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Abstract:

In this talk, Jacobi-weighted orthogonal poly-
nomials

PErO) (w0, 0)  a, B,y > —1,

on the triangular domain 1' are constructed
We show that these polynomials Pé r’ﬁ ) (u, v, w)
over the triangular domain T satisfy the follow-
ing properties:

qu,of,i’ﬁ’v)(u,v,w) cLp,n>1r=0,1,...,n
and

(a,ﬁv)(u v,w) L Pp 875’7)(,“ v,Ww),T F 8.
And hence,

(a,ﬁv)(uv w), n=0,1,2,...,r=0,1,...,n

form an orthogonal system over the triangular
domain 1" with respect to the Jacobi weight
function. These Jacobi-weighted orthogonal
polynomials on triangular domains are given in
Bernstein basis form and thus preserve many
properties of the Bernstein polynomial basis.
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Introduction:

Recent years have seen a great deal in the field
of orthogonal polynomials, a subject closely re-
lated to many important branches of analysis.
Among these orthogonal polynomials, the Ja-
cobi orthogonal polynomials are the most im-
portant. However, the cases of two or more
variables of orthogonal polynomials on trian-
gular domains have been studied by few re-
searchers; although the main definitions and
some simple properties were considered many
years ago.



Previous Contributions:

Orthogonal polynomials with Jacobi weight func-
tion
w(a’ﬂ”)(u,v,w) = u%P(1 —w)Y, o, B,v > —1

on triangular domain T are defined in [Sauer
1994]. These polynomials

P (0, w)

are orthogonal to each polynomial of degree
< n — 1, with respect to the defined weight

function

w(o"ﬁ’w(u,v,w) on T.

However, PS%7) (u,v,w) ,PS%?7) (u,0,w), v #
s, are not orthogonal with respect to the weight
function w(®6:7) (u, v, w) on T.



In [Farouki, Goodman, Sauer 2003], orthog-

onal polynomials with respect to the weight
function

w(u,v,w) =1

on a triangular domain T are defined. These
polynomials Py »(u,v,w) are orthogonal to each
polynomial of degree < n — 1 and also orthog-
onal to each polynomial Py s(u,v,w), 1 # s.



In this talk, we construct orthogonal polynomi-
als P} rﬁ’Y (u,v, w) with respect to the Jacobi
weight function

w(o"ﬁﬁ)(u,’u,w) = uP (1 —w)Y, o, B,y > —1

on triangular domain 7'. These Jacobi-weighted
orthogonal polynomials on triangular domains
are given in the Bernstein basis form, and thus
preserving many geometric properties of the
Bernstein polynomial basis. We show that these
1 (Oé,/B,’Y) 1

polynomials Pp (u,v,w) over the triangular
domain T satisfy the properties:

qugi’ﬁﬁ)(u,v,w) cLp,n>1,r=0,1,...,n,
and for » #= s we proved that
(a,ﬁ’y)(u v, W) J_PT(L 67)(u v,W).
And hence, these bivariate polynomials for
é?fﬁﬁﬁ)(u,v,w),r =0,1,...,n,n=0,1,2,...

form an orthogonal system over the triangular
domain 717" with respect to the weight function

w(O{’/B”Y) (u7 ,U7 w)? a? /87 ,7 > _1°



Orthogonal Polynomials on Squares:

The construction of bivariate orthogonal poly-
nomials on the square is straightforward. We
consider the tensor product of the set of or-
thogonal polynomials over the square

G={(z,y):-1<z<1, -1<y<I1}
Let
{P{10) (2)}

be the Jacobi polynomials over [—1, 1] with re-
spect to the weight function

wi(e) = (1-2)* (1 + ).
And let
Q=" ()}

be the Jacobi polynomials over [—1, 1] with re-
spect to the weight function

wa(y) = (1 —y)*2(1 + y)~2.



We define the bivariate polynomials { Rnm(z,y)}
on GG formed by the tensor products of the Ja-
cobi polynomials by

Rom(z,y) 1= Pﬁﬁl)(w)Q%‘fz’@)(y),

n=0,1,2,... and m=20,1,...,n.

Then {Rnm(z,y)} are orthogonal on the square
G with respect to the weight function

w(z,y) = wi™ M (@i ().

However, the construction of orthogonal poly-
nomials over a triangular domain is not straight-

forward like the tensor product over the square
G.



