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Abstract. An algorithmic approach to degree elevation of NURBS

curves is presented. The new algorithms are based on the weighted

blossoming process and its matrix representation. The elevation

method is introduced that consists of the following steps: (a) de-

compose the NURBS curve into piecewise rational B�ezier curves,

(b) degree elevate each rational B�ezier piece, and (c) compose the

piecewise rational B�ezier curves into NURBS curve.

1. Introduction

NURBS(Non-uniform rational B-splines) are parametric objects at

the form of a fraction, with polynomial B-splines in nominator and de-

nominator. The nominator and denominator are of the same degree,

and de�ned on the same knot vector. The denominator is always a

B-spline in R1 and we will restrict it futher by saying that all its ver-

tices are positive. It is convenient to introduce rational B-splines by

a projective mapping from a space of polynomial B-spline of higher

dimension.

Let R3
+ = f(x; y; w) 2 R

3 : w > 0g. We construct P2, the projective

space of dimension 2, by identifying all points in R
3 on the same line

through the origin. This is also called a space of homogeneous coordi-

nates. For each element P2 with w 6= 0 we may choose a representative

al the form (x; y; 1). We will not be concerned with the other elements

of P2, the points of in�nity.

The connection between R3
+ and P2 is described by the mapping

 : R3

+ ! P
2 where  (x; y; w) = (

x

w
;
y

w
; 1):

Further, we have the natural projection

� : P2 ! R
2 where �(x; y; 1) = (x; y);

and the composition of these gives the mapping

	 = � Æ  : R3

+ ! R
2 where 	(x; y; w) = (

x

w
;
y

w
):
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The mapping is clearly not one-to-one. We observe that the inverse

image of a point is a line and the inverse image of a curve is the cone

of the curve.

Let B(u) =
P

n

i=0
BiNi;p(u) be a p-th degree B-spline curve, where

the fBig are the control points in R
3 , and the fNi;p(u)g are the p-th

degree B-spline basis functions de�ned on the non-uniform knot vector

U = fa; a; : : : ; a| {z }
p+1

; up+1; up+2; : : : ; um�p�1; b; b; : : : ; b| {z }
p+1

g:

If allBi are in R
3
+ , then clearlyB(u) is in R

3
+ , and the mapping 	(B(u))

is well de�ned. We may write the Bi's at the form (xiwi; yiwi; wi). We

de�ne a p-th degree two dimensional rational B-spline curve as the

image under 	 of a polynomial B-spline curve in R3
+ :

C(u) =

P
n

i=0
Ni;p(u)wiPiP

n

i=0
Ni;p(u)wi

; a � u � b

where the Pi = 	(Bi) = (xi; yi).

2. Definition of the Weighted Blossom

Let G(u) be a polynomial curve of degree p or less. The weighted

blossom BG(u1; u2; : : : ; up : w) of the polynomial G(u) is the unique

multivariate polynomial with the following properties:

1. multiaÆne : for all indices i and all real number c

BG(u1; : : : ; ui�1; cu+ (1� c)v; ui+1; : : : ; up : cw1 + (1� c)w2)

=
cw1

cw1 + (1� c)w2

BG(u1; : : : ; ui�1; u; ui+1; : : : ; up : w1)

+
(1� c)w2

cw1 + (1� c)w2

BG(u1; : : : ; ui�1; v; ui+1; : : : ; up : w2)

2. symmetry : for any permutation � of f1; 2; : : : ; pg

BG(u1; u2; : : : ; up : w) = BG(u�(1); u�(2); : : : ; u�(p) : w)

3. diagonal : BG reduces to G when evaluated on its diagonal : i.e.

G(u) = BG(u; u; : : : ; u : w)

4. dual functional : any control vertex

Pi = BG(ui+1; ui+2; : : : ; ui+p : w) with weight w

Let us consider �rst the de Casteljau algorithm to subdivide rational

B�ezier curves. By the dual functional property the control vertices Pi

for the rational B�ezier representation of the curve are given in terms of

the blossom by Pi = BG(0; : : : ; 0; 1; : : : ; 1 : wi) where 0 appears as an

argument n� i times and 1 appears i times.
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Figure 1. Subdivision of the cubic rational B�ezier curve

with a = 0:5, (w0 = 1, w1 = 1, w2 = 3, w3 = 1).

