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Abstract — Geometric active contours have many advan-
tages over parametric active contours, such as computational
simplicity and the ability to change curve topology during de-
formation. While many of the capabilities of the older para-
metric active contours have been reproduced in geometric ac-
tive contours, the relationship between the two has not al-
ways been clear. In this paper we develop a precise relation-
ship between the two which includes spatially-varying coeffi-
cients, both tension and rigidity, and non-conservative external
forces. The result is a very general geometric active contour
formulation for which the intuitive design principles of para-
metric active contours can be applied. We demonstrate several
novel applications in a series of simulations.

I. INTRODUCTION

Active contours are curves that deform within digital im-
ages to recover object shapes [1]. They are classified as
either parametric active contours (cf. [1–3]) or geomet-
ric active contours (cf. [4–7]) according to their represen-
tation and implementation. In particular, parametric ac-
tive contours are represented explicitly as parameterized
curves [1, 8] in a Lagrangian formulation. Geometric ac-
tive contours are represented implicitly as level sets of two-
dimensional distance functions [9–11] which evolve accord-
ing to an Eulerian formulation. They are based on the
theory of curve evolution implemented via level set tech-
niques [12].

Parametric active contours are the older of the two for-
mulations and have been used extensively in many appli-
cations over the last decade (see [13], for example). A rich
variety of modifications based on physical and non-physical
concepts have been implemented to solve different shape
estimation problems [3, 14–16]. Geometric active contours
were introduced more recently and were hailed as the so-
lution to the problem of required topological changes dur-
ing curve evolution [4, 5]. Modifications and enhancements
have been added to change their behavior or improve their
performance in a variety of applications [6, 7, 17–19], in-
cluding a number of more global region based models which
have appeared recently in the literature [35–40].

While similarities between the two active contour for-
mulations have always been apparent, only recently have
the precise relationships begun to emerge in the literature.
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Caselles et al. [17] showed that their geometric active con-
tours are equivalent to a special class of classical paramet-
ric active contours. Aubert and Blanc-Féraud [20] revisited
this equivalence and extended it to the 3-D (active surface)
case. The equivalence derived in these two cases is lim-
ited in two respects, however. First, it applies only to those
active contours derived from energy minimization princi-
ples. Therefore, the question of whether a geometric for-
mulation can be found for more general active contours is
not addressed. Second, the equivalence only applies to ac-
tive contours with elastic forces; rigid forces are neglected.
Whitaker et al. [21] included rigid forces in their formula-
tion, but only with constant weights and conservative forces.

Overall, the equivalences currently established in the lit-
erature do not relate a full family of parametric models to
their geometric equivalent. As a result, it is difficult to de-
sign geometric active contours that take advantage of the
wealth of parametric models that have been previously es-
tablished. For example, it is not clear how one would incor-
porate non-conservative external forces, such as the forces
defined in [16]. Also, it is not clear how to incorporate re-
gional pressure forces, such as those used in [22, 23]. It has
been well known that the use of elastic internal forces may
cause undesirable shrinking effect, whereas the use of rigid
internal forces can smooth the contour without this adverse
effect. However, the use of rigid internal forces have been
largely lacking in geometric active contour formulations so
far. Since these are commonly used features in parametric
active contours, there is a clear need to establish an equiv-
alent model in geometric active contours so that the com-
putational and topological advantages of geometric active
contours can be simultaneously exploited.

In this paper, we derive an explicit mathematical rela-
tionship between the general formulations of parametric
and geometric active contours. The formulation considered
here allows both conservative and non-conservative external
force as well as both elastic and rigid internal forces with
spatially-varying weights. This equivalence relationship al-
lows straightforward translation from almost any paramet-
ric active contour to a geometric active contour and vice
versa. It does not directly apply, however, to forces that are
intrinsically Lagrangian, such as the usual external spring
forces or variable tension and rigidity defined on a curve
parameterization. We show examples demonstrating how
the more general formulation of geometric active contours



can be used to good advantage by exploiting tricks from the
parametric active contour literature.

II. BACKGROUND

A. Parametric active contours

The classical parametric active contours, proposed by
Kass et al. [1], are formulated by minimizing an energy
functional that takes a minimum when contours are smooth
and reside on object boundaries. Solving the energy mini-
mization problem leads to a dynamic equation that has both
internal and external forces. The external forces resulting
from this formulation are conservative forces in that they
can be written as gradients of scalar potential functions. Ac-
tive contours using non-conservative forces, however, have
been shown to have improved performance over traditional
energy-minimizing active contours [16, 24]. Therefore,
we now formulate parametric active contours directly from
Newton’s law, which permits use of the most general exter-
nal forces.

