
Decidability of Collision between a
Helical Motion and an Algebraic

Motion
Sung Woo Choi

Department of Mathematics

Duksung Women’s University, Seoul, Korea

Joint work with:

Sung-il Pae, Hyungju Park, and Chee, K. Yap



Zero Problem

√
2 +

√

5 − 2
√

6 ??
√

3



Zero Problem

√
2 +

√

5 − 2
√

6 ??
√

3 ⇒
√

2 +

√

5 − 2
√

6 = 1.732050808 . . .
√

3 = 1.732050808 . . .



Zero Problem

√
2 +

√

5 − 2
√

6 ??
√

3 ⇒
√

2 +

√

5 − 2
√

6 = 1.732050808 . . .
√

3 = 1.732050808 . . .

√
75025 +

√
121393 +

√
196418 +

√
317811

√
514229 +

√
832040



Zero Problem

√
2 +

√

5 − 2
√

6 ??
√

3 ⇒
√

2 +

√

5 − 2
√

6 = 1.732050808 . . .
√

3 = 1.732050808 . . .

√
75025 +

√
121393 +

√
196418 +

√
317811 = 1629.259889 . . .

√
514229 +

√
832040 = 1629.259889 . . .



Zero Problem

√
2 +

√

5 − 2
√

6 ??
√

3 ⇒
√

2 +

√

5 − 2
√

6 = 1.732050808 . . .
√

3 = 1.732050808 . . .

√
75025 +

√
121393 +

√
196418 +

√
317811 = 1629.259888633142299848838800 . . .

√
514229 +

√
832040 = 1629.259888630189238404283301 . . .



Zero Problem

√
2 +

√

5 − 2
√

6 ??
√

3 ⇒
√

2 +

√

5 − 2
√

6 = 1.732050808 . . .
√

3 = 1.732050808 . . .

√
75025 +

√
121393 +

√
196418 +

√
317811 = 1629.259888633142299848838800 . . .

√
514229 +

√
832040 = 1629.259888630189238404283301 . . .

→ The Zero Problem:

Can we really determine exactly whether a given expression is zero or not?

Central to exact qualitative decision.



Zero Problem

√
2 +

√

5 − 2
√

6 ??
√

3 ⇒
√

2 +

√

5 − 2
√

6 = 1.732050808 . . .
√

3 = 1.732050808 . . .

√
75025 +

√
121393 +

√
196418 +

√
317811 = 1629.259888633142299848838800 . . .

√
514229 +

√
832040 = 1629.259888630189238404283301 . . .

→ The Zero Problem:

Can we really determine exactly whether a given expression is zero or not?

Central to exact qualitative decision.
Example: Given a line l : ax + by + c = 0 and a circle C : (x − d)2 + (y − e)2 = r2

with rational inputs a, b, c, d, e, r, determine the relation between them. → Determine
the sign of the discriminant D.



Zero Problem

√
2 +

√

5 − 2
√

6 ??
√

3 ⇒
√

2 +

√

5 − 2
√

6 = 1.732050808 . . .
√

3 = 1.732050808 . . .

√
75025 +

√
121393 +

√
196418 +

√
317811 = 1629.259888633142299848838800 . . .

√
514229 +

√
832040 = 1629.259888630189238404283301 . . .

→ The Zero Problem:

Can we really determine exactly whether a given expression is zero or not?

Central to exact qualitative decision.
Example: Given a line l : ax + by + c = 0 and a circle C : (x − d)2 + (y − e)2 = r2

with rational inputs a, b, c, d, e, r, determine the relation between them. → Determine
the sign of the discriminant D.

Trivial with Real RAM model – not realistic



Zero Problem

√
2 +

√

5 − 2
√

6 ??
√

3 ⇒
√

2 +

√

5 − 2
√

6 = 1.732050808 . . .
√

3 = 1.732050808 . . .

√
75025 +

√
121393 +

√
196418 +

√
317811 = 1629.259888633142299848838800 . . .

