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Abstract

The construction of weighted extended B-splines (web-splines), as recently introduced by the authors and
J. Wipper for uniform knot sequences, is generalized to the nonuniform case. We show that web-splines form
a stable basis for splines on arbitrary domain®if which provides optimal approximation power. Moreover,
homogeneous boundary conditions, as encountered frequently in finite element applications, can be satisfied
exactly by using an appropriate weight function. To illustrate the performance of the method, it is applied to a
scattered data fitting problem and a finite element approximation of an elliptic boundary value problem.
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1. Introduction

Tensor product B-splines have become a standard for approximation of functions and discrete data
(de Boor, 1978), computer-aided-design (Farin, 1988; Hoschek and Lasser, 1993), geometric modelling
and computer graphics (Cohen et al., 2001). Among their many favorable properties, the stability of the
B-spline basis is crucial for approximation purposes. However, stability is in general lost if the domain is
trimmed to a bounded domaib c R™, whose boundaries are not aligned with the coordinate axes. This
fact causes severe problems for instance in reverse engineering applications, where data are typically
available only a bounded domain. Equally, it is a major obstacle to using B-splines as finite elements.
As a generalization of the approach introduced in (Héllig et al., 2000, 2001, 2002; Héllig, 2003) for the
uniform case, we present a solution to this problem for nonuniform spline spaces.
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Fig. 1. Relevant biquadratic B-splines for a domainmarked at the lower left cornets1 4, koh) of their supports. Inner and
outer B-splines are indicated with dots and circles, respectively.

The basic idea is simple. As is illustrated in Fig. 1, we can approximate a function on a bounded
domainD c R™ by forming aspling i.e., a linear combination of alelevant B-splines

bk, kEK,

which have some support iR. Depending on the degree, this yields approximations of arbitrary order
and smoothness. However, numerical instabilities may arise due tautbeB-splines

bj, jEJ,

for which no complete grid cell of their support liesih Here and in the sequelggid cellis an interval

which in every coordinate direction is bounded by two consecutive, but different knots, anteagrid

cell is a grid cell whose interior is completely containedzin A further difficulty is that, in general,

splines do not conform to homogeneous boundary conditions, which is essential for standard finite

element schemes (Zienkiewicz and Taylor, 2000) or for matching boundaries in data fitting problems.
Fortunately, both problems can be resolved. A stable basis is obtained by forming appropriate

extensions of théner B-splines

bi, iel:=K\J,

which have at least one inner grid cell in their support. If zero boundary data are required, we multiply by
a positiveweight functionw which vanishes on the boundaiy of D. Otherwisew can be omitted or, to

unify notation, be set tw = 1. Combining both ideas led to the definitiorveéighted extended B-splines
(web-splines) (Hollig et al., 2001). These new basis functions combine the computational advantages of
B-splines and standard finite elements:

e The web-spline basis is stable.
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Homogeneous boundary conditions can be matched exactly.

No mesh generation is required.

Accurate numerical approximations are possible with relatively low-dimensional subspaces.
Smoothness and approximation order can be chosen arbitrarily.

Hierarchical bases permit adaptive refinement and multigrid algorithms.

Given the difficulty of meshing domains I®? or, even more, ifR? (cf., e.g., (Owen, 1998)), the third
property is of great importance for finite element applications. Utilizing a regular grid not only eliminates
a complicated and time-consuming preprocessing step, but also permits a very efficient implementation
of algorithms.

In (Hollig et al., 2001), web-splines have been constructed with uniform B-splines. This is adequate
for smooth problems and also gives acceptable results for moderate singularities. To gain more flexibility,
nonuniform knot spacing can be used to adapt the spline space to the requested resolution, or to suit the
grid structure to the geometry of the domain. On the left hand side, Fig. 2 shows an example, where
nonuniform knots are used to resolve the potentially fine structure of the function to be approximated
in a vicinity of the small circular hole. The right hand side depicts a typical situation, where the grid
lines are aligned in a natural way to horizontal and vertical boundaries. We shall come back to these
two examples in Section 5. In such situations, the use of nonuniform knot sequences, as described
in this paper, is particularly competitive since it combines relatively low-dimensional spaces with the
computational advantages of a regular grid.