Mathematically, a parametric active contour is a time-
varying curveX(s; t) = [X(s; t); Y (s; t)] where s 2 [0; 1]
is arclength and t 2 R+ is time. The dynamics of the curve
are governed by the following equation

Xt = F int + F ext ; (1)

where Xt is the partial derivative of X with respect to t,
�Xt is the damping force with  being an arbitrary non-
negative constant, andF int andF ext are internal forces and
external forces, respectively. The contour comes to a rest
when the net effect of the damping, internal, and external
forces reaches zero. The external force is designed to pull an
active contour towards object boundaries or other features
of interest. Many types of external forces have been devel-
oped in the past (see [41] for a comprehensive list of ex-
ternal forces), including the well-known pressure force [3]
and the Gaussian potential force [1]. The internal force is
the sum of elastic and rigid forces defined as follows

F elastic = [�(s; t)Xs(s; t)]s (2)

F rigid = �[�(s; t)Xss(s; t)]ss ; (3)

where the coefficients�(s; t) and �(s; t) can be used to con-
trol the strength of the contour’s elasticity and rigidity, re-
spectively. In this general formulation, these coefficients
are allowed to vary both along the length of the curve and
over time. In practice, however, � is usually a positive con-
stant and � is usually zero. It is important to maintain the
most general formulation, however, in order to understand
the precise relationship between parametric and geometric
active contours.

B. Geometric active contours

Geometric active contours [4, 5] are based on the theory
of curve evolution [9–11] and the level set method [12]. In
this framework, curves evolve using only geometric mea-
sures, resulting in a contour evolution that is independent
of the curve’s parameterization. This avoids the need to
repeatedly reparameterize the curve or to explicitly handle
topological changes (cf. [15,25]). The parametric represen-
tations of the curves themselves are computed only after the
evolution of the level set function is complete.

Let �(x; t) be a 2-D scalar function whose zero level set
defines the geometric active contour. The original geometric
active contour formulation evolves � according to [4, 5]

�t = c(�+ V0)jr�j ; (4)

where � is the curvature, V0 is a constant, and

c � c(x) =
1

1 + jr(G�(x) � I(x))j
(5)

is an edge potential derived from the image. In (4), the prod-
uct c(�+V0) determines the overall evolution speed of level
sets of �(x; t) along their normal direction. The use of cur-
vature � has the effect of smoothing the contour, while the
use of V0 has the effect of shrinking or expanding contour at
a constant speed. The speed of contour evolution is coupled
with the image data through a multiplicative stopping term
c.

This scheme works well for objects that have good con-
trast. When the object boundary is indistinct or has gaps,
however, this contour tends to leak through the boundary.
To solve this problem, the following formulation was pro-
posed [6, 7, 17, 18]

�t = c(�+ V0)jr�j+rc � r� : (6)

The extra stopping termrc�r� is used to pull back the con-
tour if it passes the boundary. The following model was sub-
sequently proposed to further improve the boundary leaking
problem [19]

�t = (c�jr�j+rc � r�) + V0(c+
1

2
x � rc)jr�j : (7)

The additional term V0
1
2
x �rcjr�j provides extra stopping

power at boundaries.
It has been observed that even (7) does not provide a

satisfactory solution to the boundary leaking problem; ac-
tive contours can still leak through boundary gaps and weak
edges. Several good solutions to this problem have appeared
in recent parametric active contour literature [16, 22, 23].
But it is not clear, however, how these solutions can be
adapted to the geometric active contour framework. In
this paper, we make this connection explicit by deriving a
mathematical relationship between parametric and geomet-
ric active contours. We then show how two new geometric



active contours can be obtained through this relationship,
and we demonstrate how the boundary leaking problem is
solved using these new active contour models. These new
models complement the recent region based level set mod-
els [35–40] which also enjoy robustness against the leaking
problem but which are based upon a different class of en-
ergy functionals compared to the parametric region based
models we wish to extend.