Definitions:

For m > 1,,
[1,,: the space of all polynomials of degree n

over the triangular domain T.
Lm : The space of polynomials of degree m

that are orthogonal to all polynomials of de-
gree < m over a triangular domain T, i.e.



Univariate Bernstein Polynomials:

The Bernstein polynomials b7 (u), v € [0,1], i =
0,1,...,n are defined by

o=

0, else

)ui(l—u)”_i, i=0,1,...,n

where the binomial coefficients are given by

( 0, else



Univariate Jacobi Polynomials:

The Jacobi polynomials qua’5>(x) of degree n
are the orthogonal polynomials, except for a
constant factor, on [—1, 1] with respect to the
weight function

w(z) =1 —2)%(1+2)° o8> —1.

It is appropriate to take w € [0,1] for both
Bernstein and Jacobi polynomials. The fol-
lowing two lemmas will be needed in the con-
struction of the orthogonal bivariate polynomi-
als and the proof of the main results.
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Relations between Bernstein and Jacobi:

Lemma. (see Rababah 2004) The Jacobi poly-
nomial PX*™) (u) of degree r = 0,1,... has the
following Bernstein representation

() )
PP (uy = 3 (~1yr i L ).

-

The Pochhammer symbol is more appropri-
ate, but the combinatorial notation gives more
compact and readable formulas, these have
also been used in the book by Szego.
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Lemma. (see Rababah 2004) The Jacobi poly-
nomials

Poa’ﬂ)(u), .. Pé“’ﬂ)(u) of degree < n can be ex-
pressed in terms of the Bernstein basis of fixed
degree n by the following formula

n
Pr(a’ﬁ)(u) = > pipbi(u), r=0,1,...,n,
1=0

where, for: =0, ...,n,

" -1 min(i,r) (n—r
:uz',r:(i) Z (_1) (Z—k)

k=max(0,i+r—n)

() ()
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Barycentric Coordinates:

Consider a base triangle in the plane with the
vertices pp = (xp,yr), k = 1,2,3. Then every
point p inside the triangle T' can be written us-
ing the barycentric coordinates (u,v,w), where
v+v+w=1, wu,v,w >0 as p=upi + vpos+
wpP3. T he barycentric coordinates are the ratio
of areas of subtriangles of the base triangle as
follows

area(P, P2, P3) __area(P1,P,P3)

area(P1,P2,P3)’ area(P1,P2,P3)’
b area(p1, P2, P)

~ area(P1, P2, P3)’

where area(p1,P>2,P3) = 0, which means that
P1,Po,P3 are not collinear.
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Generalized Bernstein polynomials:

Let T' be a triangular domain defined by

T =A{(u,v,w) :u,v,w>0,u+v+w=1}.
Let the notation o = (4,4, k) denotes triples of
non-negative integers, where |a| = i+ j + k-
The generalized Bernstein polynomials of de-
gree n on the triangular domain T are defined

by the formula

(87

n . n!
a | gl ikl

Note that the generalized Bernstein polynomi-
als are non-negative over T, and form a parti-

tion of unity, i.e.

by (u, v, w) = ( ik ) utvd wk, la| = n,

where

| .
n: i

. . u k
ilj1k!

vIw”.

l=(u+v4+w)" = Z
0<4j,k<n
i1+J+k=n
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The sum involves a total of 5 (n+ 1) (n+ 2)
linearly independent polynomials. These poly-
nomials define the Bernstein basis for the space
[1,, over the triangular domain T.

The Bernstein polynomials b%(u,v,w), |a] = n,
on T satisfy,

/!bg(u,v,w)dA = T 1)A(n+2),

where A is double the area of T.




Triangular Bézier Surfaces:

Any polynomial P(u,v,w) of degree n can be
written in the Bernstein form

P(u,v,w) = Y daby(u,v,w),
a|=n
with Bézier coefficients d,. VWe can also use the
degree elevation algorithm for the Bernstein
representation. This is obtained by multiplying
both sides by 1 = u + v 4+ w, and writing

P(u,v,w) = Y d((yl)bg_l'l(u,v,w).
|la|=n+1

The new coefficients d&l) are defined by,

1 1 . .
dgjk):n 11 (id;—1 ik +Jdij—1k+ kd; jr—1),

where 14+ 53+ k=n -+ 1.
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Inner Product:

Let P(u,v,w) and Q(u,v,w) be two bivariate
polynomials over T', then we define their inner
product over T by

(P,Q) = % / / PQAA.
T

We say that P and ( are orthogonal if
(P,Q) = 0.

