Shortest Path for Disc Obstacles with Rational Radii

Sung Woo Choi

swchoi@duksung.ac.kr

Department of Mathematics

Duksung Women's University

Joint work with:

Ee-Chien Chang, DoYong Kwon, Hyungju Park and Chee, K. Yap

Given $p, q \in \mathbb{R}^2$ & discs C_1, \dots, C_n :

Given $p, q \in \mathbb{R}^2$ & discs C_1, \dots, C_n :

Given $p, q \in \mathbb{R}^2$ & discs C_1, \dots, C_n :

Given $p, q \in \mathbb{R}^2$ & discs C_1, \dots, C_n :

Given $p, q \in \mathbb{R}^2$ & discs C_1, \dots, C_n :

Given $p, q \in \mathbb{R}^2$ & discs C_1, \dots, C_n :

Determine exactly the shortest path from p to q avoiding C_i 's.

Seemingly a typical problem in computational geometry – feasible paths.

Given $p, q \in \mathbb{R}^2$ & discs C_1, \dots, C_n :

- Seemingly a typical problem in computational geometry feasible paths.
- Non-algebraic, but turns out to be decidable.

$$\sqrt{2} + \sqrt{5 - 2\sqrt{6}}$$
 ?? $\sqrt{3}$

$$\sqrt{2} + \sqrt{5 - 2\sqrt{6}}$$
 ?? $\sqrt{3}$ \Rightarrow $\sqrt{2} + \sqrt{5 - 2\sqrt{6}} = 1.732050808...$ $\sqrt{3} = 1.732050808...$

$$\sqrt{2} + \sqrt{5 - 2\sqrt{6}}$$
?? $\sqrt{3}$ \Rightarrow $\sqrt{2} + \sqrt{5 - 2\sqrt{6}} = 1.732050808...$ $\sqrt{3} = 1.732050808...$

$$\sqrt{75025} + \sqrt{121393} + \sqrt{196418} + \sqrt{317811}$$

$$\sqrt{514229} + \sqrt{832040}$$

$$\sqrt{2} + \sqrt{5 - 2\sqrt{6}}$$
?? $\sqrt{3}$ \Rightarrow $\sqrt{2} + \sqrt{5 - 2\sqrt{6}} = 1.732050808...$ $\sqrt{3} = 1.732050808...$

$$\sqrt{75025} + \sqrt{121393} + \sqrt{196418} + \sqrt{317811} = 1629.259889...$$

$$\sqrt{514229} + \sqrt{832040} = 1629.259889...$$

$$\sqrt{2} + \sqrt{5 - 2\sqrt{6}}$$
 ?? $\sqrt{3}$ \Rightarrow $\sqrt{2} + \sqrt{5 - 2\sqrt{6}} = 1.732050808...$ $\sqrt{3} = 1.732050808...$

$$\sqrt{75025} + \sqrt{121393} + \sqrt{196418} + \sqrt{317811} = 1629.259888633142299848838800...$$

$$\sqrt{514229} + \sqrt{832040} = 1629.259888630189238404283301...$$

$$\sqrt{2} + \sqrt{5 - 2\sqrt{6}}$$
 ?? $\sqrt{3}$ \Rightarrow $\sqrt{2} + \sqrt{5 - 2\sqrt{6}} = 1.732050808...$ $\sqrt{3} = 1.732050808...$

$$\sqrt{75025} + \sqrt{121393} + \sqrt{196418} + \sqrt{317811} = 1629.259888633142299848838800...$$

$$\sqrt{514229} + \sqrt{832040} = 1629.259888630189238404283301...$$

- General Form: For $0 \neq \alpha \in \mathbb{C}$, $p(x) \in \mathbb{Z}[x]$, $p(\alpha) = 0 \Rightarrow |\alpha| > F(p)$, F: effective.
- Possible to determine whether a given algebraic number is zero or not, from finite number of digits. (# digits can be determined a priori.) ⇒ Bit Complexity
- Not known for general transcendental numbers.

Definition

- $m{\mathscr{D}} \quad \alpha \in \mathbb{C}$ is *algebraic*, if $p(\alpha) = 0$ for some nontrivial $p \in \mathbb{Z}[x]$.
- \bullet $\alpha \in \mathbb{C}$ is *transcendental*, if α is not transcendental.

Definition

- $m{\triangle}$ $\alpha \in \mathbb{C}$ is *algebraic*, if $p(\alpha) = 0$ for some nontrivial $p \in \mathbb{Z}[x]$.
- \bullet $\alpha \in \mathbb{C}$ is *transcendental*, if α is not transcendental.