Of course, in the multivariate case, nonuniform knot sequences are not always useful. The point is that
knot insertion is not local in the sense that the complete domain is subdivided. This leads to an unjust
increase of the dimension of the spline space if several, unaligned features are to be resolved. In such
cases, hierarchical bases, as described in (H6llig, 2002, 2003), are the method of choice. Here, the finite
elements are defined on a nested sequence of grids with scaled uniform knot sequences.

In this paper, we show how web-splines can be generalized to nonuniform knot sequences, where
emphasis is put on the extension procedure. The key tool is a sequence of dual functionals, which we
review in Section 2 along with some definitions and basic facts about B-splines. In Section 3, we illustrate
the main idea of our basis construction for a simple univariate model. The definition of multivariate

I,

v N\

Fig. 2. Domains with nonuniform grids.



280 K. Hollig, U. Reif / Computer Aided Geometric Design 20 (2003) 277-294

nonuniform web-splines is then given in Section 4. Finally, we consider in Section 5 two applications:

We show how web-splines avoid boundary artifacts in scattered data approximation on trimmed domains,

and we demonstrate their excellent performance as finite elements at hand of a simple model problem.
Throughout, we use the following notational conventions. For an intévalR™, we denote by Q|

and 1 (Q) its diameter and measure, respectively. The linear space of all polynomial of degrée

denoted byP,, where in the multivariate case,= [n1, ..., n,] is understood as the coordinate degree.

In estimates, constants co(yst, p», . . .) depending on parameteps are always positive. If the constants

are clear from the context, we drop them and use the symbpls, and <, instead. Thep-norm of a

vector or sequenc€ = {c;}xex IS denoted by|C||, x, and theL ,-norm of a functionu on a domainD

by llull ,,p. Finally, || - |l ,.¢,p is the norm of the Sobolev spa@éf;(D), see (Adams, 1978).

2. Some facts about B-splines

The material presented in this section is well known, but briefly compiled here for later reference and
convenience of the reader. For given degresnd a bi-infinite nondecreasing knot sequence

e Sl S

we denote by, = b}, € Z, the B-splines of degree with support

suppby = [%, tigns1l-

We choose the standard normalizatipi) b, = 1 and assumg < 7,41 to avoid degenerate cases, i.e.,
the multiplicity m, of the knotz, is at mostn + 1. As is well-known (de Boor, 1978), the B-splines
{br, k € Z} form a basis for the piecewise polynomials of degreer which are (n — m;)-times
continuously differentiable at. If higher order derivatives are required at a knot, they are understood as
right-sided limits of adjacent polynomials. Moreover, the B-spline basis is uniformly stable,

Z Ckbk

keZ

Hence, in the bi-infinite case, the condition number of the basis does not depend on the knot sequence
Estimate (1) and many other results concerning stability and approximation power of B-splines can be

proven usinglual functionals From the plethora of possible constructions, we consider here the classical

definition of de Boor and Fix (de Boor and Fix, 1973), which is explicit and particularly elegant.&ar

andt; € [, tyini1), We define

constn) | Clleoz < < Cllco.z- 1)

oo, R

n 1 n
hf =) D@ O @, k) = = [ e — ). )
T =1

=0
The essential properties of this family of functionals ar@rthogonalityand uniformboundednessn
the space of polynomials of degreen.

Theorem 1 (Dual functionals for B-splines). (B-splines and de Boor—Fix functionals are bi-orthogonal,

)‘kbk’ = Sk,k/’ k, kK eZ.
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(i) If 0 is aninterval in the support df;, with length bounded byQ| > «| suppb,| for some constant
a € (0, 1], then

|Apl < constn, @)|plles,0s P € P

Proof. The proof of bi-orthogonality is based on Taylor's theorem and Marsden’s identity, see (de Boor,
1978) for details. To verify boundedness, we note that definition (2) is compatible with translation and
scaling. More precisely, if is the dual functional corresponding to the knot sequéneeht + s and

the parametet, := ht; + s, then

hif =i f (¢ =9)/h).
This implies that we may assum@ = [0, 1] without loss of generality. It is easily checked that
1k loo.n.[0.1] < CONStR) |t ynt1 — 1" < CcONStn)a™". Thus, by equivalence of norms 61,

|2k p| < constn) ([ Yk lloo,n, 0,11l Plloc,n 0,11 < CONStn, &) || pll oo, [0,11- O