For the sake of simplicity, consider the cubic case. We begin with the
control vertices BG(0; 0; 0 : w0), BG(0; 0; 1 : w1), BG(0; 1; 1 : w2), and
BG(1; 1; 1 : w3). From these we wish to get new control vertices repre-
senting the curve over segments[0; a] and [a; 1], respectively, as rational
B�ezier curves. The new control vertices are BG(0; 0; 0), BG(0; 0; a),
BG(0; a; a), BG(a; a; a), BG(a; a; 1), BG(a; 1; 1), and BG(1; 1; 1). The
question is now how to �nd all the new control vertices from the old
control vertices. The multiaÆne property provide us to derive new
blossom values from old ones. For example, consider �nding the value
BG(0; 0; a : w). Note

BG(0; 0; a : w) = BG(0; 0; (1� a)0 + a1 : (1� a)w0 + aw1)

=
(1� a)w0

(1� a)w0 + aw1

BG(0; 0; 0 : w0) +
aw1

(1� a)w0 + aw1

BG(0; 0; 1 : w1)

expressing one of the new control vertices in terms of two old control

vertices.

In the �gure 1, to conserve space the points are labelled using only

the blossom arguments. The parameter a(=.5) subdivides the inter-

val [0; 1] into two subintervals; similarly, the point bn(.5) subdivid-

eds the curve segment bn(0), bn(1) into two subsegments. Hence,

we can conclude directly that : the rational B�ezier curve segment

b
n(0), bn(.5) has the control polygon BG(0,0,0), BG(0,0,.5), BG(0,.5,.5),

BG(.5,.5,.5), with weights 1, 1, 3/2, 7/4, and the rational B�ezier curve

segment bn(.5), bn(1) has the control polygonBG(:5; :5; :5), BG(:5; :5; 1),

BG(:5; 1; 1), BG(1; 1; 1), with weights 7/4, 2, 2, 1.
As a second example, consider the de Boor algorithm for evaluating

a NURBS curve at value a 2 [ui; ui+1). The input to the algorithm,
expressed in terms of blossom, is the control vertices BG(ui�2; ui�1; ui :
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Figure 2. Applying the de Boor algorithm to a cubic

NURBS curve.

w1), BG(ui�1; ui; ui+1 : w2), BG(ui; ui+1; ui+2 : w3), andBG(ui+1; ui+2; ui+3 :
w4) governing the segment of the curve over [ui; ui+1). The output will
be the point BG(a; a; a : w) on the curve. We can get from the original
control vertices to the point on the curve by a set of aÆne combinations
as shown in the �gure 2. For example, consider �nding BG(ui�1; ui; a :
w) from BG(ui�2; ui�1; ui : w1), and BG(ui�1; ui; ui+1 : w2).

BG(ui�1; ui; a : w) = BG(ui�1; ui; cui�2 + (1� c)ui+1 : cw1 + (1� c)w2)

=
cw1

cw1 + (1� c)w2

BG(ui�2; ui�1; ui : w1) +
(1� c)w2

cw1 + (1� c)w2

BG(ui�1; ui; ui+1 : w2)

where c =
ui+1 � a

ui+1 � ui�2
:

The curve in the example is over the knot vector (0; 0; 0; 0; 1; 3; 3; 3; 3)

with weights 1,3,1,1,1, and is evaluated at a = 1.