Algebraic Problems: Decidable through the zero problem of an *algebraic* number, given *algebraic inputs*.

E.g. Given a line l: ax + by + c = 0 and a circle $C: (x - d)^2 + (y - e)^2 = r^2$ with algebraic inputs a, b, c, d, e, r, determine the relation between them.

- ⇒ Compute the discriminant which is *algebraic*.
- \Rightarrow The problem is algebraic.

Definition

- $m{\mathscr{D}} \quad \alpha \in \mathbb{C}$ is *algebraic*, if $p(\alpha) = 0$ for some nontrivial $p \in \mathbb{Z}[x]$.
- \bullet $\alpha \in \mathbb{C}$ is *transcendental*, if α is not transcendental.

Algebraic Problems: Decidable through the zero problem of an *algebraic* number, given *algebraic inputs*.

E.g. Given a line l: ax + by + c = 0 and a circle $C: (x - d)^2 + (y - e)^2 = r^2$ with algebraic inputs a, b, c, d, e, r, determine the relation between them.

- ⇒ Compute the discriminant which is *algebraic*.
- \Rightarrow The problem is algebraic.

Exact Geometric Computation:

- Possible to determine whether a given algebraic number is zero or not, from finite number of digits. (# digits can be determined a priori.) ⇒ Bit Complexity
- Not known for general transcendental numbers.

Definition

- $m{\triangle}$ $\alpha \in \mathbb{C}$ is *algebraic*, if $p(\alpha) = 0$ for some nontrivial $p \in \mathbb{Z}[x]$.
- \bullet $\alpha \in \mathbb{C}$ is *transcendental*, if α is not transcendental.

Algebraic Problems: Decidable through the zero problem of an *algebraic* number, given *algebraic inputs*.

E.g. Given a line l: ax + by + c = 0 and a circle $C: (x - d)^2 + (y - e)^2 = r^2$ with algebraic inputs a, b, c, d, e, r, determine the relation between them.

- ⇒ Compute the discriminant which is *algebraic*.
- \Rightarrow The problem is algebraic.

Exact Geometric Computation:

- Possible to determine whether a given algebraic number is zero or not, from finite number of digits. (# digits can be determined a priori.) ⇒ Bit Complexity
- Not known for general transcendental numbers.

Our problem turns out to be one of the first (nontrivial) nonalgebraic example amenable to EGC approach.

Exact Geometric Computation

- Most successful approach to numerical non-robustness
- Tools: constructive root bounds, digraph representation, etc.
- Combines symbolic manipulation and numerical computation: fast and exact
- Softwares: LEDA, CGAL, Core Library
- Challenge: non-algebraic problems

Overall Approach

- ullet Find Feasible Paths: $\mu = \mu_1; \mu_2; \cdots; \mu_k$
 - Alternating between line segment and circular arc
 - Boundary points are algebraic.

Overall Approach

- Find Feasible Paths: $\mu = \mu_1; \mu_2; \cdots; \mu_k$
 - Alternating between line segment and circular arc
 - Boundary points are algebraic.
- Apply Dijkstra's Algorithm:
 - Compute a combinatorial (weighted) graph G=(V,E), where vertices V: discs & edges E: joining two discs.
 - $O(n^2 \log n)$, where n: # discs

Overall Approach

- Find Feasible Paths: $\mu = \mu_1; \mu_2; \cdots; \mu_k$
 - Alternating between line segment and circular arc
 - Boundary points are algebraic.
- Apply Dijkstra's Algorithm:
 - Compute a combinatorial (weighted) graph G=(V,E), where vertices V: discs & edges E: joining two discs.
 - $O(n^2 \log n)$, where n: # discs

⇒ Need to compare the lengths of two feasible paths.

