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Overview

• What’s FMM about?

• Point-based rendering

• Insight into the method

• The algorithm and our contri-
butions

• Limitations, future work and
conclusion
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1. The Fast Multipole Method

• Speeds up matrix-vector prod-
uct sums of certain types

– Naive method is quadratic:
O(n2)

– FMM solves the problem in
linear time: O(n)
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1. The Fast Multipole Method

• Speeds up matrix-vector prod-
uct sums of certain types

– Naive method is quadratic:
O(n2)

– FMM solves the problem in
linear time: O(n)

• Tricks of the trade: Math, Precision, Data Structures

• Sometimes can get even better results

– Move from O(n3) to O(knlogn) or even O(kn)
– Solve “impossible” problems :-)
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• Performance of graphics card
has increased tremendously

• Points are available as input
data

• Want to go beyound flat poly-
gons

• Rendering options

– Local illumination models . . . (surfels?)

– Ray-tracing and photon mapping

– Diffuse global illumination (this talk)
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Point-Based Rendering

• Performance of graphics card
has increased tremendously

• Points are available as input
data

• Want to go beyound flat poly-
gons

• Rendering options

– Local illumination models . . . (surfels?)

– Ray-tracing and photon mapping

– Diffuse global illumination (this talk)

• Method works for traditional patch models too
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So what’s the Problem?

• Lots of points make the problem “intractable.”

– 1GB RAM = 210210210 bytes

– n2 = 230→ n = 32K

– In reality, we may desire a larger number

• Space is a constraint
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So what’s the Problem?

• Lots of points make the problem “intractable.”

– 1GB RAM = 210210210 bytes

– n2 = 230→ n = 32K

– In reality, we may desire a larger number

• Space is a constraint

• If solution involves inverting a matrix O(n3) time, that’s also a con-
straint

• What if we could solve the problem in O(n) space and O(n) time?
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Illumination Models Are Key to Rendering

• Ray tracing produces stunning pictures
but

– Pictures appear “too good.”

– Takes too long to produce reasonable
images
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Illumination Models Are Key to Rendering

• Ray tracing produces stunning pictures
but

– Pictures appear “too good.”

– Takes too long to produce reasonable
images

• Flat shading is quick but unreal

• Flat shading can be remarkably improved by discretizing environ-
ment into patches and computing intensity for each patch.
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Global Illumination In a Hurry

• Radiosity produces photorealistic pic-
tures that can handle non specular
scenes

– Enables color bleeding effects

– View independent representation

• Starting point is the general energy balance equation for the radi-
ance
L(x,θ0,φ0) = Le(x,θ0,φ0)+

∫
Ω ρbd(x,θ0,φ0,θ ,φ)Li(x,θ ,φ)cosθ dω
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Global Illumination In a Hurry

• Radiosity produces photorealistic pic-
tures that can handle non specular
scenes

– Enables color bleeding effects

– View independent representation

• Starting point is the general energy balance equation for the radi-
ance
L(x,θ0,φ0) = Le(x,θ0,φ0)+

∫
Ω ρbd(x,θ0,φ0,θ ,φ)Li(x,θ ,φ)cosθ dω

• Point-based rendering is in some sense easier

• For diffuse surfaces, radiosity is a popular quantity to compute

• In the sequel we assume occlusion is handled separately

7 Copyright c©2005 Sharat Chandran Jan 9∼11

http://sharat-lap/~sharat


The Fast Multipole Method

A Faster Solution: This . . .

Step 1: Multipole . . .

Interaction List

Step 2: Translation of . . .

Step 3: Local Expansion

Step 4: Translation of . . .

The Overall Algorithm

Home Page

Title Page

JJ II

J I

Page 8 of 43

Go Back

Full Screen

Close

Quit

Iterative Solution

Gauss-Jordan: B(k+1)
i = Ei +∑N

j=1(ρiFi j )B
(k)
j (some i)


X
Bi
...
X

 =


X
Ei
...
X

+

 X X X X
...

...
...




X
X
...
X



4

5

2

3

1
Step 1

4

5

2

3

1
Step 2
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Southwell: For all j β
(k+1)
i = β

(k)
i +∑N

j=1(ρ jFi j )r
(k)
i


β1
βi
...