As a third example, consider the knot insertion algorithm. It is very

convenient in curve design when it is necessary to apply �ne shape

control. Suppose that we insert a new knot 2 in the knot vector in the

�gure 3. The curve is over the knot vector (0; 0; 0; 0; 1; 3; 3; 3; 3) with

weights 1,3,1,1,1, and is evaluated at a = 2. From these we can get

new control vertices BG(0; 0; 0 : v0), BG(0; 0; 1 : v1), BG(0; 1; 2 : v2),

BG(1; 2; 3 : v3), BG(2; 3; 3 : v4) , and BG(3; 3; 3 : v5) over the knot

vector (0,0,0,0,1,2,3,3,3,3)

BG(0; 0; 0 : v0)= BG(0; 0; 0 : 1) = 1
v0
w0BG(0; 0; 0 : 1)

BG(0; 0; 1 : v1)= BG(0; 0; 1 : 3) = 1
v1
w1BG(0; 0; 1 : 3)

BG(0; 1; 2 : v2)= BG(0; 1;
1
3
0 + 2

3
3 : 1

3
3 + 2

3
1)= 1

v2
( 1
3
w1BG(0; 0; 1 : 3) +

2
3
w2BG(0; 1; 3 : 1))

BG(1; 2; 3 : v3)= BG(1;
1
3
0 + 2

3
3; 3 : 1

3
1 + 2

3
1)= 1

v3
( 1
3
w2BG(0; 1; 3 : 1) +

2
3
w3BG(1; 3; 3 : 1))

BG(2; 3; 3 : v4)= BG(
1
2
1 + 1

2
3; 3; 3 : 1

2
1 + 1

2
1)= 1

v4
( 1
2
w3BG(1; 3; 3 : 1) +

1
2
w4BG(3; 3; 3 : 1))

BG(3; 3; 3 : v5)= BG(3; 3; 3 : 1) = 1
v5
w4BG(3; 3; 3 : 1)
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Figure 3. Applying the de Boor algorithm to a cubic

NURBS curve.

The knot insertion algorithm in the �gure 3 is expressed in a matrix

form as

V = X
w
W; Q = X

p
P

where

V =

0
BBBBBB@

v0
v1
v2
v3
v4
v5

1
CCCCCCA
; X

w
=

0
BBBBBB@

1 0 0 0 0

0 1 0 0 0

0 1=3 2=3 0 0

0 0 1=3 2=3 0

0 0 0 1=2 1=2

0 0 0 0 1

1
CCCCCCA
;W =

0
BBBB@

w0

w1

w2

w3

w4

1
CCCCA
;

Q = (BG(0; 0; 0); BG(0; 0; 1); BG(0; 1; 2); BG(1; 2; 3); BG(2; 3; 3); BG(3; 3; 3))
t,

P = (BG(0; 0; 0); BG(0; 0; 1); BG(0; 1; 3); BG(1; 3; 3); BG(3; 3; 3))
t,

Xp = diag(1=V )Xwdiag(W );

diag(1=V ) =

0
BBB@

1=v0
1=v1

. . .

1=v5

1
CCCA ; and diag(W ) =

0
BBB@

w0

w1

. . .

w4

1
CCCA :

Curve decomposition is normally done via knot insertion. Con-

sider the cubic NURBS curve in the �gure 2. Here, the rational

B�ezier segments are extracted by inserting knot 1 two times. From

these we can get �rst rational B�ezier piece BG(0; 0; 0), BG(0; 0; 1),

BG(0; 1; 1), BG(1; 1; 1) with weights 1; 3; 7=3; 17=9; and second ratio-

nal B�ezier piece BG(1; 1; 1), BG(1; 1; 3), BG(1; 3; 3), BG(3; 3; 3) with

weights 17=9; 1; 1; 1.
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Now, we consider the knot removable algorithm. It is the reverse

process of inserting a knot. While knot insertion is a precise proce-

dure, i.e. the knot-inserted curve is precisely the same as the original

one, knot removal, in general, procedures an approximation of the orig-

inal curve. Clearly, after a knot inserted, it can be removed precisely.

Consider the curve shown in the �gure 4. The knot u = 1 is removable

two times since the curve is C2-continuous at u = 1.

