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Abstract:

In this talk, Jacobi-weighted orthogonal poly-
nomials

P
(α,β,γ)
n,r (u, v, w) α, β, γ > −1,

on the triangular domain T are constructed.
We show that these polynomials P

(α,β,γ)
n,r (u, v, w)

over the triangular domain T satisfy the follow-
ing properties:

P
(α,β,γ)
n,r (u, v, w) ∈ Ln, n ≥ 1, r = 0,1, . . . , n,

and

P(α,β,γ)
n,r (u, v, w) ⊥ P(α,β,γ)

n,s (u, v, w), r 6= s.

And hence,

P(α,β,γ)
n,r (u, v, w), n = 0,1,2, . . . , r = 0,1, . . . , n

form an orthogonal system over the triangular
domain T with respect to the Jacobi weight
function. These Jacobi-weighted orthogonal
polynomials on triangular domains are given in
Bernstein basis form and thus preserve many
properties of the Bernstein polynomial basis.
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Introduction:

Recent years have seen a great deal in the field

of orthogonal polynomials, a subject closely re-

lated to many important branches of analysis.

Among these orthogonal polynomials, the Ja-

cobi orthogonal polynomials are the most im-

portant. However, the cases of two or more

variables of orthogonal polynomials on trian-

gular domains have been studied by few re-

searchers; although the main definitions and

some simple properties were considered many

years ago.
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Previous Contributions:

Orthogonal polynomials with Jacobi weight func-

tion

w(α,β,γ)(u, v, w) = uαvβ(1− w)γ, α, β, γ > −1

on triangular domain T are defined in [Sauer

1994]. These polynomials

P
(α,β,γ)
n,r (u, v, w)

are orthogonal to each polynomial of degree

≤ n − 1, with respect to the defined weight

function

w(α,β,γ)(u, v, w) on T.

However, P
(α,β,γ)
n,r (u, v, w) ,P (α,β,γ)

n,s (u, v, w), r 6=
s, are not orthogonal with respect to the weight

function w(α,β,γ)(u, v, w) on T.
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In [Farouki, Goodman, Sauer 2003], orthog-

onal polynomials with respect to the weight

function

w(u, v, w) = 1

on a triangular domain T are defined. These

polynomials Pn,r(u, v, w) are orthogonal to each

polynomial of degree ≤ n− 1 and also orthog-

onal to each polynomial Pn,s(u, v, w), r 6= s.
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In this talk, we construct orthogonal polynomi-
als P

(α,β,γ)
n,r (u, v, w) with respect to the Jacobi

weight function

w(α,β,γ)(u, v, w) = uαvβ(1− w)γ, α, β, γ > −1

on triangular domain T . These Jacobi-weighted
orthogonal polynomials on triangular domains
are given in the Bernstein basis form, and thus
preserving many geometric properties of the
Bernstein polynomial basis. We show that these
polynomials P

(α,β,γ)
n,r (u, v, w) over the triangular

domain T satisfy the properties:

P
(α,β,γ)
n,r (u, v, w) ∈ Ln, n ≥ 1, r = 0,1, . . . , n,

and for r 6= s we proved that

P(α,β,γ)
n,r (u, v, w) ⊥ P(α,β,γ)

n,s (u, v, w).

And hence, these bivariate polynomials for

P(α,β,γ)
n,r (u, v, w), r = 0,1, . . . , n, n = 0,1,2, . . .

form an orthogonal system over the triangular
domain T with respect to the weight function

w(α,β,γ)(u, v, w), α, β, γ > −1.
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Orthogonal Polynomials on Squares:

The construction of bivariate orthogonal poly-

nomials on the square is straightforward. We

consider the tensor product of the set of or-

thogonal polynomials over the square

G = {(x, y) : −1 ≤ x ≤ 1, −1 ≤ y ≤ 1}.
Let

{P (α1,β1)
n (x)}

be the Jacobi polynomials over [−1,1] with re-

spect to the weight function

w1(x) = (1− x)α1(1 + x)β1.

And let

{Q(α2,β2)
m (y)}

be the Jacobi polynomials over [−1,1] with re-

spect to the weight function

w2(y) = (1− y)α2(1 + y)β2.
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We define the bivariate polynomials {Rnm(x, y)}
on G formed by the tensor products of the Ja-

cobi polynomials by

Rnm(x, y) := P
(α1,β1)
n−m (x)Q(α2,β2)

m (y),

n = 0,1,2, . . . and m = 0,1, . . . , n.

