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Abstract. The bounds of eigenvalues which are independent of both degrees of high-order
elements and mesh sizes are shown for the preconditioned system by bilinear elements for the high-
order finite elements discretizations applied to a model uniformly elliptic operator.
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1. Introduction. High-order finite element methods for discretizing a second-
order uniformly elliptic partial differential equation lead to a linear equation L̃N2U =
F which requires efficient iterative methods such as Schwarz-based methods (see [5]
[13] and [16] ), preconditioning methods related to multilevel methods, multigrid
methods (see [6], [7] and [8]) and etc. This is because such linear systems have large
condition numbers which depend on the order of the elements used and the mesh
spacing. In particular, an algebraic multigrid (AMG) method is useful in the case
of irregular grids. However it was reported that a direct application of AMG to
L̃N2U = F is not so efficient (see [8] and [15]). The convergence factor degrades
rapidly as the order of the elements is increased. For the case of Stokes and elasticity
equations, the complexity from the high-order finite element discretizations for AMG
is even worse than that of a simple elliptic partial differential equation.

In [8], a preconditioning was constructed by using the Legendre-Gauss-Lobatto
quadrature points in each cell as mesh points for a bilinear discretization. The pre-
conditioning was approximately inverted by one AMG V-cycle. This approach has
several advantages, including the possibility to avoid assembly of the high-order stiff-
ness matrix. Numerical results show that this preconditioning was very effective,
especially when accelerated by a conjugate gradient method. It has also an advantage
of a straightforward matrix-free implementation for the fine grid high-order element
matrix.

In order to show that such a bilinear preconditioning is effective, we will consider
a uniformly elliptic boundary value problem like

(1.1) Lpu := −∇ · p(x, y)∇u + q(x, y)u in Ω = (−1, 1)× (−1, 1)

with boundary conditions

(1.2) u = 0 on ΓD, n · ∇u = 0 on ΓN

where Γ = ΓD ∪ ΓN with a nonempty ΓD and p(x, y) and q(x, y) are nonnegative
smooth bounded functions on Ω. The piecewise bilinear finite element preconditioner
will be constructed by another uniformly elliptic boundary operator B like

(1.3) Bv := −∇ · ∇v + 2v in Ω = (−1, 1)× (−1, 1)
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with the same boundary (1.2). This operator B yields a matrix B̂h2 to reduce the
condition numbers of a matrix L̃N2 induced by high-order elements applied to (1.1)

For a convenience, we assume throughout this paper that the Dirichlet part of
the boundary Γ is

(1.4) ΓD = {−1} × [−1, 1] ∪ [−1, 1]× {−1}.

The main object in this article is to prove that the eigenvalues (B̂h2)−1L̃N2 are
independent of the degrees of high-order elements and the mesh sizes. As a result
the condition numbers of the preconditioned systems are fixed and small so that the
complexity is no longer problem when the AMG algorithm is applied. These make
one to employ multigrid algorithms for solving problems like (1.1) with high-order ele-
ments discretizations, which guarantee convergence of the strategy of preconditioning
the high-order matrix with a bilinear or trilinear matrix based on Legendre-Gauss-
Lobatto quadrature nodes well suited to a solution by multigird methods. For a single
spectral element, this kind of preconditioning was analyzed for Legendre spectral col-
location methods in [3], [11], [12] and [14], for example.

The goal of this paper can be achieved by extending the results of [11] to high-
order elements and by applying H1, L2 estimates in [17] of a local interpolation
operator INt

j
to a global interpolation operator Ih

Nt
j
. Further, we note that such a H1

semi-norm estimate of the local interpolation operator defined on a space of piecewise
linear can be extended to the space of H1 by modifying the relevant results in [1].
We also note that the discussions here can be extended to singular value results for
a general elliptic operators which are not positive definite. For this, one had better
refer to [11].

This paper consists of as follows. In next section, we recall some known results,
piecewise polynomial basis, interpolation operators and etc. In section 3, we extend
the results in [11] and [17] which lead to one and two dimensional preconditioning
results for the constant coefficients case in section 4. The variable coefficients case is
dealt with in section 5 using the tensor representation appeared in [4]. In section 6,
we will provide some numerical results which support the developed theories. Finally
we mention some conclusions in last section.

2. Preliminary. With the direction notation t = x or y, we assume that M t

and N t
j are natural numbers. Let {tk}Mt

k=0 be the knots in the interval I = [−1, 1]
such that

(2.1) − 1 =: t0 < t1 < · · · < tMt−1 < tMt := 1.