16



Degree-ordered System of OP:

A basis of linearly independent and mutually

orthogonal polynomials in the barycentric co-

ordinates (u,v,w) are constructed over T. These
polynomials are represented in the following

triangular table

Pé%’ﬁﬁ)((]), P,,E,al’ﬁﬁ)(U), Pé?é’ﬁﬁ)(U), e P?g%jﬁﬁ)((])
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The kth row of this triangle table contains k+1
polynomials. Thus, for a basis of linearly inde-
pendent polynomials of total degree n, there
are 5(n+ 1)(n+ 2) polynomials.



Orthogonal Polynomials on Triangular Domains:

A simple closed-form representation of degree-
ordered system of orthogonal polynomials is
constructed on a triangular domain T. Since
the Bernstein polynomials are stable, it is con-
venient to write these polynomials in Bernstein
form.

Let f(u,v,w) be an integrable function over T,
and consider the operator

Sn(f) = (n+1)(n+2) Y (fbg)bs.

|ae|=n
For n > m,
(n+ 2)!n!
(n+m+2)(n—m)!
is an eigenvalue of the operator S,, and L, is
the corresponding eigenspace, see Derriennic.

)\m,n —
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Preliminary Results:

The following Lemmas will be needed in the
proof of the main results.

Lemma. (See Farouki, Goodman, and Sauer
2003) Let P= > c¢cob € Ly and Q = Y

|a|=n a|=n

dabl € My with m < n- Then we have

P,Q) = (n))? d
( ’Q>_(n—|—m—|—2)!(n—m)! 2 cada;

|a[=n

19



Lemma. (See Farouki, Goodman, and Sauer
2003, and Peters, and Reif 2000) Let P =
>, cabl € My. Then we have

la|=n

Pelns Y cada=0forall Q= > dabl €My

ja|=n la|=n

20



Consider the polynomials

g (w) = 3 (~1)] ( nrad ) b (w).

j=o /

The polynomial gnr(w) is a scalar multiple of

plO2r+1) (1 _ 24), and we have the following

Lemma

Lemma. (See Farouki et al 2003) For r =
0,...,m andi=20,...,n—r —1, gnr(w) is or-
thogonal to (1 —w)?"t**+1 on [0, 1], and hence

1
/qn,r(w)P(w)(l —w)2 gy = o,
0

for every polynomial P(w) of degree < n—r—1.
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Let 0 = a+ B8+ v, then the following lemma
will be used in the proof of theorem.

Lemma. The following identity holds

(n—|—fr—|—a—|—1 > <n—r>
noro j j

S = —1)J

jgo( ) <n+r+;+a+1>

L)

<n+r+z’+a+1>'

n—r

22



Proof: Using equation (5.21) in Knuth, and
negating the binomial term in the numerator,

we get
n—r
J _

<n+r+i+a+l>__

J

—2r—1—0—2
D B S

<n+r+i+a+1>'

n—r

Substituting these simplifications in the sum-
mation, we get

o _ (—QW* gf<n+r+a+1>
<n-|-r-m+a-|-1)FO J
n—r

—2r—1—0—2
n—r—j '

23



Using equation (5.22) in Knuth, we have

n—r | m—7T—1—1
(_1) ( n—r )
S = ,
(n+r+i+a+1>

n—r

and by negating the numerator, the identity
holds.
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Jacobi-weighted Orthogonal Polynomials:

Forn=0,1,2,...and r=20,1,...,n, we define
the bivariate polynomials

BN vw) = 3 el e, OV (uy0) 3 (~1)7
=0

1=0 J

<n+§—|—1 >b?—r(w’u_|_v)

0
9

where o, 8,7 > —1,

C(ia o, 6) — (_1)T—i

25



Preliminaries for Proof:

We show that the polynomials 72,2‘);:5 N (w, v, w)
€ Lp,n>1, r =0,1,...,n, and P(a’ﬁv) 1L
T(LO;’ﬁ’V) for r #= s. Thus, choosing P(O"ﬁ =1,

then the polynomials Pfr(b B (4, v w) for 0 <
r<nandn=20,1,2,... form a degree-ordered
orthogonal sequence over T. We first rewrite
these polynomials in the Jacobi polynomials
form

()
SOy = 3 (-1 A ()

=
% Z( 1)J<n—|-r—|-1>b? T(w, u+ v)

26



()
D D 1 S

(r) (u 4+ v)"

< 3 (1)) ( ntrtl )b?_r(w,l—w).
j=0 J

Since
bf (u, v) _
(u+ov)
and using Lemma, we get

p P (U) = PP (=) (1 - w) gnr(w), 1 =0,
— W

where P,,a(o"ﬁ)(t) is the univariate Jacobi poly-
nomial of degree r.



