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Preliminaries

Suppose a real-valued function φ ∈ L2(R) satisfies the
following conditions:

(a) φ̂(ω) = m0(ω/2)φ̂(ω/2), where m0 is an essentially bounded
2π-periodic function; and

(b) limω→0 φ̂(ω) = 1; ⇒ φ̂(ω) =
∏∞
j=1m0(ω/2j),

then the function φ is called refinable or scaling, m0 is called a
symbol of φ, and the relation in item (a) is called a refinement
equation.
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Preliminaries

Every refinable function generates multiresolution analysis
(MRA) of the space φ ∈ L2(R), i.e., a nested sequence

· · · ⊂ V −1 ⊂ V 0 ⊂ V 1 ⊂ · · · ⊂ V j ⊂ · · ·

of closed linear subspaces of φ ∈ L2(R) such that:

(a)
⋂
j∈Z V

j = ∅;

(b)
⋃
j∈Z V

j = L2(R); and

(c) f(x) ∈ V j ⇔ f(2x) ∈ V j+1.
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Preliminaries

If we denote by W j the orthogonal complement of the space V j

in V j+1, then the function ψ (which is called a wavelet), defined
by the relation

ψ̂(ω) := mψ(ω/2)φ̂(ω/2)

where mψ(ω) = eiωmφ(ω + π), generates an orthonormal basis
{ψ(x− k)}k∈Z of the space W 0. Thus, the system

{2j/2ψ(2jx− k)}j,k∈Z

constitutes an orthonormal basis of the space L2(R).
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The problem of finding orthonormal wavelet bases, generated
by a scaling function, can be reduced to solving the matrix
equation

M(ω)M∗(ω) = I,

where

M(ω) =
(

m0(ω) m1(ω)
m0(ω + π) m1(ω + π)

)
,

m0(ω), m1(ω) are essentially bounded functions, and
m0(−ω) = m0(ω).
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Preliminaries

A frame in a Hilbert space H is a family of its elements {fk}k∈Z
such that, for any f ∈ H,

A‖f‖2 ≤
∑
k∈Z

|〈f, fk〉|2 ≤ B‖f‖2,

where optimal A and B are called frame constants. If A = B,
the frame is called a tight frame.
In the case when a tight frame has unit frame constants (e.g., if
it is an orthonormal basis) for any function f ∈ L2(R), the
expansion

f =
∑
n∈Z

〈fn, f〉fn

is valid.
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Preliminaries

Let φ be a refinable function with m0, ψ̂k(ω) = mk(ω/2)φ̂(ω/2),
where each symbol mk is a 2π-periodic and essentially
bounded function for k = 1, 2, . . . , n.
It is well-known (A.Ron and Z.Shen, 1997) that for constructing
tight frames with the property

M(ω)M∗(ω) = I (1)

the matrix

M(ω) =
(

m0(ω) m1(ω) · · · mn(ω)
m0(ω + π) m1(ω + π) · · · mn(ω + π)

)
plays an important role.
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Theorem 1

If (1) holds, then the functions {ψ1, ψ2, . . . , ψn} generate a tight
frame of L2(R).

Theorem 2 [Chui(2000) and Petukhov (2001)]

Equation M(ω)M∗(ω) = I has a solution if and only if

|m0(ω)|2 + |m0(ω + π)|2 6 1(a.e.). (2)
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M̃(ω) := Mψ(ω)M∗
ψ(ω) =

(
1− |m0(ω)|2 −m0(ω)m0(ω + π)

−m0(ω)m0(ω + π) 1− |m0(ω + π)|2

)
,

where

Mψ(ω) =
(

m1(ω) m2(ω) · · · mn(ω)
m1(ω + π) m2(ω + π) · · · mn(ω + π)

)
.

Let us introduce the diagonal matrix Λ(ω) with eigenvalues of
the matrix M̃(ω) on the diagonal and the matrix P (ω) whose
columns are the corresponding eigenvectors. Then

Λ(ω) =
(

1 0
0 1− |m0(ω)|2 − |m0(ω + π)|2

)
.
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Theorem 3 [Petukhov (2001)]

Let a 2π-periodic function m0(ω) satisfy (2). Then there exists a
pair of 2π-periodic measurable functions m1, m2 which satisfy
(1) for n = 2. Any solution of (1) can be represented in the form
of the first row of the matrix

Mψ(ω) = P (ω)D(ω)Q(ω),

where D(ω) is a diagonal matrix, D(ω)D(ω) = Λ(ω), and Q(ω)
is an arbitrary unitary (a.e.) matrix with π-periodic measurable
components.
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Theorem 4 [Chui(2000) and Petukhov (2001)]

Let a trigonometric polynomial m0(ω) of degree n satisfy (2).
Then there exists a pair of trigonometric polynomials m1, m2 of
degree at most n that satisfies (1).

Theorem 5 [Chui(2000)]

For any refinable function φ with a polynomial symbol m0 there
are three (anti)symmetric functions m1, m2, m3, providing a
solution to (1).
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Symmetric condition

In what follows, the Hk(z) are specified by the z-transform of
the symbols mk(ω), i.e., Hk(eiω) := mk(ω).

