Finite Element Methods with B-Splines

K. Höllig, J. Hörner and A. Kopf

Universität Stuttgart

http://www.mathematik.uni-stuttgart.de/mathA/lst2/

http://www.web-spline.de (with U. Reif, J. Wipper)

PSfrag replace History of Finite Elements and Splines

Splines on bounded Domains

problems: boundary conditions, stability

Weight function

essential boundary conditions $w_{\mid_{\mathcal{D}}} > 0\,,\, w_{\mid_{\partial\mathcal{D}}} = 0$

construction:

- explicit formulas
- Rvachev's Boolean expressions
- numerical distance functions

Rvachev's R-Functions

$$w_{\cap} = w_1 + w_2 - \sqrt{w_1^2 + w_2^2} \quad w_{\cup} = w_{\cap} + w_3 + \sqrt{w_{\cap}^2 + w_3^2}$$

Extension

- I(j) : nearest $(n+1)^m$ -array of inner indices
- $e_{i,j}$: value at j of the Lagrange-polynomial to i
- J(i) : complementary sets $(i \in I(j) \Leftrightarrow j \in J(i))$

Weighted-Extended-B-Splines

(with U. Reif and J. Wipper)

$$B_i = \frac{w}{w(x_i)} \left(b_i + \sum_{j \in J(i)} e_{i,j} b_j \right)$$

properties:

- local support: $e_{i,j} = 0$ for $||i j|| \gtrsim 1$
- stability: $||\sum c_i B_i||_0 \asymp ||C||$
- approximation order: $||u P_h u||_{\ell} \lesssim h^{n+1-\ell} ||u||_{n+1}$

Ritz Galerkin Approximation

- H: Hilbert space, incorporating homogeneous boundary conditions
- *a* : elliptic bilinear form
- λ : linear functional

weak solution:

$$a(u,v) = \lambda(v), v \in H$$

finite element approximation:

$$a(u_h, B_i) = \lambda(B_i), i \in I$$

error estimate:

$$||u - u_h||_H \lesssim \inf_C \left\|u - \sum c_i B_i\right\|_H$$

Linear Elasticity

displacement:

$$(u_1, u_2, u_3) \in \left(H^1_{\Gamma}\right)^3$$

strain tensor:

$$\varepsilon_{k,l} = \frac{1}{2} \left(\partial_k u_\ell + \partial_\ell u_k \right)$$

stress tensor;

$$\sigma_{k,l} = \lambda(\operatorname{trace} \varepsilon) \delta_{k,l} + 2\mu\varepsilon$$

variational formulation:

$$a(u,v) = \int_{\mathcal{D}}^{\text{PSfrag replacem}} \sigma : \varepsilon$$

$$\lambda(v) = \int_{\mathcal{D}} fv + \int_{\partial \mathcal{D} \setminus \Gamma} gv$$

Flagstaff

displacement (30x) and principle stress (color)

rod length:	4.0m	head diameter:	0.4m
material:	aluminum	λ :	$5.71 \cdot 10^8 \mathrm{N/dm^2}$
		μ :	$2.69 \cdot 10^8 \mathrm{N/dm^2}$
max displacement:	9mm	max stress:	1.7kN/cm ²

Flagstaff

grid cell classification

grid width	0.9	0.45	0.225	0.1125
inner	56	1036	10506	101606
boundary	450	1794	7242	31862
ratio	0.889	0.634	0.408	0.239

Plane Strain

$$\varepsilon_{3,\ell} = \varepsilon_{\ell,3} = 0$$

displacement

principal stress

same pressure (40 kp/cm²) in all pipes, no force on outer boundary material steel: $\lambda = 1.15e7 \text{ N/cm}^2$, $\mu = 7.7e6 \text{ N/cm}^2$ outer circle: $r_o = 120 \text{ cm}$

L^2 - and H^1 -Error

 $h = 2^{-k}h_0$, 84...4752 basis functions

Residuum and Boundary Error

 $\|\operatorname{div}\sigma + f\|_0 \preceq h^{n-1}$

 $\max_{\partial \mathcal{D} \backslash \Gamma} |\sigma \xi - g| \preceq h^n$

Singular Solution

material concrete: $\lambda = 8.3e9 \text{ N/m}^2$, $\mu = 1.25e10 \text{ N/m}^2$

L^2 - and H^1 -Error

 $h = 2^{-k}h_0$, 196...40896 basis functions

Residuum and Boundary Error

Condition Number and Iteration Count

 $\operatorname{cond}(G_h) \sim h^{-2} \sim \dim^{-1}$

Advantages of web-Splines

- no mesh generation
- simple basis functions
- multigrid techniques
- high accuracy with few parameters
- arbitrary smoothness and approximation order
- hierarchical bases