√
514229 +

√
832040 = 1629.259888630189238404283301 . . .

→ The Zero Problem:

Can we really determine exactly whether a given expression is zero or not?

Central to exact qualitative decision.
Example: Given a line l : ax + by + c = 0 and a circle C : (x − d)2 + (y − e)2 = r2

with rational inputs a, b, c, d, e, r, determine the relation between them. → Determine
the sign of the discriminant D.

Trivial with Real RAM model – not realistic

We need decidability with TM!
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closed under ±, ×, ÷, RootOf()

α ∈ C is transcendental, if α is not algebraic.

e, π, . . .

most of the numbers are transcendental (uncountable)

not finitely representable

Algebraic Problems:

Inputs are algebraic. (often Z or Q)

Decidable (qualitatively) if a zero problem for algebraic expression is decidable. (e.g.
relative configuration of line & circle)

Most of the known problems in discrete algorithm.

Decidable in TM-sense.



Constructive Root Bound

Classical bound: α =
√

3 −
√

2, then Cauchy’s bound says |α| ≥ 1
11

if α 6= 0 (α is a
zero of x4 − 10x2 + 1)

How to use:

Suppose we have: |α| ≥ B if α 6= 0.

Compute a numerical approximation α̃ of α so that |α̃ − α| < B/2. (# bits to be
calculated is log2(B/2).)

If |α̃| ≥ B, then sign (α) = sign (α̃). Otherwise, α = 0.

Some modern bounds: Degree-Measure [Mignotte (1982)], Degree-Height &
Degree-Length [Yap-Dubé (1994)], BFMS [Burnikel et al (1989)], Eigenvalue
[Scheinerman (2000)], Conjugate [Li-Yap (2001)], BFMSS [Burnikel et al (2001)], k-ary
[Pion-Yap (2002)]

α =
√

x +
√

y −
√

x + y + 2
√

xy, x = a/b, y = c/d, a, b, c, d: L-bit integers
→ The number of bits sufficient to determine the zero problem for α: 28L + 60 (Li-Yap),
96L + 30 (BFMSS), . . .

No general bound for transcendental expressions!



Exact Geometric Computation (EGC)

The most successful approach to nonrobustness.

Exact determination of discete or geometric relations. (e.g. Is a point on a line?, Does
a plane cut a sphere? convex hull, Voronoi diagram, . . . )

Philosophy: algorithm = sequence of steps, step = either construction or test, test =
determines the branching path, combinatorial relations are determined by path ⇒ If all
comparisons are correct, then we take the correct path (exact geometric relation).
→ Constructive root bound is at its heart!

Exploits numerical approximation. → fast and adaptive

Implementations: LEDA, CGAL, Core (You can use standard algorithms.)

Only for algebraic problems!



Exact Geometric Computation (EGC)

The most successful approach to nonrobustness.

Exact determination of discete or geometric relations. (e.g. Is a point on a line?, Does
a plane cut a sphere? convex hull, Voronoi diagram, . . . )

Philosophy: algorithm = sequence of steps, step = either construction or test, test =
determines the branching path, combinatorial relations are determined by path ⇒ If all
comparisons are correct, then we take the correct path (exact geometric relation).
→ Constructive root bound is at its heart!

Exploits numerical approximation. → fast and adaptive

Implementations: LEDA, CGAL, Core (You can use standard algorithms.)

Only for algebraic problems!

Terminology :
decidable = (Turing) computable = decidable in EGC sense = · · ·
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Input: algebraic

Decidable, if a zero problem for transcendental expression is decidable.

Currently no general solution in EGC sense. (a challenge in EGC)

Only a few examples which is TM decidable.
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Currently no general solution in EGC sense. (a challenge in EGC)

Only a few examples which is TM decidable.

Example : Given p, q ∈ R2 & discs C1, · · · , Cn, Determine exactly the shortest path from p

to q avoiding Ci’s.

bp bq

b
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b
b

b
b b

b

Assume: each coord. of p, q, centers of Ci, radii of Ci are all algebraic.

