A =
 A =
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Theorem

Let
$$f \in L_p(\mathbb{R}^2)$$
, $0 , $\alpha > 0$, and $k \ge 1$. Then$

$$R_n(f)_p \leq cn^{-\alpha} \Big(\sum_{m=1}^n \frac{1}{m} (m^{\alpha} \sigma_m(f, \mathcal{T})_p)^{p^*} + \|f\|_p^{p^*} \Big)^{1/p^*}, \ n = 1, \dots,$$
(1)
where $p^* = \min\{1, p\}$ and c depends only on α , p, k, and the

parameters of \mathcal{T} .

Image: Image:

Theorem

Let
$$f \in L_p(\mathbb{R}^2)$$
, $0 , $\alpha > 0$, and $k \ge 1$. Then$

$$R_n(f)_p \leq cn^{-\alpha} \Big(\sum_{m=1}^n \frac{1}{m} (m^{\alpha} \sigma_m(f, \mathcal{T})_p)^{p^*} + \|f\|_p^{p^*} \Big)^{1/p^*}, \ n = 1, \dots,$$
(1)
where $p^* = \min\{1, p\}$ and c depends only on α , p, k, and the

parameters of \mathcal{T} .

Corollary

If
$$\sigma_n(f, \mathcal{T})_p = O(n^{-\gamma})$$
 for an arbitrary SLR-triangulation \mathcal{T} , $0 , and $\gamma > 0$, then $R_n(f)_p = O(n^{-\gamma})$.$

御 と く ヨ と く ヨ と

Proof.

• Construct a n-term rational function which approximate a spline over a triangle.

Proof.

- Construct a n-term rational function which approximate a spline over a triangle.
- Estimate the error by using a **geometric vector valued maximal function**.

Jackson type estimate

-

Jackson type estimate

Theorem.

Suppose $\inf_{\mathcal{T}} \|f\|_{B^{\alpha k}_{\tau}(\Phi_{\mathcal{T}})} < \infty$ with $\alpha > 0$, $k \ge 1$, and $1/\tau := \alpha + 1/p$, 0 . Then

(*) *) *) *)

Jackson type estimate

Theorem.

Suppose $\inf_{\mathcal{T}} \|f\|_{B^{\alpha k}_{\tau}(\Phi_{\mathcal{T}})} < \infty$ with $\alpha > 0$, $k \ge 1$, and $1/\tau := \alpha + 1/p$, 0 . Then $<math>R_n(f)_p \le cn^{-\alpha} \inf_{\mathcal{T}} \|f\|_{B^{\alpha k}_{\tau}(\Phi_{\mathcal{T}})}.$

伺 と く ヨ と く ヨ と … ヨ

æ

□ ▶ ▲ 臣 ▶ ▲ 臣

Direct and converse theorems for spline and rational approximation and Besove space(1988)

Direct and converse theorems for spline and rational approximation and Besove space(1988) n-term rational functions but over dyadic partitions(2002)

Direct and converse theorems for spline and rational approximation and Besove space(1988) n-term rational functions but over dyadic partitions(2002)

 S.Dekel, D. Leviatan rational functions (p/q) over regular triangulation(dyadic)(2004)

Direct and converse theorems for spline and rational approximation and Besove space(1988) n-term rational functions but over dyadic partitions(2002)

- S.Dekel, D. Leviatan rational functions (p/q) over regular triangulation(dyadic)(2004)
- K. Park

Bivariate n-term rational approximation (2005)

Franklin Bases

æ

・日本 ・日本 ・日

Franklin Bases

Franklin system : $\mathcal{F}_{\mathcal{T}}$

▲□ ▶ ▲ □ ▶ ▲ □ ▶

æ

Franklin system : $\mathcal{F}_{\mathcal{T}}$

By applying the Gram-Schmidt orthogonalization process to $\{\varphi_{\theta}\}_{\theta \in \Theta^*}$ in $L_2(E)$ with respect to the order \leq .

A B + A B +

Franklin system : $\mathcal{F}_{\mathcal{T}}$

By applying the Gram-Schmidt orthogonalization process to $\{\varphi_{\theta}\}_{\theta\in\Theta^*}$ in $L_2(E)$ with respect to the order \leq .

We obtain an orthonormal system $\mathcal{F}_{\mathcal{T}} := \{f_{\theta}\}_{\theta \in \Theta^*}$ in $L_2(E)$ consisting of continuous piecewise linear functions. Each Franklin function f_{θ} is uniquely determined (up to a multiple ± 1) by the conditions:

伺 と イ ヨ と イ ヨ と

Franklin system : $\mathcal{F}_{\mathcal{T}}$

By applying the Gram-Schmidt orthogonalization process to $\{\varphi_{\theta}\}_{\theta\in\Theta^*}$ in $L_2(E)$ with respect to the order \leq .