III. RELATIONSHIP BETWEEN PARAMETRIC AND

GEOMETRIC ACTIVE CONTOURS

In this section, we seek to derive a general formulation
for geometric active contours by reformulating (1) using a
level set representation. We start by modifying the paramet-
ric problem according to the following two considerations.
First, we separate pressure forces F pres(X) from other ex-
ternal forces F ext(X) because they require a special nu-
merical schemes [12]. Second, we consider only the normal
component of force since the tangential component affects
an active contour’s parameterization but not its geometry.
Therefore, the class of parametric models we consider is
given by

Xt = [(F int + F pres + F ext) �N ]N ; (8)

where N is the inward unit normal. The pressure force is
given byF pres = wpres(s; t)N , which generalizes Cohen’s
pressure [3] by allowing the weight to be spatially and tem-
porally varying.

A. Preliminaries

Next, we introduce two propositions that will be used for
deriving level set formulation of internal forces.

Proposition 1 Let X(s) be an arc-length parameterized
plane curve, and let T (s) andN(s) be the unit tangent and
unit normal vectors, respectively, such that fT (s);N (s)g
form a right-handed orthonormal basis of R2 for each s.
Then

(a) Xs(s) = T (s) ;

(b) T s(s) = �(s)N (s) ; and

(c) N s(s) = ��(s)T (s):

Proof: (a) follows from the definition of the tangent vec-
tor and the fact that X is parameterized by arclength. (b)
and (c) follow from the Frenet-Serret Theorem (cf. [26]) and
the fact that X is a plane curve.

Proposition 2 Let X(s) be an arc-length parameterized
plane curve that coincides with a level set of the level set

function �(x)jR2
! R and let f(x)jR2

! R be a differ-
entiable scalar function on the plane. Then

@f(X(s))

@s
=�

rf(x) �
1

jr�(x)j
(��y(x); �x(x))

�
x=X(s)

Proof : Since X(s) is a level set of �(x), �(X(s)) is a
constant. Using the chain rule, we have

�xXs + �yYs = 0 : (9)

Using the facts that jT j = 1, N = �r�=jr�j, and
fT (s);N(s)g forms a right handed orthonormal basis, we
have

T =
1

jr�j
(��y; �x) : (10)

Hence, from the chain rule

@f

@s
= rf � T = rf �

1

jr�j
(��y; �x)

which proves the proposition.

A word about notation. For convenience, we omitted the
arguments of all functions in our proof of Proposition 2, and
we will continue this practice in the sequel except where
ambiguity may arise. It is a fundamental distinction that
parametric active contours are Lagrangian in nature and are
defined as functions of s, while geometric active contours
are Eulerian in nature and are defined as functions of x. To
see the connection between the two, we must both extend
functions defined on the curve to functions defined on the
plane and restrict functions defined on the plane to functions
defined on the curve (see [27] for additional details). The
substitution x = X(s) is implied when functions defined
on the plane are equated to functions defined on the curve.

B. Equivalence

We first focus on the internal forces in (8), which com-
prise both elastic and rigid forces. For the elastic forces, we
use Proposition 1 to yield

F elastic(s) �N(s) = [�(s)Xs(s)]s �N(s)

= [�(s)T (s)]s �N(s) = �(s)�(s) : (11)

Extending this result to an Eulerian representation on the
plane gives

F elastic(x) = �(x)�(x); (12)

where �(x) is given by [12]

� = r �
r�

jr�j
=

�xx�
2
y � 2�x�y�xy + �yy�

2
x

(�2x + �2y)
3=2

: (13)



For the rigid forces we have

F rigid(s) �N (s) = �[�(s)Xss(s)]ss �N(s)

= �(s)�3(s)� �(s); (14)

where
�(s)

def
= [�(s)�(s)]ss : (15)

Upon extending both � and � to the plane, we use Proposi-
tion 2 to find the extension of � to the plane, as follows

�(x) = r

�
r

�
�(x)

�
r �

r�

jr�j

��
� 1
jr�j

(��y; �x)

�

� 1
jr�j

(��y; �x) ; (16)

which can also be written as

�(x) =
�̂xx�

2
y + �̂yy�

2
x � 2�̂xy�x�y

�2x + �2y

� �
�̂x�x + �̂y�y

(�2x + �2y)
1=2

(17)
where �̂(x) = �(x)�(x). Finally, the rigid force is com-
puted for geometric active contours using

F rigid(x) = �(x)�3(x)� �(x) ; (18)

where �(x) is given by (17).
We now turn to the external forces, which can be clas-

sified as either static or dynamic. Static forces are vector
fields derived from the image data which do not change
as the active contour deforms. Since static force fields are
defined on the spatial positions rather than the active con-
tour itself, the level set formulation of its normal component
takes the following form

