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The Problem

Given p, q ∈ R
2 & discs C1, · · · , Cn:

Determine exactly the shortest path from p to q avoiding Ci’s.
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Seemingly a typical problem in computational geometry – feasible
paths.

Non-algebraic, but turns out to be decidable.
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Constructive Root Bounds:

General Form: For 0 6= α ∈ C, p(x) ∈ Z[x],
p(α) = 0 ⇒ |α| > F (p), F : effective.

Possible to determine whether a given algebraic number is zero or not, from finite
number of digits. (# digits can be determined a priori.) ⇒ Bit Complexity

Not known for general transcendental numbers.
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Algebraic Problems

Definition

α ∈ C is algebraic, if p(α) = 0 for some nontrivial p ∈ Z[x].

α ∈ C is transcendental, if α is not transcendental.

Algebraic Problems: Decidable through the zero problem of an algebraic number, given
algebraic inputs.

E.g. Given a line l : ax + by + c = 0 and a circle C : (x − d)2 + (y − e)2 = r2

with algebraic inputs a, b, c, d, e, r, determine the relation between them.
⇒ Compute the discriminant which is algebraic.
⇒ The problem is algebraic.

Exact Geometric Computation:

Possible to determine whether a given algebraic number is zero or not, from finite
number of digits. (# digits can be determined a priori.) ⇒ Bit Complexity

Not known for general transcendental numbers.

Our problem turns out to be one of the first (nontrivial) nonalgebraic example amenable to
EGC approach.



Exact Geometric Computation

Most successful approach to numerical non-robustness

Tools: constructive root bounds, digraph representation, etc.

Combines symbolic manipulation and numerical computation: fast and exact

Softwares: LEDA, CGAL, Core Library

Challenge: non-algebraic problems
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Overall Approach

Find Feasible Paths: µ = µ1; µ2; · · · ; µk

Alternating between line segment and circular arc

Boundary points are algebraic.

Sum up the lengths of







line segments:
√

(· − ·)2 + (· − ·)2

circular arcs: r · θ

Apply Dijkstra’s Algorithm:

Compute a combinatorial (weighted) graph G = (V, E), where vertices V : discs &
edges E: joining two discs.

O(n2 log n), where n: # discs

⇒ Need to compare the lengths of two feasible paths.



Input of the Problem

Input:

Two end points: p = (px, py), q = (qx, qy)

Centers: cn = (cx
n, cy

n) for 1 ≤ n ≤ N

Radii: rn for 1 ≤ n ≤ N



Input of the Problem

Input:

Two end points: p = (px, py), q = (qx, qy)

Centers: cn = (cx
n, cy

n) for 1 ≤ n ≤ N

Radii: rn for 1 ≤ n ≤ N

Type:

In general: algebraic inputs

In our case: assume rn’s are rationally related, i.e., rn/rm ∈ Q, ∀m, n.

Relatively easy solution

Includes important special case: all inputs are rational

L-bit rational number: P/Q, where P , Q are L-bit integers. (|P |, |Q| < 2L)
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Comparison of Two Feasible Paths:

d(µ1) − d(µ2) → α + r1θ1 + · · · + rnθn α, ri: algebraic, θi: transcendental

⇒ The problem is non-algebraic!

E.g. Given a line l : ax + by + c = 0 and a circle C : (x − d)2 + (y − e)2 = r2 with algebraic
inputs a, b, c, d, e, r, determine the relation between them.

⇒ Compute the discriminant which is algebraic.
⇒ The problem is algebraic.
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Commensurable Radii

Lemma. If the radii ri are rationally related (or commensurable), then the difference of two
feasible paths can be systematically transformed into the form:

α + rθ,

where α, r, cos θ are algebraic and computable from the input.

Corollary. The problem is decidable when the radii are commensurable!
Why? ⇒ α + rθ = 0, iff α = 0 and θ = 0 (cos θ = 1 & |θ| < 2π ).

But How? ⇒ Sum up the arclengths into an arclength on one disc.

Directed Arc: A = [C, p, q, n]

C: disc (radius r & center)

p, q: the start and the end point

val(A) = rθ and θ = 2nπ +φ(p, q), where
−π < φ(p, q) < π is the directed angle of
the arc from p to q.

b
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Operations:
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Addition and Subtraction
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We have:

The results of normalization, negation, addition and subtraction is algebraic for any
algebraic input.

The result of scalar multiplication is algebraic, if the the radii are commensurable.

Can be shown using Chebyshev polynomial of the first kind Tn(x):

T0(x) = 1, T1(x) = x, and Tn+1(x) = 2xTn(x) − Tn−1(x), n ≥ 1

Tn(cos θ) = cos(nθ), n ≥ 1

How about the bit complexity? – How many digits are needed to compare the lengths of two
feasible paths? ⇒ Need a lower bound for |α + rθ| for algebraic α, r, cos θ.



Effective Bound from
Transcendental Number Theory

Theorem. (Waldschmidt) Let α, β ∈ C be nonzero algebraic numbers, and let log β be any
determination of the logarithm of β. Assume

D ≥ [Q(α, β) : Q], V ≥ max{h(β), | log β|/D, 1/D},
1 < E ≤ min{eDV , 4DV/| log β|}, V + = max{V, 1}.

Then we have

|α + log β| > exp{−235D3V (h(α) + log(EDV +))(log(ED))(log E)−2}.

Definition. α ∈ C: algebraic & p(x) = anxn + · · ·+ a1x + a0 ∈ Z[x]: its minimal polynomial

Degree: deg(α) := deg(p) = n

Absolute logarithmic height: h(α) := 1
deg(α)

log M(α)

Mahler measure: M(α) := |an|
∏n

i=1 max{1, |αi|}, where α1, · · · , αn are all the
conjugates of α.



Bit Complexity

Assume the input is L-bit rational numbers, and N is the number of discs.

View β = eiθ and α → iα ⇒ |α + log β| → |iα′ + iθ| = |α + rθ| (can assume r = 1).

Corollary. Let α, θ ∈ C be such that α, cos θ are nonzero algebraic numbers. Then

|α + θ| > exp{−235D3V (h(α) + log(EDV +))(log(ED))(log E)−2},

where D ≥ [Q(iα, eiθ) : Q], V ≥ max{h(eiθ), |θ|/D, 1/D},
1 < E ≤ min{eDV , 4DV/|θ|} V + = max{V, 1}.
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Assume the input is L-bit rational numbers, and N is the number of discs.

View β = eiθ and α → iα ⇒ |α + log β| → |iα′ + iθ| = |α + rθ| (can assume r = 1).

Corollary. Let α, θ ∈ C be such that α, cos θ are nonzero algebraic numbers. Then

|α + θ| > exp{−235D3V (h(α) + log(EDV +))(log(ED))(log E)−2},

where D ≥ [Q(iα, eiθ) : Q], V ≥ max{h(eiθ), |θ|/D, 1/D},
1 < E ≤ min{eDV , 4DV/|θ|} V + = max{V, 1}.

⇒ Various estimations gives: |α + θ| > exp (−LN · CLN ).

Theorem. The number of digits we need to expand to compare the lengths of two feasible
paths is LN · 2O(LN), where input is comprised of L-bit rational numbers and N is the
number of the discs.

⇒ Single Exponential in L and N !
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Finally...

Remarks:

Rare example of transcendental number theory giving positive computational result

c.f. Lyapunov’s work on theoretical mechanics

First combinatorially nontrivial non-algebraic problem to be shown to be decidable

Directions:

Determination of conventional computational complexity

Generalization to arbitrary algebraic input (esp. radii)

Exploration of other amenable non-algebraic problems

Thanks!
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