(a’ﬁ 7)(u v,w) € Lp:

First, we show that the polynomials 7372?;35’7)(% v, W),

r=20,...,n are orthogonal to all polynomials of
degree < n over the triangular domain T.

Theorem. Foreachn=1,2,..., r=20,1,...,n,
and the weight function w87 (u, v, w) = u®vB(1—
w)? such that o, 3,v > —1, we have Péﬁa’ﬁ’”)(u,v,w) S
Ln.

27



Proof of Theorem:

Proof: For each m = 0O,...,n — 1, and s =
O,...,m we construct the set of bivariate poly-
nomials

Uu

ﬂ)(u v w) P(aaﬁ)( )(1_w)m n—m-— 1

The span of these polynomlals includes the set
of Bernstein polynomials

= by (u, )w? ML

which span the space I1,_1. Thus, it is suf-
ficient to show that for each m = 0,...,n —
l,s=0,...,m, we have

= [ [PEAP QP Wy (W)da = o
T

28



This is simplified to

1—w
u

[ POy ) PP (o
0

1
af
0]
w1y %P (1 — W) YT M duduw.

By making the substitution t = 1=

w(@N(U) = uP(1-w)? = t*(1-)P(1—w)* T,

And thus, we have
11
= [ [ PP 0)anr ()PP (1)
OO0

(1 — w)etAryFrem+l, n—m—1l,a 1 _ 6 gt

1 1

/ (a’ﬁ)(t)P(a’B)(t)ta(l t)ﬁ dt/Qn,T(w)
) 0
29



(1— w)a—l-ﬁ-l-v-l—?“-l-m—l-lwn—m—ldw.

If m < r, then we have s < r, and the first
integral is zero by the orthogonality property
of the Jacobi polynomials. If r < m < n — 1,
we have by Lemma, the second integral equals
zero. And thus the theorem follows.

Note that taking w(®87) (u,v,w) = uB(1 —
w)” enables us to separate the integrand in the
proof of theorem. Note that the case o+ 5 +
~v = 0 is discussed in Rababah, and Al-Qudah.



(a’ﬁ 7)(u v,w) L Pp, s’ﬁ w(u v, W):

In the following theorem, we show that Pé%’B’V)(U)
is orthogonal to each polynomial of degree n.
And thus the bivariate polynomials P$%%") (u, v, w),
r=0,1,....,n, and n =0,1,2,... form an or-
thogonal system over the triangular domain T
with respect to the weight function w(a>5>’7)(u, v, W),
a, 3,y > —1.
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Theorem. Forr # s, we have qu%’ﬁ”Y)(u v,w) L

(O"B ) (u, v, w) with respect to the weight func-
t/on MCHE 7)(u,v,w) = u*P(1 — w)? such that
a, /87 Y >—1.
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Proof of Theorem:

Proof: For r # s, we have

1—w

/_P(aﬁ)< U ) 8(04,5)( U )(1_w)r—|—s
0 1l —w

Qn,r(w)Qn,s (w)’w(a’ﬁﬁ) (U)dudw

1
:A/
o)

32



By making the substitution t = =, we get

w87 (u, v, w) = t*(1 —)B(1 —w)*tB+7. And
thus, we have

1
I=nA / Pl iy plaB) (pyee (1 — )8 ar
0

1
[ anar(@)an,s(w) (1 = wyoFAFTErELGy
0

the first integral equals zero by the orthogo-
nality property of the Jacobi polynomials for
r #= s, and thus the theorem follows.
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Orthogonal polynomials in Bernstein basis:

The Bernstein-Bézier form of curves and sur-
faces exhibits some interesting geometric prop-
erties. So, we write the orthogonal polyno-
mials Pgﬁfn’ﬁﬁ)(u,v,w), r=20,1,...,n and n =
0,1,2,...in the following Bernstein-Bézier form

é%’B’V)(u,v,w) = Z an" bl (u, v, w).
a|=n
We are interested in finding a closed form for
the computation of the Bernstein coefficients
an’ . These are given explicitly in the following
theorem

34



Theorem. The Bernstein coefficients ayy' are

given explicitly by: a?j’]: —
( n+r—+1 n—r
k k k n—k
) (_1) n 'ui,’l“ , Oékén—’r
k
L O) k >n—rT

where u?;k

are given in Rababah 2004.
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Proof of Theorem:

Proof: It is clear that 7972?;:5’”(%@,10) has de-
gree < n —r in the variable w, and thus

n,r

az‘jk:O for k>n—r.