F ext(X(s)) �N (s) = �
1

jr�(x)j
[F ext(x) �r�(x)] (19)

Dynamic forces are those that depend on the active con-
tour’s position and orientation. The most general forces we
need to consider are the spatially-varying pressure forces,
whose normal component can be written as

F pres(s) �N(s) = wpres(x) : (20)

According to the fundamental relationship that a curve
evolution X t = F (�)N can be expressed as a level set
evolution �t = F (�)jr�j [12], a general formula for a ge-
ometric active contour can now be derived. Substitution of
the normal components for both internal and external forces
into (8) and applying the fundamental relationship yields

�t(x) = [�(x)�(x) + �(x)�3(x)� �(x)]jr�(x)j

+wpres(x)jr�(x)j � F ext(x) � r�(x) (21)

after some simplification.

Equation (21) gives a general geometric active contour
formula rigorously tied to the standard parametric active
contour formulation. For example, the original geometric
active contour of (4) is achieved by using

�(x) = c(x) ;

�(x) = 0 ; and

wpres(x) = c(x)V0 :

The geodesic active contour formulation of (6) is achieved
by using

�(x) = c(x) ;

�(x) = 0 ;

wpres = c(x)V0 ; and

Fext(x) = �rc(x) :

Finally, the extension in (7) is achieved using

�(x) = c(x) ;

�(x) = 0 ;

wpres(x) = V0[c(x) +
1

2
x � rc(x)] ; and

Fext(x) = �rc(x) :

It is apparent from this comparison that previous creativ-
ity in the development of new geometric active contours has
been somewhat limited. For example, pressure forces have
typically been tied through c(x), the edge potential, to in-
ternal tension forces. External forces have been limited to
irrotational forces, and these also tied to c(x). Finally, the
use of rigid forces has been largely missing in existing geo-
metric active contours. There is room for much creativity in
the selection of parameters for a geometric active contour,
and the derived equivalence should help to identify the op-
portunities and their relation to parametric active contours.
We explore some possibilities in the Applications section.

C. Implementation Issues

We implemented the geometric active contour of (21) us-
ing the narrow band approach described in [28]. Rebuild-
ing the narrow band when the contour hits the narrow band
boundary is calculated using the fast marching algorithm
described in [29, 30]. To assure the stability of the algo-
rithm, the rigid force is computed based on the algorithm
proposed by Chopp and Sethian [31].

D. Remarks

The relationship we have derived does not provide a
complete equivalence. From the outset we eliminated all
terms that depend on an explicit parameterization of the
active contour. But a parameterization is required for cer-
tain parametric active contours. For example, spring forces



Fig. 1: A jagged hand contour (top left) and a zoom up around the thumb

(bottom left). Top row right: active contour deformed under elastic force

with � = 0:1 for 100, 500, and 1000 iterations. Bottom row right: active

contour deformed under rigid force with � = 0:1 for 100, 500, and 1000

iterations.

use springs that are tied to particular points on the contour
(cf. [1]). They are Lagrangian in character, and it would re-
quire contour point tracking to implement them within an
Eulerian framework. Active contours that mimic physical
objects whose tension and rigidity coefficients vary along
the curve likewise cannot be implemented without contour
point tracking. So, to complete the equivalence, some way
to keep track of the initial coordinate s, given the spatial lo-
cation x of an active contour is required. This is a subject
for future research.

IV. APPLICATIONS

This section shows the application of the mathematical
relationship derived in Section III for designing new geo-
metric active contours based on two recent parametric active
contours.

Contour fairing. It has sometimes been argued that the
active contour rigidity term is not necessary, that the elas-
ticity term is adequate [17]. But the elasticity term shrinks
contours, which may be undesirable in some applications.
Use of the rigidity term (non-zero �) with small or no elas-
ticity can help provide contour smoothness — fairing the
contour — while minimizing contour shrinkage. Equation
(21) provides a way to do this within the geometric active
contour framework. Fig. 1 contrasts the contour smoothing
difference between elastic forces and rigid forces.

Region-based forces. Region information — e.g., from
image segmentation — can be used to improve the robust-
ness of an active contour, both to noise and to weak edges.