(0,0,0:1)

(0,0,1:3)

(0,1,2:1)

(1,2,2:1)

(2,2,2:1)

(0,1,1:2)
(1,1,1:3/2) (1,1,2:1)

�

�

�

�

�

Æ

�

�

Figure 4. A cubic NURBS curve over the knot vector

(0; 0; 0; 0; 1; 1; 1; 2; 2; 2; 2) with weights 1,3,2,3/2,1,1,1,

C
2-continous at u = 1

The knot removable algorithm in the �gure 4 is expressed in a linear

equation as

V = X
w
W; Q = X

p
P

where

V =

0
BBBBBBBB@

v0
v1
v2
v3
v4
v5
v6

1
CCCCCCCCA
; Xw

=

0
BBBBBBBB@

1 0 0 0 0

0 1 0 0 0

0 1=2 1=2 0 0

0 1=4 1=2 1=4 0

0 0 1=2 1=2 0

0 0 0 1 0

0 0 0 0 1

1
CCCCCCCCA
;W =

0
BBBB@

w0

w1

w2

w3

w4

1
CCCCA
;

Q = (BG(0; 0; 0); BG(0; 0; 1); BG(0; 1; 1); BG(1; 1; 1); BG(1; 1; 2); BG(1; 2; 2); BG(2; 2; 2))
t,

P = (BG(0; 0; 0); BG(0; 0; 1); BG(0; 1; 2); BG(1; 2; 2); BG(2; 2; 2))
t, and

Xp = diag(1=V )Xwdiag(W ):

Then, becauseXw has full column rank and (Xw)tXw is non-singular,

G
w = [(Xw)tXw]�1(Xw)t is a left inverse of the matrix Xw. Therefore

the consistent equations V = X
w
W and Q = X

p
P have the unique

solution

W = G
w
V and P = diag(1=W )Gw

diag(V )Q:
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3. Degree Elevation

Since a NURBS curve is a piecewise polynomial curve, it must be

possible to evaulate its degree from p to p+r. That is, there must exist

control points ~P , a knot vector ~U , and a weight vector ~W such that

C(u) = ~C(u) =

P
~n

i=0
Ni;p+r(u) ~wi

~PiP
~n

i=0
Ni;p+r(u) ~wi

The curve C(u) and ~C(u) are the same geometrically and paramet-

rically. The computing of ~n, ~P , ~U , and ~W is referred to as degree

elevation. The knot vector ~U and ~n can easily be computed as follows.

Assume that U has the form

U = fa; a; : : : ; a| {z }
p+1

; u1; : : : ; u1| {z }
m1

; : : : ; us; : : : ; us| {z }
ms

; b; b; : : : ; b| {z }
p+1

g

where the end knots a and b are repeated with multiplicity p + 1 and

the interior knots ui are repeated with multiplicitymi. Since the curve

C(u) is Cp�mi�continuous at the knot of multiplicitymi, ~C must have

the same continuity. Consequently, the new vector must take the form

~U = fa; a; : : : ; a| {z }
p+r+1

; u1; : : : ; u1| {z }
m1+r

; : : : ; us; : : : ; us| {z }
ms+r

; b; b : : : ; b| {z }
p+r+1

g

which gives ~n = n + (s+ 1)r.

We provide a procedural method that can be summarized as follows:

(1) Decompose the NURBS curve into piecewise rational B�ezier

curves.

(2) Degree elevate each rational B�ezier piece.

(3) Make the NURBS curve from the piecewise rational B�ezier seg-

ment.

Curve Decomposition : Curve decomposition is normally done via

knot insertion is very convenient in curve design when is necessary to

apply �ne sharp control. In the case of a NURBS curve a new knot can

be inserted to increase the number of curve de�ning vectors and the

number of curve segments. Consider the cubic NURBS curve in the

�gure 5. The knot 1 is inserted two times bring the total multiplicity

to 3.

The Decomposition algorithm in the �gure 5 is expressed in a matrix

form as

V =M
w

d
W; Q =M

p

d
P
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Figure 5. a cubic NURBS curve over the knot vector

(0,0,0,0,1,3,3,3,3) with weights 1,1,1,3,1 to be degree el-

evated. Decomposed the NURBS curve into piecewise

rational B�ezier curves.