Then {Rnm(x, y)} are orthogonal on the square

G with respect to the weight function

w(x, y) = w
(α1,β1)
1 (x)w(α2,β2)

2 (y).

However, the construction of orthogonal poly-

nomials over a triangular domain is not straight-

forward like the tensor product over the square

G.



Definitions:

For m ≥ 1,,

Πn: the space of all polynomials of degree n

over the triangular domain T.

Lm : The space of polynomials of degree m

that are orthogonal to all polynomials of de-

gree < m over a triangular domain T, i.e.

Lm = {p ∈ Πm : p ⊥ Πm−1},
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Univariate Bernstein Polynomials:

The Bernstein polynomials bn
i (u), u ∈ [0,1], i =

0,1, . . . , n are defined by

bn
i (u) =





(
n
i

)
ui(1− u)n−i, i = 0,1, . . . , n

0, else

where the binomial coefficients are given by
(

n
i

)
=

{
n!

i!(n−i)!, if 0 ≤ i ≤ n

0, else
.
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Univariate Jacobi Polynomials:

The Jacobi polynomials P
(α,β)
n (x) of degree n

are the orthogonal polynomials, except for a

constant factor, on [−1,1] with respect to the

weight function

w(x) = (1− x)α(1 + x)β, α, β > −1.

It is appropriate to take u ∈ [0,1] for both

Bernstein and Jacobi polynomials. The fol-

lowing two lemmas will be needed in the con-

struction of the orthogonal bivariate polynomi-

als and the proof of the main results.
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Relations between Bernstein and Jacobi:

Lemma. (see Rababah 2004) The Jacobi poly-

nomial P
(α,β)
r (u) of degree r = 0,1, . . . has the

following Bernstein representation

P
(α,β)
r (u) =

r∑

i=0

(−1)r−i

(
r + α

i

) (
r + β
r − i

)

(
r
i

) br
i (u) .

The Pochhammer symbol is more appropri-

ate, but the combinatorial notation gives more

compact and readable formulas, these have

also been used in the book by Szegö.
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Lemma. (see Rababah 2004) The Jacobi poly-

nomials

P
(α,β)
0 (u), ..., P (α,β)

n (u) of degree ≤ n can be ex-

pressed in terms of the Bernstein basis of fixed

degree n by the following formula

P
(α,β)
r (u) =

n∑

i=0

µn
i,rb

n
i (u), r = 0,1, . . . , n,

where, for i = 0, . . . , n,

µn
i,r =

(
n
i

)−1 min(i,r)∑

k=max(0,i+r−n)

(−1)r−k

(
n− r
i− k

)

(
r + α

k

) (
r + β
r − k

)
.
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Barycentric Coordinates:

Consider a base triangle in the plane with the

vertices pk = (xk, yk), k = 1,2,3. Then every

point p inside the triangle T can be written us-

ing the barycentric coordinates (u, v, w), where

u + v + w = 1, u, v, w ≥ 0 as p=up1 + vp2 +

wp3. The barycentric coordinates are the ratio

of areas of subtriangles of the base triangle as

follows

u =
area(p,p2,p3)

area(p1,p2,p3)
, v =

area(p1,p,p3)

area(p1,p2,p3)
,

w =
area(p1,p2,p)

area(p1,p2,p3)
,

where area(p1,p2,p3) 6= 0, which means that

p1,p2,p3 are not collinear.
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Generalized Bernstein polynomials:

Let T be a triangular domain defined by

T = {(u, v, w) : u, v, w ≥ 0, u + v + w = 1} .

Let the notation α = (i, j, k) denotes triples of
non-negative integers, where |α| = i + j + k·
The generalized Bernstein polynomials of de-
gree n on the triangular domain T are defined
by the formula

bn
α(u, v, w) =

(
n
α

)
uivjwk, |α| = n,

where (
n
α

)
=

n!

i!j!k!
.

Note that the generalized Bernstein polynomi-
als are non-negative over T, and form a parti-
tion of unity, i.e.

1 = (u + v + w)n =
∑

0 ≤ i, j, k ≤ n
i + j + k = n

n!

i!j!k!
uivjwk.
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The sum involves a total of 1
2 (n + 1) (n + 2)

linearly independent polynomials. These poly-

nomials define the Bernstein basis for the space

Πn over the triangular domain T.

The Bernstein polynomials bn
α(u, v, w), |α| = n,

on T satisfy,
∫ ∫

T

bn
α(u, v, w)dA =

∆

(n + 1)(n + 2)
,

where ∆ is double the area of T .