Input of the Problem

Input:

- lacksquare Two end points: $p=(p^x,p^y)$, $q=(q^x,q^y)$
- Centers: $c_n = (c_n^x, c_n^y)$ for $1 \le n \le N$
- ightharpoonup Radii: r_n for $1 \le n \le N$

Input of the Problem

Input:

- lacksquare Two end points: $p=(p^x,p^y)$, $q=(q^x,q^y)$
- Centers: $c_n = (c_n^x, c_n^y)$ for $1 \le n \le N$
- ightharpoonup Radii: r_n for $1 \le n \le N$

Type:

- In general: algebraic inputs
- In our case: assume r_n 's are rationally related, i.e., $r_n/r_m \in \mathbb{Q}$, $\forall m, n$.
 - Relatively easy solution
 - Includes important special case: all inputs are rational
- ▶ L-bit rational number: P/Q, where P, Q are L-bit integers. ($|P|, |Q| < 2^L$)

$$d(\mu) = \sum_{i} d(\mu_i) = \sum_{i} \alpha_i + \sum_{j} \theta_j r_j$$

- $igspace \sum heta_j r_j$: length of circular arcs

$$d(\mu) = \sum_{i} d(\mu_i) = \sum_{i} \alpha_i + \sum_{j} \theta_j r_j$$

- $igspace \sum \alpha_i$: length of line segments \Rightarrow algebraic

Comparison of Two Feasible Paths:

 $d(\mu_1) - d(\mu_2) \rightarrow \alpha + r_1\theta_1 + \cdots + r_n\theta_n$ α, r_i : algebraic, θ_i : transcendental

$$d(\mu) = \sum_{i} d(\mu_i) = \sum_{i} \alpha_i + \sum_{j} \theta_j r_j$$

Comparison of Two Feasible Paths:

$$d(\mu_1) - d(\mu_2) \rightarrow \alpha + r_1\theta_1 + \cdots + r_n\theta_n$$
 α, r_i : algebraic, θ_i : transcendental

⇒ The problem is non-algebraic!

$$d(\mu) = \sum_{i} d(\mu_i) = \sum_{i} \alpha_i + \sum_{j} \theta_j r_j$$

- $\sum \theta_j r_j$: length of circular arcs

Comparison of Two Feasible Paths:

$$d(\mu_1) - d(\mu_2) \rightarrow \alpha + r_1\theta_1 + \cdots + r_n\theta_n$$
 α, r_i : algebraic, θ_i : transcendental

⇒ The problem is non-algebraic!

E.g. Given a line l: ax + by + c = 0 and a circle $C: (x - d)^2 + (y - e)^2 = r^2$ with algebraic inputs a, b, c, d, e, r, determine the relation between them.

- ⇒ Compute the discriminant which is *algebraic*.
- \Rightarrow The problem is algebraic.

Lemma. If the radii r_i are *rationally related* (or *commensurable*), then the difference of two feasible paths can be *systematically* transformed into the form:

$$\alpha + r\theta$$
,

where α , r, $\cos \theta$ are algebraic and *computable* from the input.

Lemma. If the radii r_i are *rationally related* (or *commensurable*), then the difference of two feasible paths can be *systematically* transformed into the form:

$$\alpha + r\theta$$
,

where α , r, $\cos \theta$ are algebraic and *computable* from the input.

Corollary. The problem is decidable when the radii are commensurable!

Lemma. If the radii r_i are *rationally related* (or *commensurable*), then the difference of two feasible paths can be *systematically* transformed into the form:

$$\alpha + r\theta$$
,

where α , r, $\cos \theta$ are algebraic and *computable* from the input.

Corollary. The problem is decidable when the radii are commensurable!

Why?
$$\Rightarrow \alpha + r\theta = 0$$
, iff $\alpha = 0$ and $\theta = 0$ ($\cos \theta = 1$ & $|\theta| < 2\pi$).

Lemma. If the radii r_i are *rationally related* (or *commensurable*), then the difference of two feasible paths can be *systematically* transformed into the form:

$$\alpha + r\theta$$
,

where α , r, $\cos \theta$ are algebraic and *computable* from the input.

Corollary. The problem is decidable when the radii are commensurable!

Why?
$$\Rightarrow \alpha + r\theta = 0$$
, iff $\alpha = 0$ and $\theta = 0$ ($\cos \theta = 1$ & $|\theta| < 2\pi$).

But How?

Lemma. If the radii r_i are *rationally related* (or *commensurable*), then the difference of two feasible paths can be *systematically* transformed into the form:

$$\alpha + r\theta$$
,

where α , r, $\cos \theta$ are algebraic and *computable* from the input.

Corollary. The problem is decidable when the radii are commensurable!

Why?
$$\Rightarrow \alpha + r\theta = 0$$
, iff $\alpha = 0$ and $\theta = 0$ ($\cos \theta = 1$ & $|\theta| < 2\pi$).

But How? \Rightarrow Sum up the arclengths into an arclength on *one* disc.