βn

 =

 Ei
...
X

+

 X
X
X
X


 X

...



Results in B(k+1)
j ← B j +ρ jFi j

Ai
A j

∆Bi
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Introduction to FMM

Suppose we have a collection of N points in 2D xi {i = 1,2, . . .N} and
we want to evaluate

f (x j) =
N

∑
i=1

αi(x j−xi)2 j = 1, . . . ,N

Each evaluation requires O(N). Since there are N evaluations,
straightforward method takes time O(N2)
fo r j = 1 to N

fo r i = 1 to N
sum[ j ] + = alpha [ i ] ∗ ( x [ j ]−x [ i ] ) ∗ ( x [ j ]−x [ i ] )

Can we do better?
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A Faster Solution: This is Not FMM

Expand f as

f (x j) =
N

∑
i=1

(αix
2
j +αix

2
i −2αix jxi)

= x2
j

( N

∑
i=1

αi

)
+

( N

∑
i=1

αix
2
i

)
−2x j

( N

∑
i=1

αixi

)
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A Faster Solution: This is Not FMM

Expand f as

f (x j) =
N

∑
i=1

(αix
2
j +αix

2
i −2αix jxi)

= x2
j

( N

∑
i=1

αi

)
+

( N

∑
i=1

αix
2
i

)
−2x j

( N

∑
i=1

αixi

)
Precompute (in O(N) time)

β =
(

∑N
i=1αi

)
and γ =

(
∑N

i=1αix2
i

)
and δ =

(
∑N

i=1αixi

)
Then each evaluation is f (x j) = x2

j β + γ−2x jδ and we have the O(N)
code

for i = 1 to N β += alpha[i];
for i = 1 to N γ += alpha[i] * x[i] * x[i];
for i = 1 to N δ += alpha[i] * x[i];
for j = 1 to N sum[j] = x[j]*x[j]*β + γ - 2*x[j]*δ
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2. A Faster Solution: This is Not FMM

Key point : f (x j) is written as a sum of products using analytical
manipulations

f (x j) =
N

∑
i=1

3

∑
k=1

αiAk(x j)Bk(xi)

=
3

∑
k=1

Ak(x j)
( N

∑
i=1

αiBk(xi)︸ ︷︷ ︸
precomputed

)

A1(x) = x2 A2(x) = 1 A3(x) = 2x

B1(x) = 1 B2(x) = x2 B3(x) = x

Effect of the data point is independent of where it is going to be used
(in management, work done is “people independent”).
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Points To Note

• Starting point is a sum of the form f (x) = ∑N
i=1w(yi)K(x,yi)

• Faster solution because of analytical rearrangement

• But not all problems admit such a solution

• Consider f (ω) = ∑N
i=1w(yi)e

−2π iω
√
−1

N

– Celebrated Discrete Fourier Transform
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• Faster solution because of analytical rearrangement

• But not all problems admit such a solution

• Consider f (ω) = ∑N
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−2π iω
√
−1

N

– Celebrated Discrete Fourier Transform

– Fast solutions are obtained due to the nature of the kernel

• FMM provides a fast solution by trading accuracy for speed but
requires
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• Starting point is a sum of the form f (x) = ∑N
i=1w(yi)K(x,yi)

• Faster solution because of analytical rearrangement

• But not all problems admit such a solution

• Consider f (ω) = ∑N
i=1w(yi)e

−2π iω
√
−1

N

– Celebrated Discrete Fourier Transform

– Fast solutions are obtained due to the nature of the kernel

• FMM provides a fast solution by trading accuracy for speed but
requires

– Four types of factorization formulae

– Analysis of convergence of analytical expression

– Data structure issues
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Points To Note

• Starting point is a sum of the form f (x) = ∑N
i=1w(yi)K(x,yi)

• Faster solution because of analytical rearrangement

• But not all problems admit such a solution

• Consider f (ω) = ∑N
i=1w(yi)e

−2π iω
√
−1

N

– Celebrated Discrete Fourier Transform

– Fast solutions are obtained due to the nature of the kernel

• FMM provides a fast solution by trading accuracy for speed but
requires

– Four types of factorization formulae

– Analysis of convergence of analytical expression

– Data structure issues

• x is said to be the point of evaluation of the sources yi
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3. Step 1: Multipole Expansion

• Direct evaluation re-
quires N interactions at
runtime ���

�
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3. Step 1: Multipole Expansion

• Direct evaluation re-
quires N interactions at
runtime ���

�

• Can we reduce this to
one interaction?