where

V =

0
BBBBBBBB@

v0
v1
v2
v3
v4
v5
v6

1
CCCCCCCCA
;M

w
d =

0
BBBBBBBB@

1 0 0 0 0

0 1 0 0 0

0 2=3 1=3 0 0

0 4=9 4=9 1=9 0

0 0 2=3 1=3 0

0 0 0 1 0

0 0 0 0 1

1
CCCCCCCCA
;W =

0
BBBB@

w0

w1

w2

w3

w4

1
CCCCA
;

Q = (BG(0; 0; 0); BG(0; 0; 1); BG(0; 1; 1); BG(1; 1; 1); BG(1; 1; 3); BG(1; 3; 3); BG(3; 3; 3))
t,

P = (BG(0; 0; 0); BG(0; 0; 1); BG(0; 1; 3); BG(1; 3; 3); BG(3; 3; 3))
t, and

Mp

d = diag(1=V )Mw
d diag(W ):

Next we give detailed pseudocode to compute the decomposition

matrix M
w

d
. It uses a local array V of size s to store the ith knot

interior values and another one M of size s to store the multiplicity of

the ith interior knots.

Make DecompositionMatrix(U , m, p)

// Input: Knots vector U = (a; a; : : : ; a; up+1; : : : ; um�p�1; b; b; : : : ; b),

// number of knots m+ 1 and degree p

// Output: (ps+ p+ 1)� (n + 1) matrix Mw

d

(* In case of Bezier curve *)

if (m = 2p+ 1) exit;

(* initialize some variables *)

s = 1; t = 1; l = p; n = m� p� 1;
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(* initialize Mw

d
matrix *)

for (i = 0 to n by 1)

for (j = 0 to n by 1)

if (i = j) Mw

d
[i][j] = 1; else Mw

d
[i][j] = 0;

(* compute knot multiplicity *)

V [s] = U [p + 1]; M [s] = 1;

for (i = p+ 2 to n by 1)

if (V [s] = U [i]) M [s] =M [s] + 1;

else s = s+ 1; V [s] = U [i]; M [s] = 1;

endif

endfor

(* make Mw

d
matrix *)

for (i = 1 to s by 1)

l = l +M [i];

for (j =M [i] to p� 1 by 1)

KnotsInsertion (U , l, V [i], n, n+ t, p);

for (k = m+ t to l + 1 by �1) U [k] = U [k � 1];

U [l] = V [i]; l = l + 1; t = t+ 1;

endfor

endfor

KnotsInsertion(U , l, v, n, k, p)

// Input: Knots vector U , new knot v(ul � v < ul+1),

// number of control points n + 1 and degree p

for (i = l � p+ 1 to l � 1 by 1)

� = (v � U [i])=(U [i + p]� U [i]);

for (j = 0 to n by 1)

T [i][j] = (1� �)Mw

d
[i� 1][j] + �M

w

d
[i][j];

endfor

endfor

for (i = k to l by �1)
for (j = 0 to n by 1) Mw

d
[i][j] =M

w

d
[i� 1][j];

for (i = l � p+ 1 to l � 1 by 1)

for (j = 0 to n by 1) Mw

d
[i][j] = T [i][j];

Degree Elevation of rational B�ezier Curves: The degree eleva-

tion of rational B�ezier curves is well understood and well documented.

As a �rst step, to raising the degree of the rational B�ezier curve by one.

We can show that weights of new control points are obtained from the

old weights by piecewise linear interpolation at the parameter values

j=(n+1). We may repeat this process and obtain a sequence of control
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points. After r degree elevation, we have a linear system

U = T
w

n;r
V; R = T

p

n;r
Q;

where the (n+ r + 1)� (n + 1) matrix Tw

n;r
= fti;jg has elements

ti+j;i =

�
n

i

��
r

j

�
�
n+r

i+j

� ;
�
i = 0; 1; : : : ; n

j = 0; 1; : : : ; r:

and

T
p

n;r
= diag(1=U)Tw

n;r
diag(V ):

Rational B�ezier curves are known to be a special polynomial type of

NURBS curve with the knot vector given by n knots at 0 and n knots

at 1. By the dual functional property the control vertices Qi for the ra-

tional B�ezier representation of the curve are given in terms of blossom

by Qi = BG(0,0,. . . ,0,1,1,. . . ,1) where 0 appears as an argument n� i

times and 1 appears i times. For the sake of simplicity, consider the

cubic case. We begin with the control vertices from the blossom rep-

resentations BG(0; 0; 0), BG(0; 0; 1), BG(0; 1; 1), and BG(1; 1; 1). From

these we wish to raise the degree of the rational B�ezier curve by two.