Theorem 6 [Petukhov(2003)]

Let H0(z) be a symmetric Laurent polynomial of degree n,
satisfying (2). Then two (anti)symmetric solutions to (1) exist if
and only if all roots of the Laurent polynomial

H(z) := 1−H0(z)H0(1/z)−H0(−z)H0(−1/z)

have even multiplicity.
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Corollary 1

Corollary 1

For the refinable functions Bn two (anti)symmetric solutions
exist for n = 1, 2, 3, 7 and do not exist for other n.

Corollary 2

An interpolatory symbol H0 admits (anti)symmetric solutions to
(1) if and only if H0(z) = (z1−2N + 2 + z2N−1)/4.

Myungjin Choi Construction of Framelets and their Applications



General framelets
Filter Design
Applications

Summary

Preliminaries
Symmetric framelets

Corollary 1

Corollary 1

For the refinable functions Bn two (anti)symmetric solutions
exist for n = 1, 2, 3, 7 and do not exist for other n.

Corollary 2

An interpolatory symbol H0 admits (anti)symmetric solutions to
(1) if and only if H0(z) = (z1−2N + 2 + z2N−1)/4.

Myungjin Choi Construction of Framelets and their Applications



General framelets
Filter Design
Applications

Summary

Symmetric framelets with two generators
Symmetric framelets with three generators

Outline

1 General framelets
Preliminaries
Symmetric framelets

2 Filter Design
Symmetric framelets with two generators
Symmetric framelets with three generators

3 Applications
Image Denoising
Image Fusion

Myungjin Choi Construction of Framelets and their Applications



General framelets
Filter Design
Applications

Summary

Symmetric framelets with two generators
Symmetric framelets with three generators

Symmetric framelets with two generators [Selesnick
(2004)]

Hk(z) :=
∑
n

hk(n)z−n.

Let h0,h1,h2 be three filters where the lowpass filter h0(n) is
symmetric, the filters h1(n) and h2(n) are each either
symmetric or antisymmetric, and h2(n) is a time-reversed
version of h1(n). That is,

h0(n) = h0(N − 1− n), h2(n) = h1(N − 1− n). (3)
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Symmetric framelets with two generators

Lemma 1 [Selesnick (2004)]

The filters {h0, h1, h2} with symmetries (3) satisfy the
paraunitary condition if their polyphase components are given
by

H0e(z) = z−N/2
√

2A(z)B(1/z),

H1e(z) = A2(z),

H1o(z) = −B2(z),

where A(z) and B(z) satisfy A(z)A(1/z) +B(z)B(1/z) = 1.
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Symmetric framelets with two generators

Our construction of h0(n) will be based on the maximally-flat
lowpass even-length FIR filter, which has the following transfer
function:

FM,L(z) =

1
2
(1 + z−1)(

z + 2 + z−1

4
)M

L∑
n=0

(
M + n− 0.5

n

) (
−z + 2− z−1

4

)n

.

If
√

2F (M,L)(z) is used as a scaling filter H0(z) then each
wavelet will have at least L+ 1 vanishing moments. This is
because 1− F (M,L)(z)F (M,L)(1/z) has (1− z)2L+2 as a factor.
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Symmetric framelets with two generators

Unfortunately, setting H0(z) := F (M,L)(z) gives an H0(z) that
does not satisfy the condition of Thm.6. That is,
1− 2H0e(z)H0e(1/z) will not have roots of even degree.

However, by using a linear combination of various F (M,L)(z),
we can obtain a filter H0(z) that does satisfy the condition of
Thm.6. For example, if we set

H0(z) = z−4
√

2(αF (2,1)(z) + (1− α)F (3,1)(z)),

then for special values of α, H0(z) satisfy the condition of
Thm.6.
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Symmetric framelets with two generators

U2(z) = 1−H0e(z)H0e(1/z),
where U(z) = H1e(z)H1e(1/z)−H1o(z)H1o(1/z).

U(z) =A2(z)A2(1/z)−B2(z)B2(1/z)
=[A(z)A(1/z) +B(z)B(1/z)][A(z)A(1/z)−B(z)B(1/z)]
=A(z)A(1/z)−B(z)B(1/z)
=2A(z)A(1/z)− 1
=1− 2B(z)B(1/z)

so
A(z)A(1/z) = 0.5 + 0.5U(z)
and
B(z)B(1/z) = 0.5− 0.5U(z).
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Plot the scaling function and wavelets
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The fast framelet transform
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Symmetric framelets with three generators

φ(t) =
√

2
∑
n

h0(n)φ(2t− n)

ψi(t) =
√

2
∑
n

hi(n)φ(2t− n), i = 1, 2, 3.