���
�
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Multipole Expansion: Math

• To evaluate f at ~x due to~yi{i = 1. . .N} f (~x) = ∑N
i=1w(~yi)K(~x,~yi)

• If we can factorize the kernel as K(~x,~y) = ∑p
j=1A j(

−→
Ox)B j(

−→
Oy)

• Substituting this expansion as the kernel

f (~x) =
N

∑
i=1

w(~yi)
p

∑
j=1

A j(
−→
Ox)B j(

−→
Oyi)

=
p

∑
j=1

A j(
−→
Ox)

( N

∑
i=1

w(yi)B j(
−→
Oyi)︸ ︷︷ ︸

M j(O)

)

=
p

∑
j=1

A j(
−→
Ox)M j(O)

X

Y

O

• Preprocessing cost is proportional to the number of points, but run
time cost is O(1)
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The Radiosity Kernel Is Not Easy To Factorize

O
x

y

nx

ny

rx

ry

Writing the difference in energy B(x)−E(x)

=
yk

∑
y=y1

B(y)
Ax

∫
Ax

∫
Ay

ρ(x)
cosθ1cosθ2

r2
dAxdAy

=
yk

∑
y=y1

B(y)
Ax

∫
Ax

∫
Ay

ρ(x)
[~ny.(~rx−~ry)][~nx.(~ry−~rx)]

π|~ry−~rx|4
dAxdAyi
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Key Contribution: Factorization for the Radiosity Kernel

• Representing vectors as 3x1 matrices,

~r = (x,y,z)≡

 x
y
z

 = r

~r1.~r2 = r t
1r2 = r t

2r1

• Expand the expression in the numerator

[~ny.(~rx−~ry)] [ ~nx.(~ry−~rx)]
= r t

xnyr t
ynx− r t

xnxr t
xny− r t

ynyr t
ynx + r t

ynyr t
xnx

• Define receiver matrices RM and the source matrices SM

SM(~ry) =


nyr t

y

ny

r t
ynyr t

y

r t
yny

 RM(~rx) =


r t

x
nx

r t
xnxr t

x
r t

xnx

nxr t
x


[~ny.(~rx−~ry)][~nx.(~ry−~rx)] = RM(~rx)⊗SM(~ry)
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Key Contribution: Factorization for the Radiosity Kernel

• For ry < rx (Hausner, 1997)
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Key Contribution: Factorization for the Radiosity Kernel

• For ry < rx (Hausner, 1997)

1
|~ry−~rx|4

=
∞

∑
n=0

[n/2]

∑
j=0

n−2 j

∑
m=−n+2 j

ej
n

{
1

rn+4
x

Ym
n−2 j(θx,φx)

}{
rn

yY
m
n−2 j(θy,φy)

}
• We have the factored radiosity kernel

B(x)−E(x) =
∞

∑
n=0

[n/2]

∑
j=0

n−2 j

∑
m=−n+2 j

ej
nR

m
n j(~rx)⊗Mm

n j(O)

Rm
n j(~rx) =

1
Ax

∫
Ax

ρ(x)
rn+4

x
Ym

n−2 j(θx,φx)RM(~rx)dAx

Mm
n j(O) =

yk

∑
y=y1

∫
Ay

B(y)rn
yY

m
n−2 j(θy,φy)SM(~ry)dAy

• Two observations

– ry < rx

– p = ∞
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The N logN Algorithm (2 Dimensions)

• Assumption: Particles are uniformly distributed in a square

• Consider a uniform hierarchical subdivision of space

X

Level 0X X

Level 1 Level 2
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The N logN Algorithm (2 Dimensions)

• Nearest neighbors share a vertex

• Well separated Boxes are on the same level and are not nearest
neighbors

XXXX

• Calculate multipole moments at the center of each box of Level 2

• Multipole Expansion cannot be evaluated at nearest neighbors

• Recursion!
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The N logN Algorithm (2 Dimensions)

• Nearest neighbors share a vertex

• Well separated Boxes are on the same level and are not nearest
neighbors

XXXX

• Calculate multipole moments at the center of each box of Level 2

• Multipole Expansion cannot be evaluated at nearest neighbors

• Particles we have not yet accounted for in their interaction with
box X are in children of the near neighbors of X’s parent (at level
3).