Seemingly a typical problem in computational geometry – feasible paths.

The first nontrivial example of a transcendental problem which turned out to be TM
decidable. [Chang et al, to appear in IJCGA]



Length of Feasible Path

Find Feasible Paths: µ = µ1; µ2; · · · ; µk

Alternating between line segments and circular arcs

Boundary points are algebraic.

Sum up the lengths of
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rkθk: length of circular arcs

cos θk: algebraic ⇒ θk: transcendental (Lindemann’s Lemma)
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Sum up the lengths of
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→ d(µ) =
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i

d(µi) =
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j

αj +
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k

rkθk

∑

αj : length of line segments ⇒ algebraic
∑

rkθk: length of circular arcs

cos θk: algebraic ⇒ θk: transcendental (Lindemann’s Lemma)

Comparison of Two Feasible Paths:

d(µ1) − d(µ2) → α + r1θ1 + · · · + rnθn α, ri: algebraic, θi: transcendental



Decidability
We have to solve the zero problem for:
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= α + (±ir1) log
(

cos θ1 ± i
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√
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→ "Linear forms in logarithms!"

Baker’s Theorem Let α0, α1, · · · , αn, β1, · · · , βn be nonzero algebraic numbers, with their
degrees ≤ d and heights ≤ H. let

Λ = α0 + α1 log β1 + · · ·αn log βn (linear forms in logarithms).

If Λ 6= 0, then ∃ constant C = C(n, d, H) s.t. |Λ| > 2−C .

Consequence : Λ is transcendental if Λ 6= 0.

So the problem is transcendental but decidable!

How many bits are needed to solve the zero problem?



Effective Bound from
Transcendental Number Theory

Theorem. (Waldschmidt) For n ≥ 2, let γ0, γ1, · · · , γn be algebraic numbers, and let
β1, · · · , βn be nonzero algebraic numbers. If

Λ := γ0 + γ1 log β1 + · · · + γn log βn 6= 0,

then

|Λ| > exp {−28n+51n2nDn+2V1 · · ·Vn(W + log(EDV +
n ))(log(EDV +

n−1))(log E)−n−1},

where

D ≥ [Q(γ0, γ1, · · · , γn, β1, · · · , βn) : Q], W ≥ max
0≤j≤n

{ht(γj)},

Vj ≥ max {ht(βj), | log βj |/D, 1/D}, V1 ≤ · · · ≤ Vn,

V +
n−1 = max {Vn−1, 1}, V +

n = max {Vn, 1}.

1 < E ≤ min {eDV1 , min
1≤j≤n

{4DVj/| log βj |}}.



Bit Complexity

Some Definitions. α ∈ C: algebraic & p(x) = anxn + · · · + a1x + a0 ∈ Z[x]: its minimal
polynomial

Degree: deg(α) := deg(p) = n

Absolute logarithmic height: h(α) := 1
deg(α)

log M(α)

Mahler measure: M(α) := |an|
∏n

i=1 max{1, |αi|}, where α1, · · · , αn are all the
conjugates of α.
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Some Definitions. α ∈ C: algebraic & p(x) = anxn + · · · + a1x + a0 ∈ Z[x]: its minimal
polynomial

Degree: deg(α) := deg(p) = n

Absolute logarithmic height: h(α) := 1
deg(α)

log M(α)

Mahler measure: M(α) := |an|
∏n

i=1 max{1, |αi|}, where α1, · · · , αn are all the
conjugates of α.

Bit Complexity :

Assume the input is L-bit rational numbers (P/Q, where P , Q are L-bit integers.
(|P |, |Q| < 2L)), and N is the number of discs.

Detailed estimation gives: |Λ| > exp
[

−2O(N2+N log L)
]

.