We obtain an orthonormal system $\mathcal{F}_{\mathcal{T}} := \{f_{\theta}\}_{\theta \in \Theta^*}$ in $L_2(E)$ consisting of continuous piecewise linear functions. Each Franklin function f_{θ} is uniquely determined (up to a multiple ± 1) by the conditions:

(a) $f_{\theta} \in \text{span} \{ \varphi_{\theta'} : \theta' \leq \theta \}.$ (b) $\langle f_{\theta}, \varphi_{\theta'} \rangle = 0$ for all $\theta' \prec \theta$, (c) $\|f_{\theta}\|_2 = 1.$ Note that $f_{\theta_0} = \pm \tilde{\mathbf{1}}_{\theta_0} := \pm |E|^{-1/2} \mathbf{1}_E.$

医尿道氏 化基因二基

Franklin Bases

æ

▲圖▶ ▲屋▶ ▲屋

Franklin Bases

$$\mathcal{F}_{\mathcal{T}} := \{f_{\theta}\}_{\theta \in \Theta^*}$$

<ロ> <同> <同> < 同> < 同>

æ

• Shauder bases for $L_p(E), 1 \le p \le \infty$ with $L_{\infty}(E) = C(E)$.

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

- Shauder bases for $L_p(E), 1 \le p \le \infty$ with $L_{\infty}(E) = C(E)$.
- Unconditional bases for $L_p(E), 1$

- Shauder bases for $L_p(E), 1 \le p \le \infty$ with $L_{\infty}(E) = C(E)$.
- Unconditional bases for $L_p(E), 1$
- In fact, unconditional bases for the corresponding (anisotropic) Hardy spaces

- Shauder bases for $L_p(E), 1 \le p \le \infty$ with $L_{\infty}(E) = C(E)$.
- Unconditional bases for $L_p(E), 1$
- In fact, unconditional bases for the corresponding (anisotropic) Hardy spaces
- thus characterizes the corresponding (anisotropic) BMO.

∃ ▶ ∢

∃ ▶ ∢

Theorem.

If
$$f \in B^{\alpha}_{\tau}(\mathcal{T})$$
, then

∃ >

Theorem.

If $f \in B^{\alpha}_{\tau}(\mathcal{T})$, then

$$\sigma_n^F(f)_p \leq cn^{-\alpha} ||f||_{B^{\alpha}_{\tau}(\mathcal{T})}.$$

글 🖌 🖌 글 🕨

Theorem.

If $f \in B^{\alpha}_{\tau}(\mathcal{T})$, then

$$\sigma_n^F(f)_p \leq cn^{-\alpha} ||f||_{B^{\alpha}_{\tau}(\mathcal{T})}.$$

Theorem.

If $g \in F_n$, then

* E > * E >

Theorem.

If $f \in B^{\alpha}_{\tau}(\mathcal{T})$, then

$$\sigma_n^F(f)_p \leq cn^{-\alpha} ||f||_{B^{\alpha}_{\tau}(\mathcal{T})}.$$

Theorem.

If $g \in F_n$, then

$$||g||_{B^{lpha}_{ au}(\mathcal{T})} \leq cn^{lpha}||g||_{p}.$$

() <) <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <

Theorem.

If $f \in B^{\alpha}_{\tau}(\mathcal{T})$, then

$$\sigma_n^F(f)_p \leq cn^{-\alpha} ||f||_{B^{\alpha}_{\tau}(\mathcal{T})}.$$

Theorem.

If $g \in F_n$, then

$$||g||_{B^{lpha}_{ au}(\mathcal{T})} \leq cn^{lpha}||g||_{p}.$$

() <) <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <

Approximation spaces

æ

-

Approximation spaces

æ

-

Theorem.

If $0 < \gamma < \alpha$ and $0 < q \le \infty$, then

$$A^{\gamma}_{q}(\mathcal{F}_{\mathcal{T}}, L_{p}) = (L_{p}, B^{lpha}_{ au}(\mathcal{T}))_{rac{\gamma}{lpha}, q}$$

with equivalent (quasi-)norms, where $(L_p, B^{\alpha}_{\tau}(\mathcal{T}))_{\frac{\gamma}{\alpha},q}$ is the real interpolation space between L_p and $B^{\alpha}_{\tau}(\mathcal{T})$.

Theorem.

If $0 < \gamma < \alpha$ and $0 < q \le \infty$, then

$$A^{\gamma}_{q}(\mathcal{F}_{\mathcal{T}}, L_{p}) = (L_{p}, B^{lpha}_{ au}(\mathcal{T}))_{rac{\gamma}{lpha}, q}$$

with equivalent (quasi-)norms, where $(L_p, B^{\alpha}_{\tau}(\mathcal{T}))_{\frac{\gamma}{\alpha},q}$ is the real interpolation space between L_p and $B^{\alpha}_{\tau}(\mathcal{T})$.

In one specific case, $A^{\alpha}_{q}(\mathcal{F}_{\mathcal{T}}, L_{p})$ can be identified as a B-space:

Theorem

Assuming that $1 , <math>\alpha > 0$, and $1/\tau := \alpha + 1/p$, we have

$$A^{\alpha}_{\tau}(\mathcal{F}_{\mathcal{T}}, L_p) = B^{\alpha}_{\tau}(\mathcal{T})$$

with equivalent norms.

Characterize the approximation space generated by R_n . Characterize the Hardy space by more smooth functions. Develop rational bases on this setting. etc

Thank you