Directed Arc: A = [C, p, q, n]

- lacksquare C: disc (radius r & center)
- ightharpoonup p, q: the start and the end point

Operations:

- Normalization
- Negation
- Addition and Subtraction
- Scalar multiplication

Operations:

- Normalization
- Negation
- Addition and Subtraction
- Scalar multiplication

We have:

- The results of normalization, negation, addition and subtraction is algebraic for any algebraic input.
- The result of scalar multiplication is algebraic, if the the radii are commensurable.
- ullet Can be shown using *Chebyshev polynomial* of the first kind $T_n(x)$:
 - $m{J}$ $T_0(x)=1$, $T_1(x)=x$, and $T_{n+1}(x)=2xT_n(x)-T_{n-1}(x)$, $n\geq 1$
 - $T_n(\cos\theta) = \cos(n\theta), n \ge 1$

Operations:

- Normalization
- Negation
- Addition and Subtraction
- Scalar multiplication

We have:

- The results of normalization, negation, addition and subtraction is algebraic for any algebraic input.
- The result of scalar multiplication is algebraic, if the the radii are commensurable.
- Can be shown using Chebyshev polynomial of the first kind $T_n(x)$:
 - ullet $T_0(x) = 1$, $T_1(x) = x$, and $T_{n+1}(x) = 2xT_n(x) T_{n-1}(x)$, $n \ge 1$
 - $T_n(\cos\theta) = \cos(n\theta), n \ge 1$

How about the *bit complexity*? – How many digits are needed to compare the lengths of two feasible paths?

Operations:

- Normalization
- Negation
- Addition and Subtraction
- Scalar multiplication

We have:

- The results of normalization, negation, addition and subtraction is algebraic for any algebraic input.
- The result of scalar multiplication is algebraic, if the the radii are commensurable.
- Can be shown using Chebyshev polynomial of the first kind $T_n(x)$:
 - $m{J}$ $T_0(x)=1$, $T_1(x)=x$, and $T_{n+1}(x)=2xT_n(x)-T_{n-1}(x)$, $n\geq 1$
 - $T_n(\cos\theta) = \cos(n\theta), n \ge 1$

How about the *bit complexity*? – How many digits are needed to compare the lengths of two feasible paths? \Rightarrow Need a lower bound for $|\alpha + r\theta|$ for algebraic $\alpha, r, \cos \theta$.

Transcendental Number Theory

Theorem. (Waldschmidt) Let $\alpha, \beta \in \mathbb{C}$ be nonzero algebraic numbers, and let $\log \beta$ be any determination of the logarithm of β . Assume

$$D \ge [\mathbb{Q}(\alpha, \beta) : \mathbb{Q}], \qquad V \ge \max\{h(\beta), |\log \beta|/D, 1/D\},$$

$$1 < E \le \min\{e^{DV}, 4DV/|\log \beta|\}, \qquad V^+ = \max\{V, 1\}.$$

Then we have

$$|\alpha + \log \beta| > \exp\{-2^{35}D^3V(h(\alpha) + \log(EDV^+))(\log(ED))(\log E)^{-2}\}.$$

Definition. $\alpha \in \mathbb{C}$: algebraic & $p(x) = a_n x^n + \cdots + a_1 x + a_0 \in \mathbb{Z}[x]$: its minimal polynomial

- **Degree**: $deg(\alpha) := deg(p) = n$
- **●** Absolute logarithmic height: $h(\alpha) := \frac{1}{\deg(\alpha)} \log M(\alpha)$
- Mahler measure: $M(\alpha) := |a_n| \prod_{i=1}^n \max\{1, |\alpha_i|\}$, where $\alpha_1, \dots, \alpha_n$ are all the conjugates of α .

- Assume the input is L-bit rational numbers, and N is the number of discs.

Corollary. Let α , $\theta \in \mathbb{C}$ be such that α , $\cos \theta$ are nonzero algebraic numbers. Then

$$|\alpha + \theta| > \exp\{-2^{35}D^3V(h(\alpha) + \log(EDV^+))(\log(ED))(\log E)^{-2}\},$$

where

$$D \ge [\mathbb{Q}(i\alpha, e^{i\theta}) : \mathbb{Q}], \qquad V \ge \max\{h(e^{i\theta}), |\theta|/D, 1/D\},$$
$$1 < E \le \min\{e^{DV}, 4DV/|\theta|\} \qquad V^+ = \max\{V, 1\}.$$

- Assume the input is L-bit rational numbers, and N is the number of discs.
- View $\beta = e^{i\theta}$ and $\alpha \to i\alpha \Rightarrow |\alpha + \log \beta| \to |i\alpha' + i\theta| = |\alpha + r\theta|$ (can assume r = 1).