Triangular Bézier Surfaces:

Any polynomial P(u,v,w) of degree n can be

written in the Bernstein form

P (u, v, w) =
∑

|α|=n

dαbn
α(u, v, w),

with Bézier coefficients dα. We can also use the

degree elevation algorithm for the Bernstein

representation. This is obtained by multiplying

both sides by 1 = u + v + w, and writing

P (u, v, w) =
∑

|α|=n+1

d
(1)
α bn+1

α (u, v, w).

The new coefficients d
(1)
α are defined by,

d
(1)
ijk =

1

n + 1
(idi−1,j,k + jdi,j−1,k + kdi,j,k−1),

where i + j + k = n + 1.
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Inner Product:

Let P (u, v, w) and Q(u, v, w) be two bivariate

polynomials over T , then we define their inner

product over T by

〈P, Q〉 =
1

∆

∫ ∫

T

PQdA.

We say that P and Q are orthogonal if

〈P, Q〉 = 0.
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Degree-ordered System of OP:

A basis of linearly independent and mutually

orthogonal polynomials in the barycentric co-

ordinates (u, v, w) are constructed over T. These

polynomials are represented in the following

triangular table

P
(α,β,γ)
0,0 (U)

P
(α,β,γ)
1,0 (U), P

(α,β,γ)
1,1 (U)

P
(α,β,γ)
2,0 (U), P

(α,β,γ)
2,1 (U), P (α,β,γ)

2,2 (U)

...

P
(α,β,γ)
n,0 (U), P (α,β,γ)

n,1 (U), P (α,β,γ)
n,2 (U), . . . , P (α,β,γ)

n,n (U)
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The kth row of this triangle table contains k+1

polynomials. Thus, for a basis of linearly inde-

pendent polynomials of total degree n, there

are 1
2(n + 1)(n + 2) polynomials.



Orthogonal Polynomials on Triangular Domains:

A simple closed-form representation of degree-

ordered system of orthogonal polynomials is

constructed on a triangular domain T. Since

the Bernstein polynomials are stable, it is con-

venient to write these polynomials in Bernstein

form.

Let f(u, v, w) be an integrable function over T,

and consider the operator

Sn(f) = (n + 1)(n + 2)
∑

|α|=n

〈f, bn
α〉 bn

α.

For n ≥ m,

λm,n =
(n + 2)!n!

(n + m + 2)!(n−m)!

is an eigenvalue of the operator Sn, and Lm is

the corresponding eigenspace, see Derriennic.
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Preliminary Results:

The following Lemmas will be needed in the

proof of the main results.

Lemma. (See Farouki, Goodman, and Sauer

2003) Let P =
∑

|α|=n
cαbn

α ∈ Lm and Q =
∑

|α|=n

dαbn
α ∈ Πn with m ≤ n· Then we have

〈P, Q〉 =
(n!)2

(n + m + 2)!(n−m)!

∑

|α|=n

cαdα.
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Lemma. (See Farouki, Goodman, and Sauer

2003, and Peters, and Reif 2000) Let P =∑
|α|=n

cαbn
α ∈ Πn. Then we have

P ∈ Ln ⇔
∑

|α|=n

cαdα = 0 for all Q =
∑

|α|=n

dαbn
α ∈ Πn−1·
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Consider the polynomials

qn,r(w) =
n−r∑

j=o

(−1)j

(
n + r + 1

j

)
bn−r
j (w).

The polynomial qn,r(w) is a scalar multiple of

P
(0,2r+1)
n−r (1 − 2w), and we have the following

Lemma

Lemma. (See Farouki et al 2003) For r =

0, . . . , n and i = 0, . . . , n − r − 1, qn,r(w) is or-

thogonal to (1−w)2r+i+1 on [0,1], and hence

1∫

0

qn,r(w)P (w)(1− w)2r+1dw = 0,

for every polynomial P (w) of degree ≤ n−r−1.
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Let σ = α + β + γ, then the following lemma

will be used in the proof of theorem.

Lemma. The following identity holds

S =
n−r∑

j=0

(−1)j

(
n + r + σ + 1

j

) (
n− r

j

)

(
n + r + i + σ + 1

j

)

=

(
i

n− r

)

(
n + r + i + σ + 1

n− r

).
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Proof: Using equation (5.21) in Knuth, and

negating the binomial term in the numerator,

we get
(

n− r
j

)

(
n + r + i + σ + 1

j

) =

(−1)n−r−j

(
−2r − i− σ − 2

n− r − j

)

(
n + r + i + σ + 1

n− r

).

