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Model problem

On a bounded domain QcR™

we consider Poisson’s equation —Au=f in ()

with Dirichlet boundary conditions u=0 on 0.




Weak formulation:
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is obtained by solving the Galerkin system
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Objectives:

[] fast convergence uj, — uw as h — 0

[] respect boundary conditions

[ cond Gy, ~ h—?

L1 low dimensional subspace

[1 efficiency, i.e. number of iterations ~ 1/h or even ~ 1

L] practicability



Standard FE-techniques

mesh-based:

[ ] hat functions

[1 macro elements (Clough-Tocher, Agyris, Schumaker)
meshless:

[] radial basis functions
[] wavelets

L] hp elements



Hat functions:

[ Based on triangulation (or quadrangulation) of €.

[1 2d-meshing expensive.

Figures by Dietrich Nowottny



Hat functions:

[1 Based on triangulation of €.

[1 2d-meshing expensive.
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[] 3d-meshing very expensive.

2]
<
O
=}
(i
P -
o
ge)
[
aQ
X
Q£
<
>
¥e)
2]
o
p -
S
o0
[

AN

" o v
£ YA, g AN Y raﬁi-«;h&?«b«r!uﬂﬂa!nmu‘x




Hat functions:

[] Based on triangulation of ().
[1 2d-meshing expensive.
[] 3d-meshing very expensive.

[] Slow convergence,
lw — up|lo ~ R

[1 High dimensional subspaces,

dimIB ~ |lu — up||; ™2

00 cond G}, ~ h™2, iff triangulation is uniform.

[ Huge amount of code implemented and optimized.
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Meshless methods:

structured

unstructured
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Main difficulties:

Obey boundary conditions.

Obey boundary conditions.

Control condition number.



Babuska proposes:

[1 Lagrange multiplier method

saddle point problem

indefinite system
LBB condition

[1 Penalty method

minimize energy + penalty on boundary deviation
balance of terms very delicate

" Both methods have their adherents, ... , none, however, has gained
universal popularity” (Bochev & Gunzberger '98).

11



12

Uniform b-splines

The tensor product b-spline basis of order n with knots hZZ™ is
{bp : ke ZZ™}, suppbr = h(k+[0,n]™).
Potential benefit:

[1 No mesh generation required.

[] Fast convergence,
|lu — up|lo ~ h".

[J Low (lowest) dimensional subspace

—m/n

dim B ~ ||lu — upl|,



Problems:

[1 Boundary conditions:

If a spline is zero on the boundary of €2, then it vanishes on all
intersecting grid cells (in general). This implies a complete loss

of approximation power.
Apply Babuska methods?
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Problems (contd.):

[] Condition number:

b-splines with small support in 2 may lead to excessively large
condition numbers.

Leaving out outer b-splines reduces approximation power.

Just ignore it (brute force)?
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eighted xtended -splines (web-splines)
Partition relevant indices K := {k € 7ZZ"™ : supp b, N Q2 # (}:

The inner b-splines with indices | The outer b-splines with indices
I CK J=K\I

have at least one grid cell in| have no grid cell in their support
their support contained in 2. contained in €2 .
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Extension:

In order to stabilize the basis, the outer b-splines are no longer considered to be

independend. Instead, they are coupled with inner b-splines,
Bi:bi_‘_zei,jbj, 1 € 1.
JE
[1 B; is an extended b-spline, i.e. supp B; D supp b;.

[] Local extension yields uniformly bounded support,
ei; =0 for|i—j||=1 = |suppBi| =< h.

Moreover, most b-splines remain unchanged.

[] Choose coefficients e; ; in such a way that all polynomials of order n remain in

the span of the extended B-Splines B; using Marsden'’s identity,

Y plk)b € PL(Q) iff p e Py(K).
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For any outer index 5 € J let

I(j) C I be a closest inner array
of dimension n™,

J(@)={j€J:i€l(j)} be the
dual index set of I(j).

L;,i € I(j), be the Lagrange po-
lynomials associated with I(j).
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For any outer index j € J let

I(j) C I be a closest inner array
of dimension n™,

J(i)={j€J:iel(j)} be the
dual index set of I(j).

L;,i € I(j), be the Lagrange po-
lynomials associated with I(3j).

Choosing the coefficients

Li(j) forie I(j)
€5 —
& 0 else
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Weighting:

The incorporation of zero boundary conditions is amazingly simple.
Let w : Q — IR] be a smooth function equivalent to the boundary
distance, i.e.

dist(z, 0N)

wle) g

1
dist(z,0Q) — ’

and in particular

w =0 exactly on 0.

Multiplying the extended b-splines B; by the weight function w
yields a basis which satisfies the boundary condition.
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Definition:

The web-splines B, are defined by

w .
B, = w(xz) (bz + Z Gijjbj), 1 € 1,
jeJ (i)

where x(7) is the center of a grid cell in supp b; N §2.

The web-splines span the web-space

B :=span{B,; :1 € [}.
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Stability

For A\, k € I, a family of dual functionals for b; supported on 2 let

w(Tk)

Ak — )\k

Theorem 1: For i,k € I, the dual functionals A, and the web-
splines B; are uniformly bounded in Lo with respect to the grid
width h, and biorthogonal,

IBillo <1, [[Axllo =< 1, / Bilg = 6, 1.
Y/

Theorem 2: The web-basis is stable with respect to the Lo-norm,

HZ a; B;
e

~ ||A] .
~ 4]



Theorem 3: The web-basis satisfies

HZ a’iBi
el

<A

Theorem 4: The spectrum of the Galerkin matrix G}, is bounded by

1 < o(Gh) < h™2.

Theorem 5: The condition number of the Galerkin matrix is
bounded by

cond Gy, < h™2.
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Approximation order

Theorem 6: Let uw € H} be a smooth function. Then

|lu — vl A", v =Pu:= Z(IUAZ)BZ

Ay

Theorem 7: Let u be a smooth solution of the model problem and
up, € IB a finite element approximation obtained by solving the
Galerkin system. Then

lu — upl|- S A"



Multigrid

The performance of cg-solvers (~ h~1! iterations) can be improved
by multigrid methods. These require

[] a smoothing operator 5, e.g. Richardson’s method

S:A— A+ )\ L

maxtd — GA).
[] a grid transfer operator P : B%" — IBh,
P A — Al = pA*
with matrix entries

w(x?) 2h
Pei — w(xzh) (Cezz‘ + Z € Ce—25 |-

‘ JjEJ2(3)
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Multigrid Algorithm U — W = M (U, F, h):

V =5U % o smoothing iterations
F = P{F — GV) % residual on coarse grid
If 2h = Amax %
W =G lF % direct solution on coarsest grid
else %
W = Mﬁ((),ﬁ, 2h) % [ multigrid steps
end %
W=V +PW % update on fine grid

Theorem 8: For 3 = 2 and « sufficiently large (W-cycle), the
multigrid algorithm converges after O(1) iterations. Thus, the
complexity for solving the FE-problem reduces to O(dim IB).
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Extensions and further development

[1 The method potentially applies to many FE problems.

[] Hierarchical b-splines can be used for local and adaptive grid
refinement.

[1 The weight function is still subject to optimization.

[1 Extend the method to non-smooth problems

by local refinement,
by assymptotic expansion.

[J Implementation (3d, multigrid) in progress.
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Conclusion

The web-spline method is a promising new FE technique providing
the following features:

[] Wide range of applicability.

[1 No mesh generation required.

[] High accuracy approximation with relatively few coefficients.
[1 O(1)-convergence with multigrid.

[] Based on industrial standard (b-splines).

[] Easy to implement (3d integration subtle).
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