The number of bits we need to expand to compare the lengths of two feasible paths is

2O(N2+N log L).
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(cos t, sin t, s ·t) of a point p and an alge-
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Our Problem

Given a helical motion h(t) =

(cos t, sin t, s ·t) of a point p and an alge-
braic motion c(t) = (c1(t), c2(t), c3(t))

of a ball B with radius r, determine
whether they will collide.

p

B

Assume algebraic input: s, r, ci algebraic

ci(t) algebraic, if ∃P (x, y) ∈ Z[x, y] s.t. P (ci(t), t) ≡ 0

Natural question (e.g. in CAD)

If both motions are algebraic → becomes an algebraic problem.

Turns out to be another (the second) nontrivial transcendental problem which is
decidable with TM.



How?

?∃t, ||h(t) − c(t)|| ≤ r

Natural assumption: no collision initially

⇔?∃t, r2 = ||h(t) − c(t)||2

= −2c1(t) cos t − 2c2(t) sin t +
{

c1(t)2 + c2(t)2 − c3(t)2 + s · t + 1
}

⇔?∃t, a(t) cos t + b(t) sin t + d(t) = 0

⇔







?∃t, a(t) = b(t) = d(t) → algebraic problem

?∃t,
a(t)√

a(t)2+b(t)2
cos t +

b(t)√
a(t)2+b(t)2

sin t = − d(t)

a(t)2+b(t)2

⇔?∃t, cos (t ± arccos(α(t))) = δ(t)

⇔?∃t, t ± arccos(α(t)) ± arccos(δ(t)) = 0 mod 2π

⇔?∃t, t ± arccos(α(t)) ± arccos(δ(t)) + 2kπ = 0, (k: between zeros of δ(t) ± 1)



Zero Problem Again

F (t) := t ± arccos(α(t)) ± arccos(δ(t)) + 2kπ

→ Determine (exactly) the signs of all extremal points of F .
An extremal point t∗ satisfy:

F ′(t∗) = 1 ± α′(t∗)
√

1 − α(t∗)2
± δ′(t∗)

√

1 − δ(t∗)2
= 0

or α(t∗) ± 1 = 0

or δ(t∗) ± 1 = 0

→ t∗ is algebraic.
→ Determine the sign of:

F (t∗) = t∗ ± arccos(α(t∗)) ± arccos(δ(t∗)) + 2k arccos(−1)

= t∗ ± i log
{

α(t∗) ± i
√

1 − α(t∗)
}

± i log
{

δ(t∗) ± i
√

1 − δ(t∗)
}

± 2ki log(−1)

→ Linear forms in logarithms! → Decidable by Baker’s Theorem
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Input Assumption:

c1(t), c2(t), c3(t) ∈ Q[t], s, t ∈ Q.

all are L-bit rational numbers.
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Input Assumption:

c1(t), c2(t), c3(t) ∈ Q[t], s, t ∈ Q.

all are L-bit rational numbers.

deg(c1), deg(c2), deg(c3) ≤ N .

We get the following estimations:

deg(t∗) = O(N), deg(α(t∗)) = deg(δ(t∗)) = O(N), deg(k) = 1.

ht(t∗) = O
(

LN4 (log N)4
)

, ht(α(t∗)) = ht(δ(t∗)) = O
(

LN6 (log N)4
)

,

ht(k) = O
(

LN2 (log N)2
)

.

By Waldscmidt’s theorem, we get:

|F (t∗)| > exp
[

−O
(

L3 log L · N28(log N)13
)]

, if F (t∗) 6= 0.

We need O
(

L3 log L · N28(log N)13
)

bits to solve the zero problem for one
F (t∗). → polynomial time!
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theory?
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Conclusions :

Found and analyzed the second nontrivial transcendental problem
which is computable.

Provided an explicit polynomial time bit complexity.

Directions :

Genearlizations: Elliptic motion (h(t) = (a cos t, b sin t, s · t)), Two
helical motions, Semi-algebraically defined bodies, . . .→ not so
immediate!

The third example? Use of other results from transcendental number
theory?

Better understanding of transcendental problems.

Merci! Thanks!
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