We can represent the new rational B�ezier curve as having a knot vector

with n+2 knots at 0 and another n+2 at 1. as shown in the �gure 6.

R0= BG(0; 0; 0; 0; 0 : 1) = 1
u0
v0BG(0; 0; 0)

R1= BG(0; 0; 0; 0; 1 :
2
5
� 1 + 3

5
� 1) = 1

u1
( 2
5
v0BG(0; 0; 0) +

3
5
v1BG(0; 0; 1))

R2= BG(0; 0; 0; 1; 1 :
1
10
� 1 + 3

5
� 1 + 3

10
� 1) = 1

u2
( 1
10
v0BG(0; 0; 0) +

3
5
v1BG(0; 0; 1) +

3
10
v2BG(0; 1; 1))

R3= BG(0; 0; 1; 1; 1 :
3
10
� 1 + 3

5
� 1 + 1

10
�

11
9
)= 1

u3
( 3
10
v1BG(0; 0; 1) +

3
5
v2BG(0; 1; 1) +

1
10
v3BG(1; 1; 1))

R4= BG(0; 1; 1; 1; 1 :
3
5
� 1 + 2

5
�

11
9
) = 1

u4
( 3
5
v2BG(0; 1; 1) +

2
5
v3BG(1; 1; 1))

R5= BG(1; 1; 1; 1; 1 :
11
9
) = 1

u5
v3BG(1; 1; 1)

(0,0,0,0,0:1)

(0,0,0,0,1:1)

(0,0,0,1,1:1)

(0,0,1,1,1:46/45)

(0,1,1,1,1:49/45) (1,1,1,1,1:11/9) (1,1,1,1,3:67/45)

(1,1,1,3,3:91/45)

(1,1,3,3,3:12/5)

(1,3,3,3,3:11/5)

(3,3,3,3,3:1)
�

�

�

�

� �
�

�

�

�

�

Figure 6. Degree elevated each rational B�ezier piece.
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The degree elevation algorithm in the �gure 6 is expressed in a matrix

form as

U =M
w

e
V; R =M

p

e
Q

where

U =

0
BBBBBBBBBBBBBBBB@

u0
u1
u2
u3
u4
u5
u6
u7
u8
u9
u10

1
CCCCCCCCCCCCCCCCA

;M
w
e =

0
BBBBBBBBBBBBBBBB@

1 0 0 0 0 0 0

2=5 3=5 0 0 0 0 0

1=10 3=5 3=10 0 0 0 0

0 3=10 3=5 1=10 0 0 0

0 0 3=5 2=5 0 0 0

0 0 0 1 0 0 0

0 0 0 2=5 3=5 0 0

0 0 0 1=10 3=5 3=10 0

0 0 0 0 3=10 3=5 1=10

0 0 0 0 0 3=5 2=5

0 0 0 0 0 0 1

1
CCCCCCCCCCCCCCCCA

; V =

0
BBBBBBBB@

v0
v1
v2
v3
v4
v5
v6

1
CCCCCCCCA
;

R = (BG(0; 0; 0; 0; 0); BG(0; 0; 0; 0; 1); BG(0; 0; 0; 1; 1); BG(0; 0; 1; 1; 1); BG(0; 1; 1; 1; 1);

BG(1; 1; 1; 1; 1); BG(1; 1; 1; 1; 3); BG(1; 1; 1; 3; 3); BG(1; 1; 3; 3; 3); BG(1; 3; 3; 3; 3); BG(3; 3; 3; 3; 3))
t,

Q = (BG(0; 0; 0); BG(0; 0; 1); BG(0; 1; 1); BG(1; 1; 1); BG(1; 1; 3); BG(1; 3; 3); BG(3; 3; 3))
t,

and

Mp
e = diag(1=U)Mw

e diag(V ):

The following algorithm compute degree elevation Mw

e
matrix.