Substituting these simplifications in the sum-

mation, we get

S =
(−1)n−r

(
n + r + i + σ + 1

n− r

)
n−r∑

j=0

(
n + r + σ + 1

j

)

(
−2r − i− σ − 2

n− r − j

)
.
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Using equation (5.22) in Knuth, we have

S =

(−1)n−r

(
n− r − i− 1

n− r

)

(
n + r + i + σ + 1

n− r

) ,

and by negating the numerator, the identity

holds.
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Jacobi-weighted Orthogonal Polynomials:

For n = 0,1,2, . . . and r = 0,1, . . . , n, we define

the bivariate polynomials

P(α,β,γ)
n,r (u, v, w) =

r∑

i=0

c(i, α, β)br
i (u, v)

n−r∑

j=0

(−1)j

(
n + r + 1

j

)
bn−r
j (w, u + v)

where α, β, γ > −1,

c(i, α, β) = (−1)r−i

(
r + α

i

) (
r + β
r − i

)

(
r
i

) , i = 0,1, . . . , r,

and

br
i (u, v) =

(
r
i

)
uivr−i, i = 0,1, . . . , r.
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Preliminaries for Proof:

We show that the polynomials P(α,β,γ)
n,r (u, v, w)

∈ Ln, n ≥ 1, r = 0,1, . . . , n, and P(α,β,γ)
n,r ⊥

P(α,β,γ)
n,s for r 6= s. Thus, choosing P

(α,β,γ)
0,0 = 1,

then the polynomials P(α,β,γ)
n,r (u, v, w) for 0 ≤

r ≤ n and n = 0,1,2, . . . form a degree-ordered

orthogonal sequence over T. We first rewrite

these polynomials in the Jacobi polynomials

form

P(α,β,γ)
n,r (U) =

r∑

i=0

(−1)r−i

(
r + α

i

) (
r + β
r − i

)

(
r
i

) br
i (u, v)

×
n−r∑

j=0

(−1)j

(
n + r + 1

j

)
bn−r
j (w, u + v)
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=
r∑

i=0

(−1)r−i

(
r + α

i

) (
r + β
r − i

)

(
r
i

) br
i (u, v)

(u + v)r
(1−w)r

×
n−r∑

j=0

(−1)j

(
n + r + 1

j

)
bn−r
j (w,1− w).

Since

br
i (u, v)

(u + v)r
= br

i (
u

1− w
),

and using Lemma, we get

P(α,β,γ)
n,r (U) = P

(α,β)
r (

u

1− w
)(1− w)rqn,r(w), r = 0, ..., n,

where P
(α,β)
r (t) is the univariate Jacobi poly-

nomial of degree r.



P(α,β,γ)
n,r (u, v, w) ∈ Ln:

First, we show that the polynomials P(α,β,γ)
n,r (u, v, w),

r = 0, ..., n are orthogonal to all polynomials of

degree < n over the triangular domain T.

Theorem. For each n = 1,2, . . ., r = 0,1, . . . , n,

and the weight function w(α,β,γ)(u, v, w) = uαvβ(1−
w)γ such that α, β, γ > −1, we have P(α,β,γ)

n,r (u, v, w) ∈
Ln.
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Proof of Theorem:

Proof: For each m = 0, . . . , n − 1, and s =

0, . . . , m we construct the set of bivariate poly-

nomials

Q
(α,β)
s,m (u, v, w)=P

(α,β)
s (

u

1− w
)(1− w)mwn−m−1.

The span of these polynomials includes the set

of Bernstein polynomials

bm
j (

u

1− w
)(1− w)mwn−m−1 = bm

j (u, v)wn−m−1.

which span the space Πn−1. Thus, it is suf-

ficient to show that for each m = 0, . . . , n −
1, s = 0, . . . , m, we have

I :=
∫ ∫

T

P(α,β,γ)
n,r (U)Q(α,β)

s,m (U)w(α,β,γ)(U)dA = 0.
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This is simplified to

I = ∆

1∫

0

1−w∫

0

P
(α,β)
r (

u

1− w
)qn,r(w)P (α,β)

s (
u

1− w
)

wn−m−1uαvβ(1− w)γ+r+mdudw.

By making the substitution t = u
1−w, we get

w(α,β,γ)(U) = uαvβ(1−w)γ = tα(1−t)β(1−w)α+β+γ.