Let {ηk}Nt
j

k=0 and {ωk}Nt
j

k=0 be the Legendre-Gauss-Lobatto (=:LGL) points in I ar-
ranged by

(2.2) − 1 =: η0 < η1 < · · · < ηNt
j−1 < ηNt

j
:= 1

and its corresponding LGL weights respectively. Here M t denotes the number of
subintervals of I = [−1, 1] and N t

j denotes the number of LGL points on a jth subinter-
val by a translation of I. By the translation from I to a jth subinterval It

j := [tj−1, tj ]

we denote G := {ξt
j,k}

Mt,Nt
j

j=1,k=0 as the kth− LGL points in each subinterval It
j for

j = 1, 2, · · · , M t and enumerate them as

(2.3) ξt
j,0 := tj−1 < ξt

j,1 < · · · < ξt
j,Nt

j−1 < tj =: ξt
j,Nt

j
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where

(2.4) ξt
j,k =

ht
j

2
ηk +

1
2
(tj−1 + tj), ht

j = tj − tj−1

and the corresponding LGL weights {ρt
j,k}

Nt
j

k=0 are given by

(2.5) ρt
j,k =

ht
j

2
ωk, j = 1, 2, · · · ,M t.

With ξt
Mt+1,0 := tMt , note that in (2.3) and (2.5)

(2.6) ξt
j−1,Nt

j
= ξt

j,0, ρt
j−1,Nt

j
= ρt

j,0, j = 2, · · · ,M t + 1.

Let Pk be the space of all polynomials pk(t) defined on I whose degrees are less than
or equal to k and let Ph

Nt
j

be the subspace of C[−1, 1] which consists of piecewise poly-

nomials pNt
j
(t) with support It

j = [tj−1, tj ] whose degree is less than or equal to N t
j .

For the space Ph
Nt

j
, we describe two types of Lagrangian basis functions with respect

to G, one of which are internal-Lagrange basis functions denoted as {φt
j,k(t)}Mt,Nt

j−1

j=1,k=1

supported in It
j and the other of which are knot-Lagrange basis functions denoted as

{φt
j,Nt

j
(t)}Mt−1

j=1 with support on [tj−1, tj+1], and φt
1,0(t) and φt

Mt,Nt
j
(t) with support

on [t1, t2] and [tMt−1, tMt ] respectively. For two dimensional high-order space, let

(2.7) [Ph
N ]2 := Ph

Nx
j
⊗Ph

Ny
j
,

whose basis functions are given by tensor products of one dimensional piecewise La-
grange polynomials. Let VNt

j
be the space of all piecewise Lagrange linear functions

ψ̂k(x) with respect to {ηk}Nt
j

k=0 on I. Define Vh
Nt

j
as the space of all piecewise Lagrange

linear functions {ψt
j,k(t)}Mt,Nt

j

j=1,k=0 with respect to G. For two dimensional piecewise lin-
ear space, let

(2.8) [Vh
N ]2 := Vh

Nx
j
⊗ Vh

Ny
j
,

whose basis functions are given by tensor products of one dimensional piecewise La-
grange linear functions. Define two interpolation operators INt

j
: C[−1, 1] → PNt

j
(I)

such that

(2.9) (INt
j
u)(ηk) = u(ηk), u ∈ C[−1, 1]

and Ih
Nt

j
: C[−1, 1] → Ph

Nt
j
(I) such that

(2.10) (Ih
Nt

j
v)(ξt

j,k) = v(ξt
j,k), v ∈ C[−1, 1].

Define a discrete inner product 〈u, v〉N on C[−1, 1]× C[−1, 1] as

(2.11) 〈u, v〉N :=
Mt∑

j=1

Nt
j−1∑

k=0

u(ξt
j,k)v(ξt

j,k)ρt
j,k + u(ξt

Mt,Nt
j
)v(ξt

Mt,Nt
j
)ρt

Mt,Nt
j
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and its corresponding norm is given by

(2.12) ‖u‖N = 〈u, u〉
1
2
N , for u ∈ C[−1, 1].

Finally, the notation a ∼ b for any two real quantities a and b is meant by that
there are two positive constants which do not depend on mesh sizes and degrees of
polynomials such that 0 < c ≤ a

b < C < ∞. The notation (U, V ) stands for
∑

uivi

for any two vectors U = (u1, · · · , ud)T and V = (v1, · · · , vd)T where the superscript
T denotes the transpose of a vector. The standard spaces H1 and L2 will be used.

3. Basic estimates. In this section, we will discuss some estimates of global
interpolation operator Ih

Nt
j

in terms of H1 and L2 norms. For t ∈ [−1, 1] and st ∈
[tj−1, tj ], let

(3.1) φ̂(t) := φ(st) = φ
(ht

j

2
t +

1
2
(tj−1 + tj)

)
.