Those parametric active contours formulations that have in-
corporated region information — e.g., [22,23,32,33] — can
all be written in the following way

Xt = [�(s)Xs]s � [�(s)Xss]ss

+wRR(X)N + F ext(X) ; (22)

where R(x) is a region function and wR is a positive
weighting parameter. The region function is derived from
the image and (for the sake of concreteness) has values
in the range [-1,1] that are smaller within the region(s)-
of-interest. The region function modulates the sign of the
pressure forces using region information so that the contour
shrinks when it is outside the object of interest and expands
when it is inside the object. For this reason, these external
forces are sometimes called signed pressure forces.

Signed pressure forces help to solve the so-called bound-
ary leaking problem, which results from weak edges. This
idea has only recently been incorporated into geometric ac-
tive contours [34–36], and our equivalence relationship per-
mits a direct and more general result. In particular, using (8)
and (21), we can easily write

�t(x) = [�(x)�(x) + �(x)�3(x)� �(x)]jr�(x)j

+wRR(x)jr�(x)j � F ext(x) � r�(x) ; (23)

which comprises a more general class of region-based, ge-
ometric active contours than has previously been reported.
See [35–40] for some other, more specialized, region-based
geometric active contour models.

Gradient vector flow forces. Active contours using gra-
dient vector flow external forces have been shown to have a
larger capture range and the ability to converge into bound-
ary concavities [16]. They have been used only in para-
metric active contour formulations, however, because they
comprise non-conservative forces that do not fit within the
standard geometric (or geodesic) active contour framework.
Using our derived equivalence, it is straightforward to de-
velop a gradient vector flow active contour.

A GVF field is defined as the equilibrium solution of a
generalized vector diffusion equation

vt = g(jrf j)r2
v � h(jrf j)(v �rf) ; (24)

where v(x; 0) = rf , vt denotes the partial derivative
of v(x; t) with respect to t, r2 is the Laplacian opera-
tor (applied to each spatial component of v separately),
and f is an edge map that has a higher value at the de-
sired object boundary. The functions g(r) and h(r) con-
trol the amount of diffusion in GVF; in this paper, we use
g(r) = expf�(r=�)2g and h(r) = 1� g(r), where �. We
define ~v = v(x;1), the equilibrium state of (24). A gen-
eral geometric GVF active contour follows by substituting



Fig. 2: Top row: standard geometric active contour. Bottom row:

region-based geometric active contour using new equivalence

formulation.

~v(x) for F ext(x) in (23), yielding

�t(x) = [�(x)�(x) + �(x)�3(x)� �(x)]jr�(x)j

+wRR(x)jr�(x)j � ~v(x) � r�(x) : (25)

If desired or necessary, region forces can be turned off by
setting wR = 0.

Volcano forces. Volcano forces are local repulsive forces
that are determined by a volcano location specified by the
user [1]. They are a powerful tool for interactive snake ma-
nipulation commonly used in parametric snakes. They are
readily implemented as static external forces and either add
to or replace Fext.

A. Examples

Figure 2 shows an example patterned after one in [19], in
which there is a weak boundary at the top right of the circle.
The top row of this figure shows a conventional geomet-
ric active contour leaking through this boundary, while the
bottom row shows a region-based geometric active contour
implemented using (23). To construct the region function
in this example, we applied fuzzy C-means to automatically
classify the figure into two classes, each with a fuzzy mem-
bership value at each pixel. The region function was then
given by

R(x) = 1� 2�d(x) : (26)

where �f (x) is the membership function corresponding to
the darker intensity class. These experiments also used an
additional external force given by

F ext(x) = r�f (x) : (27)

Fig. 3 shows our region-based geometric active contour
converging from a single initialization to the ventricles in
the top row and the gray matter/white matter interface in
the second row. The only difference between the two for-
mulations is in the region function, which was based on the
ventricle fuzzy membership in the top row and the white
matter fuzzy membership in the bottom row.

(a) (b) (c)

(d) (e) (f)

Fig. 3: A region-based geometric active contour can extract either the

ventricle (top row) or the white matter (bottom row).

(a) (b) (c)

Fig. 4: Segmentation of the LV on a cardiac ultrasound image from a

single geometric GVF active contour.

Gradient vector flow is very useful when there are bound-
ary gaps, because it preserves the perceptual edge property
of snakes [1, 16]. Figure 4 shows a geometric GVF snake
applied to a noisy ultrasound image of the left ventricle. We
note that the standard geodesic active contour of [6] or [7]
failed to produce the correct result on this image.