• Recursion!
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4. Interaction List

• Interaction List of a box i consists of children of near neighbors of
i’s parent which are well separated from i.

• Maximum size of the interaction list is 27

X
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The N logN Algorithm (2 Dimensions)

• Algorithm

– Subdivide till each box contains not more than M particles
Number of leaves N/M
Depth d of quad-tree log4(N/M)
Total number of boxes ∑d

i=14i ≈ 4N/3M

– At each level, calculate multipole moments at each box Np

– At each level, for each particle, evaluate the multipole expan-
sion
of all boxes in its owners interaction list 27Np

– For the last level, for each particle calculate directly its interac-
tion with all particles in its owners nearest neighbors O(N)

• Total Cost O(N logN)!
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The N logN Algorithm (2 Dimensions)

• Algorithm

– Subdivide till each box contains not more than M particles
Number of leaves N/M
Depth d of quad-tree log4(N/M)
Total number of boxes ∑d

i=14i ≈ 4N/3M

– At each level, calculate multipole moments at each box Np

– At each level, for each particle, evaluate the multipole expan-
sion
of all boxes in its owners interaction list 27Np

– For the last level, for each particle calculate directly its interac-
tion with all particles in its owners nearest neighbors O(N)

• Total Cost O(N logN)!

• We are accessing each particle at every level

• Can we do better?
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5. Step 2: Translation of Multipole Expan-
sion

• Why recompute multi-
pole moments for each
particle at different cen-
ters?
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5. Step 2: Translation of Multipole Expan-
sion

• Why recompute multi-
pole moments for each
particle at different cen-
ters?

• Reuse computation,
shift multipole centers
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Translation of Multipole Expansion : Math

• We have the multipole moments due to
N particles at O as

M j(O) = ∑N
i=1w(yi)B j(

−→
Oyi)

• To find the moments at O′ given the mo-
ments at O, if we can expand B j as

B j(
−−→
O′yi) = ∑p

k=1Bk(
−→
Oyi)α

j
k(
−−→
OO′)

yj

O’

O

• Then the multipole moment at O′ will be

M j(O′) =
N

∑
i=1

w(yi)B j(
−−→
O′yi)

=
N

∑
i=1

p

∑
k=1

w(yi)Bk(
−→
Oyi)α

j
k(
−−→
OO′)

=
p

∑
k=1

Mk(O)α j
k(
−−→
OO′)

• Coefficients can be computed in O(p2) time
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Contribution: Translation Theorem for the Radiosity Kernel

B(x)−E(x) =
∞

∑
n=0

[n/2]

∑
j=0

n−2 j

∑
m=−n+2 j

ej
nR

m
n j(~rx)⊗Mm

n j(O
′)

Mm
n j(O

′) =
n

∑
k=0

k/2

∑
s=0

k−2s

∑
m1=−k+2s

jmax

∑
j ′= jmin

ej
n−k

ej
n

J(. . .)|OO′|kYm1
k−2s(OO′)TM (OO′)⊗Mm1+m

n−k, j ′(O)
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Contribution: Translation Theorem for the Radiosity Kernel

B(x)−E(x) =
∞

∑
n=0

[n/2]

∑
j=0

n−2 j

∑
m=−n+2 j

ej
nR

m
n j(~rx)⊗Mm

n j(O
′)

Mm
n j(O

′) =
n

∑
k=0

k/2

∑
s=0

k−2s

∑
m1=−k+2s

jmax

∑
j ′= jmin

ej
n−k

ej
n

J(. . .)|OO′|kYm1
k−2s(OO′)TM (OO′)⊗Mm1+m

n−k, j ′(O)

This one was rough... Used a theorem from Sack 1963
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N logN to N : Translation of Multipole Expansion

• Computing multipole moments at all levels was O(N logN)

• Revised Procedure

– Compute multipole moments at the lowest level O(N)
– Shift and aggregate multipole moments upwards till Level 2

O(∑d
i=34i p2)≈O(4p2N/3M)

• But we are still evaluating multipole expansions for each particle
at each level
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6. Step 3: Local Expansion

• Multipole moments rep-
resent field outside a
cluster in a constant
number of coefficients

M(O )1

M(O )3

M(O )2
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6. Step 3: Local Expansion

• Multipole moments rep-
resent field outside a
cluster in a constant
number of coefficients

M(O )1

M(O )3

M(O )2

• Can external multipole
moments be combined
into a constant number
of coefficients to repre-
sent the field inside a
cluster?