Then for k = 0, 1, · · · , N t
j we have

(INt
j
φ̂)(ηk) = φ̂(ηk) = φ

(ht
j

2
ηk +

1
2
(tj−1 + tj)

)
= φ(ξt

j,k) = (Ih
Nt

j
φ)(ξt

j,k),(3.2)

which yields

(3.3) (INt
j
φ̂)(t) = (Ih

Nt
j
φ)(st).

Also, we have

(3.4) ‖φ(s)‖21 =
M∑

j=1

[ht
j

2

∫ 1

−1

|φ̂(t)|2 dt +
2
ht

j

∫ 1

−1

|φ̂′(t)|2 dt
]

and

(3.5) ‖(Ih
Nt

j
φ)(s)‖21 =

M∑

j=1

[ht
j

2

∫ 1

−1

|(INt
j
φ̂)(t)|2 dt +

2
ht

j

∫ 1

−1

|(INt
j
φ̂)′(t)|2 dt

]
,

where ‖ · ‖1 denotes the standard Sobolev H1 norm. From now on, we will use
| · |1 as Sobolev H1 seminorm and ‖ · ‖ as usual L2 norm. In order to discuss the
piecewise linear finite elements preconditioner, it may be required to analyze the
relations between INt

j
φ̂ and φ̂ in the sense of H1− and L2− norm. For this purpose,

we recall the following lemma (see Lemma 7.2 in [17]) which can be also extended to
higher dimensions (see Theorem 7.3 in [17]).

Lemma 3.1. It follows that for all φ̂ ∈ VNt
j

(3.6) |φ̂|1 ∼ |INt
j
φ̂|1, and ‖INt

j
φ̂‖ ∼ ‖φ̂‖.

Note that the result |INt
j
φ̂|1 ≤ C|φ̂|1 in (3.6) can be verified for any function

φ̂ ∈ H1(I) by modifying Theorem 1.7, Corollary 1.9 in Chapter II and Corollary
1.16, Theorem 1.19 in Chapter III with usages of Theorem 1.15, Lemma 1.18 and



Piecewise bilinear preconditioning on high-order finite element methods 5

Proposition 1.17 in Chapter III therein in [1] where ‖INt
j
φ̂h‖1 ≤ C‖φ̂h‖1 is found.

For reader’s convenient, we put the statement here.
Proposition 3.2. For all φ̂ ∈ H1(I), there is a positive constant C such that

|INt
j
φ̂|1 ≤ C |φ̂|1.

Now the extension of Lemma 3.1 to the global interpolation operator Ih
Nt

j
can be

done easily by combining (3.4), (3.5) with Lemma 3.1. Here we put it as theorem.
Theorem 3.3. It follows that for all u ∈ Vh

Nt
j

(3.7) |Ih
Nt

j
u|1 ∼ |u|1.

Lemma 3.4. For φ(t) ∈ Ph
Nt

j
[−1, 1], it follows that

(3.8) ‖φ‖ ∼ ‖φ‖N .

Proof. First note that φ(t) is a polynomial of degree N t
j on [tj−1, tj ]. Then the

equivalence of LGL numerical quadrature (see [1]) and (2.6) yield

‖φ(t)‖2 =
∫ 1

−1

|φ(t)|2 dt =
Mt∑

j=1

∫ tj

tj−1

|φ(t)|2 dt

∼
Mt∑

j=1

Nt
j∑

k=0

|φ(ξt
j,k)|2ρt

j,k

=
Mt∑

j=1

Nt
j−1∑

k=0

|φ(ξt
j,k)|2ρt

j,k + |φ(ξt
Mt,Nt

j
)|2ρt

Mt,Nt
j

+
Mt−1∑

j=1

|φ(ξt
j,Nt

j
)|2ρt

j,Nt
j

∼ 〈φ, φ〉N = ‖φ‖2N .

(3.9)

In the last equivalence in (3.9), the observations (2.6) were used.

Theorem 3.5. For all u ∈ Vh
Nt

j
, we have

(3.10) ‖u‖ ∼ ‖Ih
Nt

j
u‖, and ‖u‖ ∼ ‖Ih

Nt
j
u‖N .

Proof. Since Ih
Nt

j
u ∈ Ph

Nt
j
[−1, 1], Lemma 3.4 yields ‖Ih

Nt
j
u‖ ∼ ‖Ih

Nt
j
u‖N . Hence for

the proof of (3.10) it is enough to show that for u ∈ Vh
Nt

j

(3.11) ‖u‖ ∼ ‖Ih
Nt

j
u‖N .