Clearly, if we chooseQ as the largest grid interval in supp, we can takex = 1/(n + 1), and the
constant in the estimate depends only on the degree. With this choicg and we obtain a proof for
the nontrivial left inequality of the stability result (1). We simply observe that, by bi-orthogonality,

=g, q=) cubp
v

for any splineg, and that Theorem 1 applies singés a polynomial onQ.

However, it should be noted that this argument can fail for finite knot sequences. For a B-spline with
exterior knots, the largest grid intervéd may lie outside the natural domain of definitidh of the
spline space. Hence, as is easily overlooked, for finite dimensional spline spaces, (1) does not hold. This
problem can be eliminated by requiring that thesh ratigi.e., the maximal quotient of the lengths of
adjacent grid cells, is bounded by a constanin this case, every grid celd, in the support ob, has
length

| Q| = constn, o)| suppby/,

and the constant in (1) has to be replaced by deng?.
Finally, with the aid of dual functionals, we can defineamonical projectoronto splines via

Pf = Z(kkf)bk-
k

Because of bi-orthogonality? reproduces B-splines, which implies in particutenlynomial precision
ie.,

Pp=Y (up)bi=p 3)
k

for all polynomialsp € P,.

3. Stability via extension

As we have seen, stability problems are caused by B-splines with small supparththile the mesh
ratio can be controlled quite easily, the support of some B-splindg® @an still become small iD is
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Fig. 3. Left: Inner B-splines;, i € I (solid), and outer B-splinds;, j € J (dashed), on a bounded interval Right: Extended
B-splinesB;, i € 1.

not a union of grid cells. This phenomenon is persistent only in the multivariate case, but shall at first be
studied in one variable for the sake of simplicity.
Let

chbk(x), xeD,
keK

be a spline on a bounded interv@l C R, where the index seK comprises all relevant B-splines with
some support irD. The example of a quadratic spline space, depicted in Fig. 3, captures the essential
difficulty. If the interval endpoints do not coincide with knots, there exist outer B-splines

bj, jel,
for which supp; does not contain an inner grid cell. These outer B-splines cause stability problems even

if the mesh ratio is small. In the example, we have kngts 13 = ¢, 14, = 2/3, t5 = 1 inside the domain
D =0, 1]. All other knots lie outside. Hence, the set of outer indicesis{—1, 0}, and

b-1(x) =0(e?),  bo(x) =O(e)
for x € D. Hence, the first two coefficients of a splipewith |¢|l-.p < 1 can become arbitrarily large
ase — 0. For the inner B-splines
bi, iel,
suppb; contains at least one inner grid cell. In the example, {1, 2, 3, 4}. This part of the basis is stable
regardless of the size of
We would like to select a subspace with a stable, local basis while maintaining polynomial precision.
This is accomplished by adjoining outer to inner B-splines via appropriate linear combinations. To this

end, for an outer index € J, we denote byQ; an inner grid cell which is closest to suppwith respect
to the Hausdorff metric. The set aélated inner indicess defined by

I(j):={iel. Q; Csuppbh;}.
It is easy to see thak(j) consists ofn + 1 consecutive inner indices$(j) = {¢,..., ¢ + n}, wheren
denotes the degree. Conversely, for an inner ingdeve define the set atlated outer indiceby

Ji)y={jeliiel()}.
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In the exampleQ_; = Qo = [¢, 14] and
1(-1)=1(0={1,23}, JH=J@2)=J3) ={-10}, J(4) =0.
With these notions, we define extended B-splines as follows:

Definition 1. Fori € I, j € J(i), and Q; as defined above, we denote py; the polynomial which
agrees withb; on Q; and define thextension coefficients

e,-,j = )\jpi,j- (4)
Then, theextended B-splinggb-spline} are

B,‘I=b,'+ Ze,-,jbj, iel.
jeJ ()
The linear span of eb-splines is denotediy
In the example, the basis f@ consists of the eb-splineB,, ..., B4. SinceJ(4) =@, B4 = bs; only
the B-splines; with i close toJ are modified.