Define φk(t) := φ(t− k) , ψi,j,k(t) := 2j/2ψi(2jt− k), i = 1, 2, 3.

f(t) =
∞∑

k=−∞
c(k)φk(t) +

3∑
i=1

∞∑
j=0

∞∑
k=−∞

di(j, k)ψi,j,k(t),

c(k) =
∫
f(t)φk(t)dt

di(j, k) =
∫
f(t)ψi,j,k(t)dt, i = 1, 2, 3.
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The overcomplete filter bank

Take
ψ3(t) = ψ2(t− 0.5)

or equivalently
h3(n) = h2(n− 1).

Implementation of discrete transform uses the filter bank:
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The sampling of the time-frequency plane
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Perfect reconstruction conditions

Y (z) = 0.5[H0(z)X(z) +H0(−z)X(−z)]H0(1/z)
+ 0.5[H1(z)X(z) +H1(−z)X(−z)]H1(1/z) +H2(z)H2(1/z)X(z).

Rearranging,

Y (z) =[0.5H0(z)H0(1/z) + 0.5H1(z)H1(1/z) +H2(z)H2(1/z)]X(z)
+ [0.5H0(−z)H0(1/z) + 0.5H1(−z)H1(1/z)]X(−z).
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Perfect reconstruction conditions

Therefore, for perfect reconstruction(PR), we need

H0(z)H0(1/z) +H1(z)H1(1/z) + 2H2(z)H2(1/z) = 2,
H0(−z)H0(1/z) +H1(−z)H1(1/z) = 0.

Define H1(z) = zH0(−1/z).

Then, we have

H1(−z)H1(1/z) = (−z)H0(1/z)(1/z)H0(−z)
= −H0(−z)H0(1/z)

=⇒ Second PR condition is satisfied!
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Perfect reconstruction conditions

Now we have only to find H2(z) so as to satisfy the first PR
condition.

2H2(z)H2(1/z) = 2−H0(z)H0(1/z)−H1(z)H1(1/z)
= A(z).

In summary we have

H1(z) = zH0(−1/z)

H2(z) =
√
A(z)/2

H3(z) = zH2(z).
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Plot the scaling function and wavelets
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1D Signal Denoising

Myungjin Choi Construction of Framelets and their Applications



General framelets
Filter Design
Applications

Summary

Image Denoising
Image Fusion

2D Image Denoising
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Why is image fusion important?

Technical limitations
The incoming radiation energy to the
sensor

The data volume collected by the sensor

On-board storage capacity

Data transmission rates from platform to

GS
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Why is image fusion important?

Effective fusion technique is a useful tool to

Increase the ability of humans to interpret the image

Improve the accuracy of the satellite image classification

Give a visually beautiful color image

Provide solution for GIS-based applications.
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Standard method of image fusion

Two Points
1 how to extract the spatial information from panchromatic

high-resolution image,
2 how to inject the extracted spatial information into the

multispectral images.
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Two Steps

1 Decompose only the panchromatic image to n resolution levels,

PAN =
n∑

l=1

WPl
+ PANr.

2 Replace PANr by the R, G, and B bands of the multispectral images and
perform the inverse wavelet transform.

F (R) =
n∑

l=1

WPl
+R

F (G) =
n∑

l=1

WPl
+G

F (B) =
n∑

l=1

WPl
+B
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Test Set : IKONOS Imagery
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Comparative Analysis
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Quantitative Analysis

Spatial Quality : Zhou et al.
To evaluate the detailed spatial information, a procedure proposed by Zhou et al. is
used. In this procedure, the PAN and fusion result are filtered by a Laplacian filter as
follows: ∣∣∣∣∣∣

−1 −1 −1
−1 8 −1
−1 −1 −1

∣∣∣∣∣∣
The high correlation coefficients between the fusion result and the PAN filtered image
indicate that most of the spatial information of the PAN image was incorporated during
the fusion process.
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Quantitative Analysis

Spectral Quality : Q4
Let Z1 = a1 + ib1 + jc1 + kd1 and Z2 = a2 + ib2 + jc2 + kd2 denote the four-band
original MS image and the fusion result, respectively, both expressed as quaternions.

Q4 =
|σZ1Z2 |
σZ1 · σZ2

·
2σZ1 · σZ2

σ2
Z1

+ σ2
Z2

·
2|Z̄1| · |Z̄2|
|Z̄1|2 + |Z̄2|2

.

The first one is the modulus of the hypercomplex CC between Z1 and Z2 and is
sensitive both to loss of correlation and to spectral distortion between the two MS
datasets.
The second and third terms, respectively, measure contrast changes and mean bias on
all bands simultaneously.
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Quantitative Analysis
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Visual Analysis

Original image
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Visual Analysis
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Present two types of overcomplete DWT.

To evaluate the 2X/3X overcomplete DWT I have used it for
signal/image denoising and image fusion, and then compared it
with the critically-sampled DWT.

The 2X/3X overcomplete DWT is nearly shift-invariant and
avoids some of the artifacts that arise when the critically-
sampled DWT is used for signal/image denoising and image
fusion.

The 2X/3X overcomplete DWT both provide significant
performance gains in signal/image denoising and image fusion.
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