Using (3.1) and (3.2) for functions û and u, we have

(3.12) ‖u‖2 =
Mt∑

j=1

hj

2
‖û‖2,

Mt∑

j=1

hj

2
‖INt

j
û‖2N =

Mt∑

j=1

Nt
j∑

k=0

∣∣∣(Ih
Nt

j
u)(ξj

k)
∣∣∣
2

ρj
k.
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Since (see Theorem 3.1 in[11])

(3.13) ‖û‖ ∼ ‖INt
j
û‖N , for all û ∈ VNt

j
,

using (3.12), it follows that

‖u‖2 ∼
Mt∑

j=1

Nt
j∑

k=0

∣∣∣(Ih
Nt

j
u)(ξj

k)
∣∣∣
2

ρj
k.

Therefore, it is enough to show

(3.14)
Mt∑

j=1

Nt
j∑

k=0

∣∣∣(Ih
Nt

j
u)(ξj

k)
∣∣∣
2

ρj
k ∼ ‖Ih

Nt
j
u‖2N .

Actually, because of (2.6) we can rewrite the left term of (3.14) as

Mt∑

j=1

Nt
j∑

k=0

∣∣∣(Ih
Nt

j
u)(ξj

k)
∣∣∣
2

ρj
k =

Mt∑

j=1

Nt
j−1∑

k=0

∣∣∣(Ih
Nt

j
u)(ξj

k)
∣∣∣
2

ρj
k +

∣∣∣(Ih
Nt

j
u)(ξMt

k )
∣∣∣
2

ρMt

k(3.15)

+
Mt−1∑

j=1

∣∣∣(Ih
Nt

j
u)(ξj

Nt
j
)
∣∣∣
2

ρj
Nt

j

= ‖Ih
Nt

j
u‖2Nt

j
+

Mt−1∑

j=1

∣∣∣(Ih
Nt

j
u)(ξj

Nt
j
)
∣∣∣
2

ρj
Nt

j

= ‖Ih
Nt

j
u‖2Nt

j
+

Mt∑

j=2

∣∣∣(Ih
Nt

j
u)(ξj

0)
∣∣∣
2

ρj
0.

Then one may see that (3.14) holds. These arguments complete the proof of (3.11)
and consequently (3.10).

4. Case of constant coefficients: 1D and 2D.

First we discuss one dimensional case. For convenience, let M := M t and Nj :=
N t

j for one dimensional case only. Consider two uniformly positive definite elliptic
operators defined in I = (−1, 1) such that

(4.1) Lu = −(a1u
′)′ + a2 u, in I, u(−1) = u′(1) = 0

and

(4.2) Bv = −(b1v
′)′ + b2 v, in I, v(−1) = v′(1) = 0

where a1, b1 are positive constants and a2, b2 are nonnegative constants, which lead
to two bilinear forms on V ×V where V := {u ∈ H1(I), u(−1) = u′(1) = 0} as

(4.3) l1(u, v) =
∫ 1

−1

a1u
′v′ + a2uv dt and b1(u, v) =

∫ 1

−1

b1u
′v′ + b2uv dt.
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For the high-order and piecewise linear approximations to (4.1) and (4.2), let

Ph,m
Nj

:= {v ∈ Ph
Nj

, v(−1) = v′(1) = 0},
Vh,m

Nj
:= {u ∈ Vh

Nj
, u(−1) = u′(1) = 0}

whose suitable basis functions {φµ}d
µ=1 and {ψν}d

ν=1 can be given respectively where

(4.4) d := dim(Ph,m
Nj

) = dim(Vh,m
Nj

).

Then the stiffness matrix L̂N with high-order elements based on G of (4.1) is given by

(4.5) L̂N (µ, ν) = l1(φµ, φν), µ, ν = 1, 2, · · · , d,

and the stiffness matrix B̂h associated with piecewise linear elements based on G
corresponding to (4.2) is given by

(4.6) B̂h(µ, ν) = b1(ψµ, ψν), µ, ν = 1, 2, · · · , d.

Denote M̂N and M̂h by mass matrices with respect to {φµ}d
µ=1 and {ψµ}d

µ=1 respec-
tively, that is, µ, ν = 1, 2, · · · , d,

(4.7) M̂N (µ, ν) = (φµ, φν), M̂h(µ, ν) = (ψµ, ψν).

Since all the stiffness and mass matrices are symmetric and positive definite, the
preconditioned matrix below also has all positive real eigenvalues.