The computation of the extension coefficients is straightforward: We generate the polynpmials
in Taylor form using the recurrence relation for B-splines. Expanding at an arbitrary gointhich
appears in the definition of the dual functiorigl, the coefficients yield the relevant data for applying
formula (2). This procedure is slightly more involved than for uniform kngts=(k%), where we have
the simple expression
~ o j—L—v
ar= 11 ==
et
derived via Lagrange interpolation, see (Hdllig et al., 2001) for details. In any case, the overhead is small
since only a few B-splines near the interval endpoints are extended.

We show now that extended B-splines inherit all properties of standard B-splines which are crucial for
approximation purposes, namely locality, boundedness, existence of dual functionals, and polynomial

precision.

Theorem 2 (Locality and boundedness). (he distance betweehe I and j € J (i) is bounded by
li — j| <2n+ 1. In particular,

| SUppB;| < constn, o)| suppb; |. )
(ii) eb-splines are uniformly bounded by
|B{||.. , < constn, o)| suppb;|~". (6)

Proof. To prove locality, we consider, e.g., the left boundanyofif iy is the smallest inner index, then
io —n — 2 is an index which certainly corresponds to a nonrelevant B-spline. Hgnee, — 1 < j < i,
and the corresponding set of inner indiced ($) = ip + {0, ..., n}. The bound on the number of outer
B-splinesh; attached td; combined with the bound on the mesh ratio yields (5).

To prove the second statement, we first show that the extension coefficients are uniformly bounded.
The construction of eb-splines is invariant under affine transformations of the abscissa. Hepee/for
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and Q; the nearest inner grid cell, we may assume= [0, 1]. Being part of a standard B-spline, the
polynomial p; ; is bounded byl p; ;llo.[01) < 1. This implies thatp; ;(x)| is bounded by a constant
depending only om andx. By (5), |x| < constn, o) for x € suppb;. So, we obtain using Theorem 1
with Q = suppb;

lei j| = |&;pijl < constn) || pi.jlleo.supp; < CONStn, 0).
Boundedness of extension coefficients combined with the known esti|m5f¢}ooR < constn, g) x
| suppbi|~¢, which holds for standard B-splines, proves the claimm

Now, we show thatk;, i € I} is a family of bounded dual functionals for the eb-splig8s, i € }.

Theorem 3 (Dual functionals for eb-splines). (igb-splines and de Boor—Fix functionals are bi-
orthogonal,

)»,'b,'/Z(Sl')l'/, i,i/GI.
(i) If Q is aninner grid cell in the support df;, then
|Aipl < constn, 0)l|pllw.0. P € Pa

Proof. Bi-orthogonality follows fromi;b, = 8, and the definition ofB;: sincei;b; =0 for j € J,
while boundedness just recalls Theorem 1T

The existence of dual functionals implies linear independence, i.e., eb-splines form a basis for the
spline spaced3. Moreover, like standard B-splines, eb-splines alecal basisin the sense that for any
grid cell Q intersectingD the eb-splines which do not vanish ghare linearly independent. This can
easily be shown by selecting € Q N D for all dual functionals\; corresponding to eb-splines with
in their support. Since all polynomiajs € P, are contained i8, as will follow from the next theorem,
there exist exactly + 1 eb-splines which do not vanish @gh and they span the space of all polynomials
of degree<n on Q.

Defining the canonical projectd? onto B by

Pf:= Z()\'if)Bi,
iel

we can establish polynomial precision.
Theorem 4 (Polynomial precision)For all polynomialsp € P,,
Pp=p.
In particular, the spline spac# contains all polynomials of degre€n on D.