Corollary. Let α , $\theta \in \mathbb{C}$ be such that α , $\cos \theta$ are nonzero algebraic numbers. Then

$$|\alpha + \theta| > \exp\{-2^{35}D^3V(h(\alpha) + \log(EDV^+))(\log(ED))(\log E)^{-2}\},$$

where

$$D \ge [\mathbb{Q}(i\alpha, e^{i\theta}) : \mathbb{Q}], \qquad V \ge \max\{h(e^{i\theta}), |\theta|/D, 1/D\},$$
$$1 < E \le \min\{e^{DV}, 4DV/|\theta|\} \qquad V^+ = \max\{V, 1\}.$$

 \Rightarrow Various estimations gives: $|\alpha + \theta| > \exp(-LN \cdot C^{LN})$.

- Assume the input is L-bit rational numbers, and N is the number of discs.
- View $\beta = e^{i\theta}$ and $\alpha \to i\alpha \Rightarrow |\alpha + \log \beta| \to |i\alpha' + i\theta| = |\alpha + r\theta|$ (can assume r = 1).

Corollary. Let α , $\theta \in \mathbb{C}$ be such that α , $\cos \theta$ are nonzero algebraic numbers. Then

$$|\alpha + \theta| > \exp\{-2^{35}D^3V(h(\alpha) + \log(EDV^+))(\log(ED))(\log E)^{-2}\},$$

where

$$D \ge [\mathbb{Q}(i\alpha, e^{i\theta}) : \mathbb{Q}], \qquad V \ge \max\{h(e^{i\theta}), |\theta|/D, 1/D\},$$
$$1 < E \le \min\{e^{DV}, 4DV/|\theta|\} \qquad V^+ = \max\{V, 1\}.$$

 \Rightarrow Various estimations gives: $|\alpha + \theta| > \exp(-LN \cdot C^{LN})$.

Theorem. The number of digits we need to expand to compare the lengths of two feasible paths is $LN \cdot 2^{O(LN)}$, where input is comprised of L-bit rational numbers and N is the number of the discs.

- Assume the input is L-bit rational numbers, and N is the number of discs.
- View $\beta = e^{i\theta}$ and $\alpha \to i\alpha \Rightarrow |\alpha + \log \beta| \to |i\alpha' + i\theta| = |\alpha + r\theta|$ (can assume r = 1).

Corollary. Let α , $\theta \in \mathbb{C}$ be such that α , $\cos \theta$ are nonzero algebraic numbers. Then

$$|\alpha + \theta| > \exp\{-2^{35}D^3V(h(\alpha) + \log(EDV^+))(\log(ED))(\log E)^{-2}\},$$

where

$$D \ge [\mathbb{Q}(i\alpha, e^{i\theta}) : \mathbb{Q}], \qquad V \ge \max\{h(e^{i\theta}), |\theta|/D, 1/D\},$$
$$1 < E \le \min\{e^{DV}, 4DV/|\theta|\} \qquad V^+ = \max\{V, 1\}.$$

 \Rightarrow Various estimations gives: $|\alpha + \theta| > \exp(-LN \cdot C^{LN})$.

Theorem. The number of digits we need to expand to compare the lengths of two feasible paths is $LN \cdot 2^{O(LN)}$, where input is comprised of L-bit rational numbers and N is the number of the discs.

 \Rightarrow Single Exponential in L and N!

Remarks:

- Rare example of transcendental number theory giving positive computational result
 - c.f. Lyapunov's work on theoretical mechanics
- First combinatorially nontrivial non-algebraic problem to be shown to be decidable

Remarks:

- Rare example of transcendental number theory giving positive computational result
 - c.f. Lyapunov's work on theoretical mechanics
- First combinatorially nontrivial non-algebraic problem to be shown to be decidable

Directions:

- Determination of conventional computational complexity
- Generalization to arbitrary algebraic input (esp. radii)
- Exploration of other amenable non-algebraic problems

Finally...

Remarks:

- Rare example of transcendental number theory giving positive computational result
 - c.f. Lyapunov's work on theoretical mechanics
- First combinatorially nontrivial non-algebraic problem to be shown to be decidable

Directions:

- Determination of conventional computational complexity
- Generalization to arbitrary algebraic input (esp. radii)
- Exploration of other amenable non-algebraic problems

Thanks!