And thus, we have

I = ∆

1∫

0

1∫

0

P
(α,β)
r (t)qn,r(w)P (α,β)

s (t)

(1− w)α+β+γ+r+m+1wn−m−1tα (1− t)β dtdw

= ∆

1∫

0

P
(α,β)
r (t)P (α,β)

s (t)tα (1− t)β dt

1∫

0

qn,r(w)
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(1− w)α+β+γ+r+m+1wn−m−1dw.

If m < r, then we have s < r, and the first

integral is zero by the orthogonality property

of the Jacobi polynomials. If r ≤ m ≤ n − 1,

we have by Lemma, the second integral equals

zero. And thus the theorem follows.

Note that taking w(α,β,γ)(u, v, w) = uαvβ(1 −
w)γ enables us to separate the integrand in the

proof of theorem. Note that the case α + β +

γ = 0 is discussed in Rababah, and Al-Qudah.



P(α,β,γ)
n,r (u, v, w) ⊥ P(α,β,γ)

n,s (u, v, w):

In the following theorem, we show that P(α,β,γ)
n,r (U)

is orthogonal to each polynomial of degree n.

And thus the bivariate polynomials P(α,β,γ)
n,r (u, v, w),

r = 0,1, . . . , n, and n = 0,1,2, . . . form an or-

thogonal system over the triangular domain T

with respect to the weight function w(α,β,γ)(u, v, w),

α, β, γ > −1.
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Theorem. For r 6= s, we have P(α,β,γ)
n,r (u, v, w) ⊥

P(α,β,γ)
n,s (u, v, w) with respect to the weight func-

tion w(α,β,γ)(u, v, w) = uαvβ(1 − w)γ such that

α, β, γ > −1 .
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Proof of Theorem:

Proof: For r 6= s, we have

I :=
∫ ∫

T
P(α,β,γ)

n,r (U)P(α,β,γ)
n,s (U)w(α,β,γ)(U)dA

= ∆

1∫

0

1−w∫

0

P
(α,β)
r

(
u

1− w

)
P

(α,β)
s

(
u

1− w

)
(1−w)r+s

qn,r(w)qn,s(w)w(α,β,γ)(U)dudw
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By making the substitution t = u
1−w, we get

w(α,β,γ)(u, v, w) = tα(1− t)β(1−w)α+β+γ. And

thus, we have

I = ∆

1∫

0

P
(α,β)
r (t)P (α,β)

s (t)tα (1− t)β dt

1∫

0

qn,r(w)qn,s(w)(1− w)α+β+γ+r+s+1dw

the first integral equals zero by the orthogo-

nality property of the Jacobi polynomials for

r 6= s, and thus the theorem follows.
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Orthogonal polynomials in Bernstein basis:

The Bernstein-Bézier form of curves and sur-

faces exhibits some interesting geometric prop-

erties. So, we write the orthogonal polyno-

mials P(α,β,γ)
n,r (u, v, w), r = 0,1, . . . , n and n =

0,1,2, . . . in the following Bernstein-Bézier form

P(α,β,γ)
n,r (u, v, w) =

∑

|α|=n

an,r
α bn

α(u, v, w).

We are interested in finding a closed form for

the computation of the Bernstein coefficients

a
n,r
α . These are given explicitly in the following

theorem
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Theorem. The Bernstein coefficients a
n,r
α are

given explicitly by: a
n,r
ijk =





(−1)k

(
n + r + 1

k

)(
n− r

k

)

(
n
k

) µn−k
i,r , 0 ≤ k ≤ n− r

0, k > n− r

where µn−k
i,r are given in Rababah 2004.
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Proof of Theorem:

Proof: It is clear that P(α,β,γ)
n,r (u, v, w) has de-

gree ≤ n− r in the variable w, and thus

a
n,r
ijk = 0 for k > n− r.

For 0 ≤ k ≤ n − r, the remaining coefficients

are determined as follows

∑

i+j=n−k

a
n,r
ijkbn

ijk(U) = (−1)k

(
n + r + 1

k

)
bn−r
k (w, u+v)

×
r∑

i=0

(−1)r−i

(
r + α

i

) (
r + β
r − i

)

(
r
i

) br
i (u, v).

Comparing powers of w on both sides, we have

n−k∑

i=0

a
n,r
ijk

n!

i!j!k!
uivj = (−1)k

(
n + r + 1

k

) (
n− r

k

)
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(u+v)n−r−k
r∑

i=0

(−1)r−i

(
r + α

i

) (
r + β
r − i

)

(
r
i

) br
i (u, v).