For O < k < n —r, the remaining coefficients
are determined as follows

> a%’gb%k(U) = (—1)* ( "+ l: T 1 ) by " (w, u+t

1+1=n—k
() ()
x 3 ()i ( >TZ br (u, v).
i=0 r

Comparing powers of w on both sides, we have
'n,—k |

nge M 5o k[ ntr+1 n—r
2 it = D ( k k

1=

36



(utv)" "k 3 (—1)rin EVATTERNY
1=0

(7)

The left hand side of the last equation can be
written in the form
n—k __ ql nk . onl(n—k)

a.’ uivj = Q. . U ’Uj
go tik 151k 2 ki1 i1kl (n — k)!

1=



n—k

— n,r nl(n —k)!
— Z;) aijki!(n —k—9)'kl(n — k)!u

n—k . )
— Z CLZ.’I: < 2 ) b?_ (u,’l)),

Now, we get

n—k
2 “3’£<Z>b?_’“(u,v)=(—1)’“<”+7“+1 ) (n—

Z,U]

r+ o r—+ 0
L r . ) r—1
(uto) " Y (=1)" b; (u, v).
i=0 r
(7)
With some binomial simplifications, and using
Lemma, we get

n—=k
>t (1) ot = ot (1Y)

1=0 Lo

37



T
n—r _ —
(") X )

1=0

where p?-*

.~ are the coefficients resulting from
writing Jacobi polynomial of degree r in the

Bernstein basis of degree n — k,.



Thus, the required Bernstein-Bézier coefficients
are given by a?j’l: —

( n+r—+1 n—r
k k k n—k
(—1) : O<k<n-—r

0, k>n—r

N\

\

Which completes the proof of the theorem.
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To derive a recurrence relation for the coeffi-

cients a%’]: of Pﬁ?ﬁﬁﬁﬁ)(u,v,w), we consider the
generalized Bernstein polynomial of degree n —
1

bn_l(u,v,w) = (n—1)! k

| iy
ijk T T

_ (n—1)!

ﬂNdU%%Wu+v+w)

. (Z —|— 1)71! ui+1’vj’wk—|— (] ‘|‘ 1)n!

T n(i 4 1)k n(G(G 4+ 1)1k!
(k+ 1)n!

n(:) (G (k + 1)!

uivj+1wk—|—

uivjwk—l—l

_|_

_ G+,

4+ 1
7:—|—]_,j,k(u7 v, w)+(]—|_—)bn

i,j—|—1,k(u7’vaw)+

n
39



(k+1)
i k41 (1 v, w).

By construction of qu%a’ﬂ’V)(u,v,w), we have

(byjkl(u v, W), 73’n 57)(u v,w)) =0, i+j+k=n—1.

Thus by Lemma, we have

(7’+1)az—|—1]k+(]+1)azj+1k+(k+1) ,]]{_|_1:O

and since we know from theorem that

n,r .
A 7JO—,u“n1’OI"L=O,1,...,n,

T

we can generate a" i, recursively on k.



Generalizations:

The d-dimensional unit simplex in barycentric
coordinates is defined by

d
TdZ {U,:(uo,...,ud) : u]ZO, Z U5 = }

The Bernstein basis for polynomials of degree
n over T, are defined by

n!
bo(u) = Tlur = ug®...ugd, o) =n
Oéd!

where a = (ag,...,ag) € N(C)H_1 and |a| = ag +
st ag =n.

The method of construction in this talk can be
generalized to the case of multivariate polyno-
mials over a d-dimensional simplex in any num-
ber of variables d.
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Closure:

We have constructed Jacobi-weighted orthog-
onal polynomials Péf?,i’ﬁ”y)(u,v,w), a,B,v> —1, at+
B+~ = 0 on the triangular domain 1. Since
the Bernstein polynomials are stable, we write
these polynomials in Bernstein basis form. The
polynomials qu?f:ﬁ”)(u,v,w) € Lp,n > 1,r =
0,1,...,n, and 72,2‘}’5’7) (u,v,w) L 7372?;’5’7)(% v, W)
for » = s. And hence, these bivariate polyno-
mials form an orthogonal system over the tri-
angular domain 1" with respect to the above
weight function.
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