M(O )1

M(O )3

M(O )2
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Local Expansion : Math

• To calculate f at~x we now have f (~x) = ∑p
i=1Ai(

−→
Ox)Mi(O)

• Now suppose we make Ai degenerate in x
and O about x0 as

Ai(
−→
Ox) = ∑p

l=1Cl(−→x0x)β i
l (
−→
Ox0)

• Substituting this expansion as Ai, we have

f (~x) =
p

∑
l=1

Cl(−→x0x)
( p

∑
i=1

β
i
l (
−→
Ox0)Mi(O)︸ ︷︷ ︸
Ll (~x0)

)

=
p

∑
l=1

Cl(−→x0x)Ll(~x0)

• Ll(~x0) is the l th local expansion coefficient
about~x0 and is computed in O(p2) time

O

x0

x

Multipole  Center
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Contribution: Local Expansion for the Radiosity Kernel

If | ~Ox0|> | ~x0x|

B(x)−E(x) =
∞

∑
k=0

k/2

∑
s=0

k−2s

∑
m1=−k+2s

Eksm1(x0x)⊗Lksm1(Ox0)

Eksm1(x0x) =
1
Ax

∫
Ax

ρ(x)|x0x|kYm1
k−2s(x0x)RM(x0x)dAx

Lksm1(Ox0) =
∞

∑
n=0

[n/2]

∑
j=0

n−2 j

∑
m=−n+2 j

lmax

∑
l2=lmin

ej
nJ(. . .)Fn jm

ksm1l2
(Ox0)⊗Mm

n j(O)

Fn jm
ksm1l2

(Ox0) = |Ox0|−n−4−kYm−m1
l2

(Ox0)TM (Ox0)
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N logN to N : Local Expansion

• At each level, multipole expansions of each box in its interaction
list was evaluated at a particle 27NplogN

• Revised Procedure

– For each box at each level, combine multipole moments of the
boxes in its interaction list into local coefficients at its center
and evaluate for each particle
∑d

i=327(4i p2)+Np)≈ 36p2N/M +NplogN

• Why evaluate at each level?
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7. Step 4: Translation of Local Expansion

• Collect local expansion
coefficients but do not
evaluate

M(O )1

M(O )3

M(O )2
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7. Step 4: Translation of Local Expansion

• Collect local expansion
coefficients but do not
evaluate

M(O )1

M(O )3

M(O )2

• Shift the center of the lo-
cal expansion of a box
to each of its children
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Translation of Local Expansion : Math

• To calculate f at~x, we now have

f (~x) =
p

∑
i=1

Ci(−→x0x)Li(~x0)

• To calculate f at~x in terms of a shifted
center~x1, we expand r i as

Ci(−→x0x) = ∑p
j=1Cj(−→x1x)γ i

j(
−−→x0x1)

• Substituting this expansion of Ci

f (~x)=
p

∑
j=1

Cj(−→x1x)
( p

∑
i=1

γ
i
j(
−−→x0x1)Li(~x0)

)
=

p

∑
j=1

Cj(−→x1x)L j(x1)

x0

x1

x

• Thus we can evaluate f in terms of the translated local expansion
coefficients L j(x1) = ∑p

i=1γ i
j(
−−→x0x1)Li(~x0) in O(p2) time
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Contribution: Local Expansion Translation for the
Radiosity Kernel

B(x)−E(x) =
∞

∑
k=0

k/2

∑
s=0

k−2s

∑
m1=−k+2s

Eksm1(x1x)⊗Lksm1(x0x1)

Lk′s′m′1(x0x1) =
∞

∑
k=k′

k/2

∑
s=0

k−2s

∑
m1=−k+2s

jmax

∑
j ′= jmin

(−1)k+m1
ej ′

k−k′

es
k

J(. . .)