Theorem 4.1. For every U = (u1, u2, · · · , ud)T , we have

(B̂hU,U) ∼ (L̂NU,U), and (M̂hU,U) ∼ (M̂NU,U).

Hence, the eigenvalues of the preconditioned matrix B̂−1
h L̂N has all positive real eigen-

values {λµ}d
µ=1 independent of mesh sizes hj and degrees Nj of polynomials, that is,

there is absolute positive constants c and C such that

(4.8) 0 < c ≤ λµ ≤ C < ∞.

Proof. Let u(t) ∈ Vh,m
Nj

be represented as u(t) =
∑d

µ=1 uµψ(t). Then its piecewise

polynomial interpolation can be written as (Ih
Nj

u)(t) =
∑d

µ=1 uµφ(t). The definitions
of bilinear forms yield that

(L̂NU,U) = l1(Ih
Nj

u, Ih
Nj

u) ∼ ‖Ih
Nj

u‖21, (B̂NU,U) = b1(u, u) ∼ ‖u‖21,
and

(M̂NU,U) = (Ih
Nj

u, Ih
Nj

u) = ‖Ih
Nj

u‖2, and (M̂hU,U) = (u, u) = ‖u‖2.
Then using Theorem 3.3 and 3.5 completes the proofs.

For actual computations, the bilinear form l1(Ih
Nj

u, Ih
Nj

v) and (Ih
Nj

u, Ih
Nj

v) will

be calculated at LGL points. Define two matrices L̃N and M̃N as

(4.9) L̃N (µ, ν) = l1,N (φµ, φν), M̃N (µ, ν) = 〈φµ, φν〉N ,
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where

(4.10) l1,N (u, v) = a1〈u′, v′〉N + a2〈u, v〉N .

Note that M̃N is the diagonal matrix which consists of LGL weights, that is

(4.11) M̃N = diag(ρt
j,k)

and the equivalence of numerical quadrature leads to

(4.12) (L̂NU,U) ∼ (L̃NU,U), and (M̂NU,U) ∼ (M̃NU,U)

and these matrices L̃N and M̃N are symmetric and positive definite.
Corollary 4.2. The eigenvalues of the preconditioned matrix B̂−1

h L̃N has all
positive real eigenvalues {λµ}d

µ=1 independent of mesh sizes hj and degrees Nj of
polynomials, that is, there is absolute positive constants c and C such that

(4.13) 0 < c ≤ λµ ≤ C < ∞.

Proof. Let U = (u1, u2, · · · , ud)T be any nonzero vector. Since

(L̃NU,U)

(B̂hU,U)
=

(L̃NU,U)

(L̂NU,U)

(L̂NU,U)

(B̂hU,U)
,

using the min-max theorem, Theorem 4.1 and (4.12) we have the conclusion. This ar-
gument completes the proof because all involved matrices are symmetric and positive
definite.

We now turn to two dimensional case. For this, we consider the model elliptic
operator L such that

(4.14) Lu = −[uxx + uyy] + 2u, u = 0 on ΓD, n · ∇u = 0 on ΓN ,

where ΓD is the boundary described in (1.4), which leads to the bilinear form

(4.15) l(u, v) = (∇u,∇v) + 2(u, v), for u, v ∈ H1
D(Ω),

where

H1
D(Ω) := {u ∈ H1(Ω) |u = 0 on ΓD}.

Let

[Ph,m
N ]2 := Ph,m

Nx
j
⊗ Ph,m

Ny
j

, [Vh,m
N ]2 := Vh,m

Nx
j
⊗ Vh,m

Ny
j

.

Let us order the LGL points by horizontal lines and we list all LGL points {ΞP }d2

P=1

as

ΞP = (ξµ, ξν), where P = µ + d(ν − 1), µ, ν = 1, 2, · · · , d,

where d is defined in (4.4). Accordingly, we order the basis vectors ΦP (x, y) ∈ [Ph,m
N ]2

and ΨP (x, y) ∈ [Vh,m
N ]2 in the same order. Let L̂s

N2 and B̂s
h2 be the stiffness matrices
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induced by (4.15) on the space [Ph,m
N ]2 and [Vh,m

N ]2 respectively. From now on, assume
that

ai = bi = 1, i = 1, 2

in the operators L1 and B1 in (4.1) and (4.2). Then using the one dimensional stiffness
matrices L̂Nt

j
, B̂ht

j
and mass matrices M̂Nt

j
, M̂ht

j
, we have

L̂s
N2 = M̂Ny

j
⊗ L̂Nx

j
+ L̂Ny

j
⊗ M̂Nx

j
,(4.16)

B̂s
h2 = M̂hy

j
⊗ B̂hx

j
+ B̂hy

j
⊗ M̂hx

j
.(4.17)

Lemma 4.3. For every vector U = (u1, · · · , ud2)T , we have

(4.18)
(
(M̂Ny

j
⊗ L̂Nx

j
)U,U

)
∼

(
(M̂hy

j
⊗ B̂hx

j
)U,U

)

and

(4.19)
(
(L̂Ny

j
⊗ M̂Nx

j
)U,U

)
∼

(
(B̂hy

j
⊗ M̂hx

j
)U,U

)
.