Proof. Substituting the definition oB; and interchanging sums, we have foe D
Pp="Y (Lip)Bi(x) =) (hip)bi + Z[ > el-,,-aip)]bj-
iel iel jeJ =iel(j)
Now, because of (3)Pp = p is equivalent to
Z e j(Aip) =A;p. (7)

iel(j)
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Since both sides are linear im, it suffices to check this identity for a basis. Takipg= p; ; with
i" € 1(j) andr; € Q;, we haver; pi ; = A; by = §; 7, and (7) reduces to the definition (4) of the extension
coefficientse; ;. O

After establishing locality and boundedness, dual functionals, and polynomial precision, we have all
essential ingredients at our disposal to derive standard results on stability and approximation power.
Exemplarily, we establish optimal convergence rates when approximating smooth functions.

Theorem 5 (Approximation power)For x € D, we denote by) the union of supports of eb-splines
containing x, and byh the length of the grid cell containing. Then, for a smooth functioif, the
approximation errord := Pf — f is pointwise bounded by

| x)| < const, o) | £+ h

Proof. The proof is routine. We denote bythe set of inner indices which are relevant forSince/
containsz + 1 elements|Q| < k. Let p € P, be the Taylor polynomial of atx. Then, withA := f — p,

(P2 IS P Y

Further, by polynomial precision and boundedness of eb-splines,

[d9x)| =[PP )| = < max(; Alh .

iel

> 0iM) B ()
iel
It remains to considex; A. The pointz; in the definition ofi; lies in 0. Hencev"*(r;)| < k¢, and

n
AiAl < ZW,-("_Z/)(””|Aw)(fi>| < Hf(n+1) Hoo’th+1' -
=0

We note that similar results for the approximation of less regular functions can be obtained exactly in
the same way using dual functionals which are bounded, e.qg., with respect to the sup-norm. The special
choice that we made here is merely due to the explicit character of the de Boor—Fix functionals, which is
favorable for the definition of extension coefficients.

Summarizing, the material presented in this section admits to derive standard approximation and
stability properties for spline spaces with small parameter intervals at the endpoinls ®he
modifications are crucial for splines in several variables, where we can in general not align the grid
lines to the domain boundaries.

4. Multivariate web-splines

Generalizing the univariate definitions and results of the last sectiom o 2 variables is
straightforward. The arguments are completely analogous. Merely the notation needs to be adapted to
the multivariate setting.

We consider a tensor product gridl" with knot sequences= [t%, ..., t"],

Ky <<, o v=1...,m,
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and denote by

by =0b} ,(x) :=b* 1(x1) - .b,'(’,':’t,,, (xn), keZ™,

kl,tl
the corresponding tensor product B-splines of degredn,, ..., n,,]. Foragrid cellQ with side lengths
li, ..., 1, we define itdistortion by

max, /1.
v,v’

The distortion of the knot sequencds the maximal distortion of its grid cells, arfdwill denote an
upper bound on it. Like the mesh ratio in the univariate case, the distortion quantifies the deviation from
a uniform setting in the multivariate case. It is easy to see that if the distortiois tounded bys, then
the mesh ratios of all knot sequenaés. .., " are bounded by?.
For a bounded domaip c R™ we define the set&, I, J of relevant, inner, and outer indices as in
the univariate case (cf. also Fig. 1):

K :={k e Z": DN suppb; # 0},
1:={i € Z: suppb; contains an inner grid cqll
J:=K\I.

For j € J, the inner grid cell whose midpoint is closest to the midpoint of $ygp denoted byQ ;. The
B-splines which do not vanish of; have indices in

I(H)y=TI'j) x---xI"(j)=L+{0,...,n}"

with £ = £(j) € Z™, see Fig. 4. The complementary sé{g) are defined as before.
The multivariate de Boor—Fix functionals are constructed from the univariate ones as follows: For
k e Z"™ andt, = [‘L’kl, ceey ‘L'km],

Mg i=Ai o0 A (8)

Fig. 4. Grid points(till, t,%), i € 1(j), for a bilinear outer B-spliné;. The nearest inner grid cef); is highlighted, and the
point x; marked by a cross.
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wherel; is acting on therth variable. Itis easily checked that bi-orthogonality and uniform boundedness
are kept.