|x1x0|k−k′Y−m′1+m1

k−k′−2 j ′ (x1x0)TM (x0x1)⊗Lksm1(Ox0)
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N logN to N : Local Expansion Translation

• For each box at each level, combine multipole moments of the
boxes in its interaction list into local coefficients at its center and
evaluate for each particle
36p2N/M +NplogN

• Revised Procedure

– For each box at each level, combine multipole moments of the
boxes in its interaction list into local coefficients and shift them
to its children
∑d

i=327(4i p2)+4i p2≈ 36p2N/M +4p2N/3M

– At the last level, evaluate the local expansion in each of the
boxes at its constituent particles and compute direct interaction
with near neighbors
9M2(N/M)+(pM)(N/M) = 9NM+ pN

• We are in O(N)!
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8. The Overall Algorithm

• Step 1 Construct an Octree
Subdivide the space containing the whole system as an octree
until the leaves contain not more than a constant number of bodies
k

Level 0

Level 1

 Level 0

36 Copyright c©2005 Sharat Chandran Jan 9∼11

http://sharat-lap/~sharat


The Fast Multipole Method

A Faster Solution: This . . .

Step 1: Multipole . . .

Interaction List

Step 2: Translation of . . .

Step 3: Local Expansion

Step 4: Translation of . . .

The Overall Algorithm

Home Page

Title Page

JJ II

J I

Page 37 of 43

Go Back

Full Screen

Close

Quit

The Fast Multipole Algorithm

• Step 2 Compute Interaction Lists
Two cells are nearest neighbors if they are at the same refinement
level and are separated by not more than one cell.
Two cells are well separated if they are at the same refinement
level and are not nearest neighbors
With each cell i, associate an interaction list consisting of children
of nearest neighbors of i’s parents which are well separated from
cell i

XXXX
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The Fast Multipole Algorithm

• Step 3 Compute Multipole Moments (Upward)
Compute the multipole moments Mm

n for each leaf cell, at the cen-
ter of the cell, due to the particles contained within the cell. For a
non leaf cell, translate and aggregate the multipole moments of its
children to its center. This is repeated at each level in an upward
pass at the end of which, we have the multipole moments in each
cell due to the particles contained in that cell.
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The Fast Multipole Algorithm

• Step 4 Compute Local Expansion Coefficients (Downward)
Starting from the root cell, for each cell at level l , the multipole
moments of all the cells in its interaction list are translated to local
expansion coefficients about the center of the cell. The local ex-
pansion coefficients of the parent are then translated to the center
of this cell and aggregated.
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The Fast Multipole Algorithm

• Step 5 Final Evaluation
For each particle in the system, evaluate the local expansion us-
ing the local expansion coefficients of the cell to which it belongs.
Interaction with all particles in its nearest neighbors and its parent
cell are computed directly. The contribution from these sources is
added to get the radiosity at that particle.
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Handling Occlusions

Visibility is a point to point phenomenon, and is not analytical
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Handling Occlusions in FMM

Procedure Modify(Box A) {
visible interactionlist(A)=Null

for each box B ∈ old interactionlist(A){
state=visibility(A,B)
if equals(state,valid) then

visible interactionlist(A).Include(B)
else if equals(state,partial) then
{ if(notLeaf(A))

for each a ∈ child(A)
for each b ∈ child(B)

interactionlist(a).Include(b)}}}
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Handling Occlusions in FMM

Procedure visibility(Box A, Box B) {
visible=0;
for each cell a ∈ leafcell(A)

for each cell b ∈ leafcell(B){
if FacingEachOther(a,b) then {

result=shootAndDetect(a,b)
if equals(result,0) then Increment(visible,1) }}

if equals(visible,0) return(invalid)
else if equals(visible,leafcell(A).size*leafcell(B).size)

return(valid); else return(partial) }

Procedure Generate(Box A){
Modify(A)
for each a ∈ child(A)

Generate(a)}
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Conclusion

• A quick introduction to FMM and Global
Illumination (GI)

• Reduction of the GI problem to problems
similar to FMM

• Four new theorems for the radiosity ker-
nel

• Also supporting implementation
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