Proof. First note that all the matrices here are symmetric and positive defi-
nite. Hence it is enough to estimate (4.18) and (4.19) in terms of eigenvalues. Now
because of Theorem 4.1 the conclusions (4.18) and (4.19) can be verified by follow-
ing Lemma 5.4 in [11]. The details are as follows: Let U1 = (u1, u2, · · · , ud)T and
V 1 = (v1, v2, · · · , vd)T . Theorem 4.1 implies that

(4.20) (L̂Nt
j
U1, U1) ∼ (B̂ht

j
U1, U1), (M̂Nt

j
V 1, V 1) ∼ (M̂ht

j
V 1, V 1), where t = x, y.

Now consider eigenvalue problems

(4.21) L̂Nt
j
U1 = κB̂ht

j
U1, and M̂Nt

j
V 1 = λM̂ht

j
V 1.

From (4.20) we know that κ and λ are uniformly bounded in terms of mesh sizes hx
j , hy

j

and degrees Nx
j , Ny

j . Note that each in (4.21) has a complete set of eigenvectors U1
µ

and V 1
ν , µ, ν = 1, · · · , d. Therefore the vectors and eigenvalues

Zµν = U1
µ ⊗ V 1

ν , Xµν = V 1
ν ⊗ U1

µ, Λµν = κµλν

are complete set of eigenvectors and eigenvalues of the eigenvalue problem

(M̂Ny
j
⊗ L̂Nx

j
)U = Λ(M̂hy ⊗ B̂hx)U, and (L̂Ny

j
⊗ M̂Nx

j
)U = Λ(B̂hy ⊗ M̂hx)U.

Hence one can see the uniform bounds of eigenvalues Λµν because of the uniform
bounds of κ and λ in terms of mesh sizes hx

j , hy
j and degrees Nx

j , Ny
j .

Proposition 4.4. For every U = (u1, · · · , ud2)T , it follows that

(4.22) (B̂s
h2U,U) ∼ (L̂s

N2U,U).

Hence the eigenvalues of (B̂s
h2)−1L̂s

N2 are all positive and bounded. The bounds are
independent of the mesh sizes hx

j , hy
j and the degrees Nx

j , Ny
j of polynomials.
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Proof. It follows from Lemma 4.3 with (4.16) and (4.17).

For actual computations of (4.15), that is, for computations of L̂s
N2 , we use LGL

quadrature formula. For this, consider

(4.23) lN (u, v) = 〈∇u,∇v〉N + 〈u, v〉N ,

which can be written as, for u, v ∈ [Ph,m
N ]2

(4.24) lN (u, v) = V T (M̃Ny
j
⊗ L̃Nx

j
+ L̃Ny

j
⊗ M̃Nx

j
)U

where the vectors U = (u1, · · · , ud2)T and V = (v1, · · · , vd2)T are vector representa-
tions of

u(x, y) =
d2∑

P=1

uP ΦP (x, y) and v(x, y) =
d2∑

P=1

vP ΦP (x, y).

Now we will use the matrix B̂s
h2 in (4.17) as the preconditioner for

(4.25) L̃s
N2U = F

where

(4.26) L̃s
N2 := M̃Ny

j
⊗ L̃Nx

j
+ L̃Ny

j
⊗ M̃Nx

j
.

Then we can show that the eigenvalues of (B̂s
h2)−1L̃s

N2 are bounded well in terms
of mesh sizes hx

j , hy
j and degrees Nx

j , Ny
j .

Lemma 4.5. For every vector U = (u1, · · · , ud2)T , we have

(4.27) ((M̃Ny
j
⊗ L̃Nx

j
)U,U) ∼ ((M̂hy

j
⊗ B̂hx

j
)U,U)

and

(4.28) ((L̃Ny
j
⊗ M̃Nx

j
)U,U) ∼ ((B̂hy

j
⊗ M̂hx

j
)U,U).