V. SUMMARY AND CONCLUSION

We have derived an explicit mathematical relationship
between the general formulations of parametric and geo-
metric active contours. This relationship highlights the La-
grangian nature of parametric active contours and the Eu-
lerian nature of geometric active contours. Of particular
note is the inclusion of rigidity in this equivalence. De-
scribed applications of the relationship include curve fair-
ing, region-based and gradient vector flow active contours,
and interactive volcano forces. Examples on simulated and
real images were presented, demonstrating in particular its
effectiveness on the boundary leaking problem. We antici-
pate that new geometric active contours will be developed
using the equivalence derived in this paper. Extending this
relationship to 3-D should be relatively straightforward.

ACKNOWLEDGMENTS



The authors thank Xiao Han for his assistance in imple-
menting the geometric active contours using the narrow-
band method and Dzung Pham for providing the fuzzy
c-means algorithm. The work was supported in part by
an NSF/ERC grant CISST-9731748 and NIH/NINDS grant
R01NS37747.

REFERENCES

[1] M. Kass, A. Witkin, and D. Terzopoulos. Snakes: active contour mod-
els. Int’l J. Comp. Vis., 1(4):321–331, 1987.

[2] A. A. Amini, T. E. Weymouth, and R. C. Jain. Using dynamic pro-
gramming for solving variational problems in vision. IEEE T. Patt.
Anal. Mach. Intell., 12(9):855–867, 1990.

[3] L. D. Cohen. On active contour models and balloons. CVGIP: Imag.
Under., 53(2):211–218, 1991.

[4] V. Caselles, F. Catte, T. Coll, and F. Dibos. A geometric model for
active contours. Numerische Mathematik, 66:1–31, 1993.

[5] R. Malladi, J. A. Sethian, and B. C. Vemuri. Shape modeling with
front propagation: a level set approach. IEEE T. Patt. Anal. Mach.
Intell., 17(2):158–175, 1995.

[6] V. Caselles, R. Kimmel, and G. Sapiro. Geodesic active contours. In
Proc. Int’l Conf. Comp. Vis., pages 694–699, 1995.

[7] A. Yezzi, S. Kichenassamy, A. Kumar, P. Olver, and A. Tannenbaum.
A geometric snake model for segmentation of medical imagery. IEEE
T. Med. Imag., 16:199–209, 1997.

[8] D. Terzopoulos and K. Fleischer. Deformable models. The Visual
Computer, 4:306–331, 1988.

[9] G. Sapiro and A. Tannenbaum. Affine invariant scale-space. Int’l J.
Comp. Vis., 11(1):25–44, 1993.

[10] L. Alvarez, F. Guichard, P. L. Lions, and J. M. Morel. Axioms and
fundamental equations of image processing. Arch. Rational Mech.
Anal., 123(3):199–257, 1993.

[11] B. B. Kimia, A. R. Tannenbaum, and S. W. Zucker. Shapes, shocks,
and deformations I: the components of two-dimensional shape and the
reaction-diffusion space. Int’l J. Comp. Vis., 15:189–224, 1995.

[12] S. Osher and J. A. Sethian. Fronts propagating with curvature-
dependent speed: algorithms based on Hamilton-Jacobi formulations.
J. Comp. Physics, 79:12–49, 1988.

[13] T. McInerney and D. Terzopoulos. Deformable models in medical
image analysis: a survey. Med. Imag. Anal., 1(2):91–108, 1996.

[14] L. H. Staib and J. S. Duncan. Boundary finding with parametrically
deformable models. IEEE T. Patt. Anal. Mach. Intell., 14(11):1061–
1075, 1992.

[15] R. Durikovic, K. Kaneda, and H. Yamashita. Dynamic contour:
a texture approach and contour operations. The Visual Computer,
11:277–289, 1995.

[16] C. Xu and J. L. Prince. Snakes, shapes, and gradient vector flow.
IEEE T. Imag. Proc., 7(3):359–369, 1998.

[17] V. Caselles, R. Kimmel, and G. Sapiro. Geodesic active contours.
Int’l J. Comp. Vis., 22:61–79, 1997.

[18] S. Kichenassamy, A. Kumar, P. Olver, A. Tannenbaum, and A. Yezzi.
Conformal curvature flows: from phase transitions to active vision.
Arch. Rational Mech. Anal., 134:275–301, 1996.

[19] K. Siddiqi, Y. B. Lauzière, A. Tannenbaum, and S. W. Zucker. Area
and length minimizing flows for shape segmentation. IEEE T. Imag.
Proc., 7:433–443, 1998.
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