Except for the incorporation of an additional weight function, the definition of multivariate extended
B-splines is completely analogous to the univariate case:

Definition 2. Fori € I, j € J(i), and Q; defined as above, we denote py; the polynomial which
agrees withp; on Q; and define thextension coefficients

€ij = =Ajpij-

Further, letw be a positivenveight functionwhich is smooth orD and equivalent to some power= 0
of the boundary distance function,

w(x) =< dist(x, D), 9

and denote by; the center of an inner grid cell in supp Then, thewveighted extended B-splinéseb-
splineg are defined by

w .
B; .= m(bl-i- Z ei,jbj), iel.

Jel )
The linear span of web-splines is theeb-spaces.

In particular, the weight function is essential for finite element applications. It allows us to satisfy
homogeneous Dirichlet boundary conditions simply by requiring thatanishes on the appropriate
component of the boundaryD. Using such weighted finite element bases was already suggested by
Kantorowitsch and Krylow (Kantorowitsch and Krylow, 1956) and has been extensively studied by
Rvachev et al. (cf., e.g., the survey (Rvachev and Sheiko, 1995) and the literature cited there). Rvachev
developed the so-called R-function method, which is particularly suited for domains constructed from
simple primitives with Boolean operations. For planar domains bounded piecewise by NURBS-curves,
weight functions are constructed in (Reif, t.a.).

With dual functionals according to (8) and ; (x) =[], pi,.;, (x,), we obtain

m m
€j= ()‘}1 O---0 )\;{;)pi,j = nkjvpiv»j\' = l_lei”’j"'
v=1 v=1
That is, multivariate extension coefficients can be conveniently computed as products of univariate ones.

Again, the web-splinesB; inherit all basic properties of standard nonuniform B-splines, except
positivity. However, constants typically depend now on a bodid the distortion instead of the mesh
ratio.

Theorem 6 (Locality and boundedness). ()D c R™ is a Lipschitz-domain, then the distance between
i elandje J@)isbounded byli — j|ls < constn,m, §, D). In particular,

| SUppB;| < constn, m, 8, D)| suppp;|,
p(SUppB;) < constn, m, §, D)u(suppb;).
(i) Web-splines are uniformly bounded by
| Billoo.p < CONStn, m, 8, D, w). (10)
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Proof. To prove the first statement, we observe that the ratio of diameters of any two griddcels
is bounded by Q|/|Q’| < 2. In particular, if||¢] denotes the maximal diameter of grid celis?||¢|| <
|Q| < 82||t]|. The diameter ofQ is bounded in terms of its side lengths..., 1, by |Q| < 8 /ml,.
Since the domain is assumed to be Lipschitz, there exist constaigslepending orD such that for all
h € (0, hg) andx € D there exists a point € D with |x — y|l» < < adist(y, D).

If |zl < ho/(a8?), we consider an outer indexe J and a pointx € suppb; N D. With h := |t]|as?
and y as above, the grid cel) containingy is inner since|Q| < ||t]|6° = h/a < dist(y, dD). Since
lx —yll < lIt]l, the distance between suppandQ is < |z||. Consequently, the distance between shpp
and the nearest inner grid c&l; is < |7]|. All side lengths of all B-splines are ||7|. So, the difference
between; and inner indiceg € I (j) is < 1.

If ||lz]] > ho/(a8?), then the side lengths, . .., 1,, of any grid cellQ are bounded by

P o] I
Since D is bounded, the lower bound on the side lengths yields an upper bound on the nukhber #
of relevant indices, anfli — j|l.. <#K < constn,m,§, D). The inequalities for the diameter and the
measure of supp; follow immediately from the boundedness of the number of outer B-splines attached
to b; and the boundedness of distortion.
To prove the second statement, we conclude from (9) that the weight factor in the definition of web-
splines is bounded by

<1

‘ w

w(xi) ‘oo,suppB,-

It remains to show that the extension coefficients are uniformly bounded by
le; ;| < constn,m,$, D),

which can be done following exactly the arguments given in the univariate case.

It can be shown by carefully constructed examples that the upper boujhd-oli| ., in fact depends
on the distortion. However, such cases are rarely encountered in applications. The examples in Section 5
show that||li — j || is typically close ta: if the knot sequences are fine.