Proof. Recall that A⊗B is symmetric and positive definite if the matrices A and
B are symmetric, positive definite. Note that

((M̃Ny
j
⊗ L̃Nx

j
)U,U)

((M̂hy
j
⊗ B̂hx

j
)U,U)

=
((M̃Ny

j
⊗ L̃Nx

j
)U,U)

((M̂Ny
j
⊗ L̂Nx

j
)U,U)

((M̂Ny
j
⊗ L̂Nx

j
)U,U)

((M̂hy
j
⊗ B̂hx

j
)U,U)

,

and

((L̃Ny
j
⊗ M̃Nx

j
)U,U)

((B̂hy
j
⊗ M̂hx

j
)U,U)

=
((L̃Ny

j
⊗ M̃Nx

j
)U,U)

((L̂Ny
j
⊗ M̂Nx

j
)U,U)

((L̂Ny
j
⊗ M̂Nx

j
)U,U)

((B̂hy
j
⊗ M̂hx

j
)U,U)

.

Therefore, due to min-max theorem and Lemma 4.3, it is enough to show that

(4.29)
((M̃Ny

j
⊗ L̃Nx

j
)U,U)

((M̂Ny
j
⊗ L̂Nx

j
)U,U)

, and
((L̃Ny

j
⊗ M̃Nx

j
)U,U)

((L̂Ny
j
⊗ M̂Nx

j
)U,U)
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are bounded independently of degrees Nx
j , Ny

j and mesh sizes hx
j , hy

j . Due to (4.12),
this can be done by following the similar arguments of Lemma 4.3. These arguments
complete the proof.

Theorem 4.6. For every vector U = (u1, · · · , ud2)T , it follows that

(4.30) (B̂s
h2U,U) ∼ (L̃s

N2U,U).

Hence the eigenvalues of (B̂s
h2)−1L̃s

N2 are all positive and bounded. The bounds are
independent of the mesh sizes hx

j , hy
j and the degrees Nx

j Ny
j .

Proof. It comes from (4.26) and (4.17) and Lemma 4.5

5. Case of variable coefficients: 2D.

Consider the bilinear form corresponding to (1.1) and (1.2) as

(5.1) lp(u, v) = (p(x, y)∇u,∇v) + (q(x, y)u, v) for u, v ∈ H1
D(Ω).

As suggested in [4], by expanding the coefficients p(x, y) and q(x, y) in terms of 2D

tensor Lagrange basis, we approximate (5.1) on the space [Ph,m
N ]2 by

(5.2) lp,N (u, v) = 〈p(x, y)∇u,∇v〉N + 〈q(x, y)u, v〉N , u, v ∈ [Ph,m
N ]2.

With the differentiation matrix D at LGL points (see [4] for example) and diagonal
matrices

(5.3) P := diag(pα := pµν), Q := diag(qα := qµν), α = µ + d(ν − 1),

the matrix representation of (5.2) used in [4] is

L̃N2 := (ENy
j
⊗ D̃T

Nx
j
)W̃P

N (ENy
j
⊗ D̃Nx

j
) + (D̃T

Ny
j
⊗ ENx

j
)W̃P

N (D̃Ny
j
⊗ENx

j
),(5.4)

+ WQ
N

where ENt
j

is the identity matrix of order d

W̃S
N := S(M̃Ny

j
⊗ M̃Nx

j
), where S = P or Q.(5.5)

Note that the matrix W̃S
N is diagonal whose elements are positive because the matrices

S(= P, Q) and (M̃Ny
j
⊗ M̃Nx

j
) are diagonal with positive elements. Further if the

matrix P is identity and the matrix Q is 2E, then the matrix L̃N2 is the same as L̃s
N2

in (4.26) with

L̃Nt
j

= D̃T
Nt

j
M̃Nt

j
D̃Nt

j
, t = x, y.

Lemma 5.1. For any vector U = (u1, · · · , ud2)T , it follows that

(ENy
j
⊗ D̃T

Nx
j
)W̃P

N (ENy
j
⊗ D̃Nx

j
) ∼ (ENy

j
⊗ D̃T

Nx
j
)(M̃Ny

j
⊗ M̃Nx

j
)(ENy

j
⊗ D̃Nx

j
)(5.6)

(D̃T
Ny

j
⊗ ENx

j
)W̃P

N (D̃Ny
j
⊗ ENx

j
) ∼ (D̃T

Ny
j
⊗ ENx

j
)(M̃Ny

j
⊗ M̃Nx

j
)(D̃Ny

j
⊗ ENx

j
)(5.7)

W̃Q
N ∼ 2(M̃Ny

j
⊗ M̃Nx

j
),(5.8)
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where the matrix equivalence A ∼ B should be understood as

(AU,U) ∼ (BU,U).