The left hand side of the last equation can be

written in the form

n−k∑

i=0

a
n,r
ijk

n!

i!j!k!
uivj =

n−k∑

i=0

a
n,r
ijk

n!(n− k)!

i!j!k!(n− k)!
uivj



=
n−k∑

i=0

a
n,r
ijk

n!(n− k)!

i!(n− k − i)!k!(n− k)!
uivj

=
n−k∑

i=0

a
n,r
ijk

(
n
k

)
bn−k
i (u, v).

Now, we get

n−k∑

i=0

a
n,r
ijk

(
n
k

)
bn−k
i (u, v) = (−1)k

(
n + r + 1

k

) (
n− r

k

)

(u+v)n−r−k
r∑

i=0

(−1)r−i

(
r + α

i

) (
r + β
r − i

)

(
r
i

) br
i (u, v).

With some binomial simplifications, and using

Lemma, we get

n−k∑

i=0

a
n,r
ijk

(
n
k

)
bn−k
i (u, v) = (−1)k

(
n + r + 1

k

)
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(
n− r

k

) r∑

i=0

µn−k
i,r bn−k

i (u, v),

where µn−k
i,r are the coefficients resulting from

writing Jacobi polynomial of degree r in the

Bernstein basis of degree n− k,.



Thus, the required Bernstein-Bézier coefficients

are given by a
n,r
ijk =





(−1)k

(
n + r + 1

k

)(
n− r

k

)

(
n
k

) µn−k
i,r , 0 ≤ k ≤ n− r

0, k > n− r

Which completes the proof of the theorem.
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To derive a recurrence relation for the coeffi-
cients a

n,r
ijk of P(α,β,γ)

n,r (u, v, w), we consider the
generalized Bernstein polynomial of degree n−
1

bn−1
ijk (u, v, w) =

(n− 1)!

i!j!k!
uivjwk

=
(n− 1)!

i!j!k!
uivjwk(u + v + w)

=
(i + 1)n!

n(i + 1)!j!k!
ui+1vjwk+

(j + 1)n!

n(i!)(j + 1)!k!
uivj+1wk+

+
(k + 1)n!

n(i!)(j!)(k + 1)!
uivjwk+1

=
(i + 1)

n
bn
i+1,j,k(u, v, w)+

(j + 1)

n
bn
i,j+1,k(u, v, w)+
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(k + 1)

n
bn
i,j,k+1(u, v, w).

By construction of P(α,β,γ)
n,r (u, v, w), we have

〈bn−1
ijk (u, v, w),P(α,β,γ)

n,r (u, v, w)〉 = 0, i+j+k = n−1.

Thus by Lemma, we have

(i + 1)an,r
i+1,j,k + (j + 1)an,r

i,j+1,k + (k + 1)an,r
i,j,k+1 = 0,

and since we know from theorem that

a
n,r
i,n−i,0 = µn

i,r for i = 0,1, . . . , n,

we can generate a
n,r
i,j,k recursively on k.



Generalizations:

The d-dimensional unit simplex in barycentric

coordinates is defined by

Td =



u = (u0, ..., ud) : uj ≥ 0,

d∑

j=0

uj = 1



 .

The Bernstein basis for polynomials of degree

n over Td are defined by

bn
α(u) =

(
n
α

)
uα =

n!

α0!.... αd!
u

α0
0 ...u

αd
d , |α| = n

where α = (α0, ..., αd) ∈ Nd+1
0 and |α| = α0 +

· · ·+ αd = n.

The method of construction in this talk can be

generalized to the case of multivariate polyno-

mials over a d-dimensional simplex in any num-

ber of variables d.
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Closure:

We have constructed Jacobi-weighted orthog-

onal polynomials P
(α,β,γ)
n,r (u, v, w), α, β, γ ≥ −1, α+

β + γ = 0 on the triangular domain T . Since

the Bernstein polynomials are stable, we write

these polynomials in Bernstein basis form. The

polynomials P
(α,β,γ)
n,r (u, v, w) ∈ Ln, n ≥ 1, r =

0,1, . . . , n, and P(α,β,γ)
n,r (u, v, w) ⊥ P(α,β,γ)

n,s (u, v, w)

for r 6= s. And hence, these bivariate polyno-

mials form an orthogonal system over the tri-

angular domain T with respect to the above

weight function.
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