The dual functionals need to be adapted to the weight function. Wisls in Definition 2, we define
theweighted functionals

Aif =wx)Ai(f/w), i€l

Uniform boundedness is now required on the space of weighted polynomials. On the inner grid cell
Q C suppB; containingx; the weight function can get arbitrarily small. The resulting problem can be
circumvented by restriction to a sub-inten@lof Q which has the same center, but halved side lengths.
From (9) we conclude that

‘ 21 (11)
0.0

‘w(xi)
w

with constants depending @ghandw. Now, we are prepared to establish the analogue of Theorems 1
and 3 for web-splines.
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Theorem 7 (Dual functionals for web-splines). (IMeb-splines and weighted de Boor—Fix functionals
are bi-orthogonal,

AiBi’:Si,i/’ I i'el.

(i) If Q is the inner grid cell in the support a8; containingx;, and O the half-size sub-interval as
defined above, then

|Ai(wp)| < constn, o, w)|wplle.5. P € P
Proof. Bi-orthogonality is verified by inspection. To show boundedness on weighted polynomials, we
note that the multivariate de Boor—Fix functionals are bounded by
|Aipl < constn, §) | plle. 5-
Further, with (11),
| Ai(wp)| = w(x;) | pl < constn, Q) wx)I Pl g
< constn, o) |wx) /w|| , slwple g
<

constn, o, w) [ wpll . - o

The canonical projectoP onto the spline spad8 is defined as before by

Pf = Z(Aif)Bi-

iel

Now, polynomial precision is replaced by weighted polynomial precision.

Theorem 8 (Weighted polynomial precisionkor all polynomialsp € P,,
P(wp) =wp.
In particular, the spline spac#g contains all weighted polynomials of degr€e: on D.

Proof. We obtain
P(wp)=)_ Ai(wp)B;i =w Z(Mp)(bi + ei,jb,-) = wp,
iel iel jeJ (@)

where the last identity is verified exactly as in the proof of Theoremr.

Proving approximation results for weighted spline spaces is slightly more involved than in standard
cases. The technical details are described in (Hollig, 2003). Here, we consider stability of the web-basis
and show the following generalization of (1) and (10):

Theorem 9 (Stability). Appropriately normalized, web-splines are uniformly stable with respect to
p-norms, i.e.,

ICllp.1 =

Z ¢i(viBi)

iel

’

p.D
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where the normalization factor is

L { w(suppb)~Y? forl< p<oo
T for p = o0,
and the constants depend onlymomm, §, D, w.

Proof. The line of arguments is well known: Since the support of each web-spline containgdnly
grid cells, it suffices to prove the local estimates

vt <lall, g Bl <1

whereq =), _, ci(vi B;) and Q is the half-size sub-interval of the inner grid cell containingThe first
inequality is invariant under affine transformations of the arguments. Hence, we may agsafite 11™.
By Theorem 6,

y, "t = p(suppb)” < 1.

Further, since is a weighted polynomial of0, 11", we can use Theorem 7 and equivalence of norms to
obtain

[Aig| 2 11qlloo.i0.1m = NGl p.10.2pm-
For p = oo, the second inequality is just (10). Fpr< oo, Theorem 6 yields

u(suppBi)>1/”
Bill,p <) <1,
Iy Billy.o (u(suppbl-)

and the proof is complete.

5. Applications

In this section, we discuss two typical applications of web-splines. First, we consider a scattered data
approximation problem on a trimmed domain. Second, we illustrate their performance as finite elements
at hand of a simple model problem.