Proof. Note that the variable coefficients p(x, y) and q(x, y) are positive bounded
functions and the matrices W̃S

Nys and (M̃Ny
j
⊗ M̃Nx

j
) are diagonal with positive ele-

ments. Hence for any vector U it follows immediately that

(5.9)
(
W̃S

NU,U
)
∼

(
(M̃Ny

j
⊗ M̃Nx

j
)U,U

)
, where S = P, Q.

This argument complete (5.8). Let V = (ENy
j
⊗ D̃Nx

j
)U . Since

(
(ENy

j
⊗ D̃T

Nx
j
)W̃P

N (ENy
j
⊗ D̃Nx

j
)U,U

)
=

(
W̃P

N V, V
)
,

we have the conclusion (5.6) with help of (5.9). The similar arguments complete (5.7).

The main goal of this section is to show that the eigenvalues of the preconditioned
matrix

(B̂s
h2)−1L̃N2

are real and bounded as follows.
Theorem 5.2. For any vector U = (u1, · · · , ud2)T , we have

(5.10) (B̂s
h2U,U) ∼ (L̃N2U,U).

In the sense of eigenvalues, it follows that all eigenvalues of the matrix (B̂s
h2)−1L̃N2

are real positive and bounded. The bounds are independent of the mesh sizes hx
j , hy

j

and the degrees Nx
j , Ny

j of piecewise polynomials.
Proof. Note that

(ENy
j
⊗ D̃T

Nx
j
)(M̃Ny

j
⊗ M̃Nx

j
)(ENy

j
⊗ D̃Nx

j
) = M̃Ny

j
⊗ L̃Ny

j

and

(D̃T
Ny

j
⊗ENx

j
)(M̃Ny

j
⊗ M̃Nx

j
)(D̃Ny

j
⊗ ENx

j
) = L̃Ny

j
⊗ M̃Ny

j
.

Therefore, using Lemma 5.1 one may see that

(L̃N2U,U) ∼ (L̃s
N2U,U).

From Theorem 4.6,

(L̃s
N2U,U) ∼ (B̂s

h2U,U).

These arguments complete the proof.
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Figure 1. Condition numbers of B̂−1
h L̃N according to γ

6. Computational results. Because there are numerical results reported
already in [8], we discuss a few numerical experiments of one dimensional problem.
Consider

(6.1) Lu = −(p(x)u′)′ + q(x)u, x ∈ (0, 1)

with boundary conditions u(0) = u(1) = 0. Let us take the preconditioner operator
B as

(6.2) Bu = −u′′ + γu, x ∈ (0, 1)

with same homogeneous Dirichlet boundary conditions where γ will be taken later.
In the following numeric tests, the uniform mesh size h = hx

j and uniform degree
N = Nx

j for j = 1, · · · ,Mx are used.

Example 1. With a chosen p(x) = 1 + x2 and q(x) = ex in (6.1), we discuss
the optimal preconditioning operator (6.2) by considering several γ. We will take
γ = k × 0.1 where k is an integer between −5 and 8. The Figure 1 shows that the
condition number of the preconditioned matrix B̂−1

h L̃N becomes small relatively if
we choose γ near at 0 among other γ’s. These phenomena were pointed out in [9] if
(6.1) is discretized by a finite difference scheme, that is to say, γ may be chosen by
considering the advection coefficient in (6.1). Hence one may choose γ = 0 in this
case.

Example 2. Stimulated the numerical results in Example 1, we will take γ = 0
for the preconditioner operator B while p(x) = q(x) = 1 in (6.1) are taken. The
condition numbers of the matrix L̂N are shown in Figure 2 for various mesh sizes and
degrees of polynomials. Then we enumerate condition numbers of the preconditioned
matrix B̂−1

h L̃N in Figure 2 also, which shows that the condition numbers can be fixed
for mesh sizes and degrees of polynomials. We point out that the condition numbers
glow as h−2 for a fixed degree of polynomial and O(N3) for a fixed mesh size. These
also can be proven in a standard finite element theory and in spectral methods(see
[1]). These phenomena are depicted in Figure 3.

7. Conclusion. As we have shown that the condition numbers of the pre-
conditioned systems are well bounded, it is possible to find multigrid algorithms for
solving elliptic boundary value problems with high-order discretizations based on LGL
quadrature nodes. As an immediate application, one may apply the techniques here
to a first-order system of least-squares for an elliptic problem whose systems are found
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in [2] combining the results here and [11] (for example, one may refer to [10]). In order
to avoid the irregular nodes of LGL, one may use Chebyshev-Gauss-Lobatto nodes
for discretizations which has a nested property. This case will be dealt in a coming
paper.
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