Scattered data approximation problems on trimmed domains occur, for instance, in reverse engineering
applications. LetD ¢ R? be a bounded domain. For given data poifts y,, z,) € D x R we seek a
bivariate spling; : D — R which approximates in a least squares sense:

Z(q(xv, Vo) — zv)z — min.
Fig. 5 shows a domain and the location of data points together with knot lines, which are aligned with
the boundary oD in a natural way. In the example, height values are sampled from the smooth function
z= f(x,y) =2cogx/3)coqy/2). No weighting is required, so we set= 1. On the left hand side,
Fig. 6 shows the best approximating cubic web-splip&. In contrast, on the right hand side, standard
B-splines are used to obtain the approximatign. The artifacts at the rounded corners of the domain
are clearly visible. The point is that outer B-spline coefficients may get very large in order to slightly
reduce the approximation error at the data points near the boundary. The advantages of the web-method
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Fig. 5. Left: Domain with grid lines and scattered data points. Right: Sampled funttion= 2 cogx/3) coqy/2).
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Fig. 6. Left: Approximation with extension. Right: Approximation without extension.

become obvious when comparing the Euclidean error at the data points, the maximal darahthe
condition number of the Gramian matrix:

lqwen(X.Y) = Z|,~8.6e-4  |gst(X,Y)— Z|,~ 8.2e—4
llgweb— flloo,p =~ 2.28—4 llgsta— flloo,p = 2.8e-1
condGyep~ 7.7€3 condGgy~ 6.2e13
As a second example, we consider Poisson’s equation with Dirichlet boundary conditions,
—Au(x,y)= f(x,y)=25%% onD, u=0 onaD. (12)

The domainD is the unit disk with a small circular hole with radius= 0.04 located at(xq, yo) =

(—1/2, —1/2), see Fig. 7(left). Nonuniform knot spacing is used in order to resolve the expected high
curvature of the solution near the small hole. In this case, an appropriate weight function is easily
constructed,

w,y) = (1= =y?)(( =20 + (0 = y0)* = r7),

see Fig. 8(left). Each grid cell that intersects the boundary has an adjacent inner grid cell. That is, despite
the relatively high distortiord ~ 18, the difference between inner and outer indices is optimally small,
li — jlle <n+ 1=05. The coefficient vectot/ of an approximate solution is obtained by solving the
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Fig. 7. Left: Domain with nonuniform grid. Right: Part of the triangulation required to achieve similar accuracy.
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Fig. 8. Left: Weight functionw. Right: Approximationuyep.

Galerkin systenGU = F resulting from the standard finite element discretization of (12). The moderate
condition number con@e, ~ 1700, obtained after scaling the diagonal to 1, admits efficient solution
with standard solvers. The approximatiag, that we obtain using quartic web-splines is fairly accurate
in view of the small number of coefficients,

luweb — ullo.p =~ 3.26—4  withr 450 coefficients

see also Fig. 9(left). Let us compare this result with uniform web-splines and standard hat functions.

e For uniform knot sequences and equal degree 4, a rather fine grid is required to obtain an
approximatiorun; with similar accuracy,

lttuni — ulloo.p = 3.7€—4  withr 5250 coefficients

On the right hand side, Fig. 9 shows that the error is highly concentrated near the hole, i.e., the global
fine resolution is in fact not necessary.
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Fig. 9. Left: Error for nonuniform knots. Right: Error for uniform knots.

e The MATLAB pde-toolbox, which uses standard algorithms based on a triangulation of the domain
and piecewise linear basis functions, provides a comparable approximationly for a very fine
triangulation,

lus — ulloo.p ~4.8e—4 with~ 16.000 coefficients
see also Fig. 7(right).

The examples presented in this section illustrate that nonuniform web-splines are a competitive tool
for approximating discrete data and solutions of pdes.

6. Conclusion

The web-method is a new meshless finite element technique combining the advantages of B-splines
and standard mesh-based trial functions (cf. http://www.web.spline.de). In particular, highly accurate
numerical solutions are possible with relatively few parameters and boundary conditions are matched
exactly. Moreover, smoothness and approximation order can be chosen arbitrarily without significantly
increasing the computational complexity.

Initially, web-splines were defined for uniform grids. As is shown in this paper, the concept naturally
extends to arbitrary knot sequences. This provides additional flexibility for meeting design specifications
and adapting the spline basis to the structure of the approximated data or functions. Perhaps more
importantly, the nonuniform web-method conforms to the NURBS-standard, used in many industrial
applications. We hope that our work will contribute to unifying methods in CAD/CAM and FEM,
advertising B-splines as a convenient tool for all stages of the manufacturing process.
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