Make ElevationMatrix(p, r, s)

// Input: Degree p and elevation degree r

// Output: (ps+ p+ rs+ r + 1)� (ps+ p+ 1) matrix Mw

e

div = 1;

for (i = 1 to r by 1) div = div � (p+ i);

M [0] = 1;

for (i = 0 to p by 1)

for (j = 1 to r by 1) M [j] =M [j] +M [j � 1];

for (j = 0 to r by 1)

left = 1;

for (k = 1 to j by 1) left = left� (r � k + 1);

right = 1;

for (k = 1 to r � j by 1) right = right� (p� i+ k);

T [i+ j][i] = left�M [j]� right=div;

endfor

endfor

M
w

e
[0][0] = T [0][0];

for (i = 0 to s by 1)

for (j = 1 to p+ r by 1)

for (k = 0 to p by 1) Mw

e
[j + (p+ r)i][(k + p)i] = T [j][k];
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Curve Composition: Curve composition is the inverse of decompo-

sition. In the �gure 7, it can be expressed in a linear equation as

U =M
w

D
~W; R =M

p

D
~P

where

U =

0
BBBBBBBBBBBBBBBB@

u0
u1
u2
u3
u4
u5
u6
u7
u8
u9
u10

1
CCCCCCCCCCCCCCCCA

;M
w
D =

0
BBBBBBBBBBBBBBBB@

1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 2=3 1=3 0 0 0 0

0 0 0 4=9 4=9 1=9 0 0 0

0 0 0 0 2=3 1=3 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1

1
CCCCCCCCCCCCCCCCA

; ~W =

0
BBBBBBBBBBBB@

~w0

~w1

~w2

~w3

~w4

~w5

~w6

~w7

~w8

1
CCCCCCCCCCCCA

;

R = (BG(0; 0; 0; 0; 0); BG(0; 0; 0; 0; 1); BG(0; 0; 0; 1; 1); BG(0; 0; 1; 1; 1); BG(0; 1; 1; 1; 1);

BG(1; 1; 1; 1; 1); BG(1; 1; 1; 1; 3); BG(1; 1; 1; 3; 3); BG(1; 1; 3; 3; 3); BG(1; 3; 3; 3; 3); BG(3; 3; 3; 3; 3))
t,

~P = (BG(0; 0; 0; 0; 0); BG(0; 0; 0; 0; 1); BG(0; 0; 0; 1; 1); BG(0; 0; 1; 1; 1); BG(0; 1; 1; 1; 3);

BG(1; 1; 1; 3; 3); BG(1; 1; 3; 3; 3); BG(1; 3; 3; 3; 3); BG(3; 3; 3; 3; 3))
t, and

Mp
D = diag(1=U)Mw

Ddiag( ~W):

Then, because M
w

D
has full column rank and (Mw

D
)tMw

D
is non-

singular,Mw

c
= [(Mw

D
)tMw

D
]�1(Mw

D
)t is a left inverse of the matrixMw

D
.

Therefore the consistent equations U = M
w

D
~W and R = M

p

D
~P have a

unique solution ,

~W =M
w

c
U and ~P =M

p

c
R

where Mp

c
= diag(1= ~W )Mw

c
diag(U).

(0,0,0,0,0:1)

(0,0,0,0,1:1)

(0,0,0,1,1:1)

(0,0,1,1,1:46/45)

(0,1,1,1,3:11/9)

(1,1,1,3,3:91/45)

(1,1,3,3,3:12/5)

(1,3,3,3,3:11/5)

(3,3,3,3,3:1)
�

�

�

�

�

�

�

�

�

Figure 7. Composed the NURBS curve over the knot

vector ( 0, 0, 0, 0, 0, 0, 1, 1, 1, 3, 3, 3, 3, 3, 3 ) from the

piecewise rational B�ezier segment.
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We will write down the algorithm for the degree elevation of a NURBS

curve in a shorthand notation.

1. Make DecompositionMatrix(knots, m, p) : Mw

d

knots= fa; a; : : : ; a| {z }
p+1

; u1; : : : ; u1| {z }
m1

; : : : ; us; : : : ; us| {z }
ms

; b; b; : : : ; b| {z }
p+1

g

2. Make ElevationMatrix(p, r, s) : Mw

e

3. Make DecompositionMatrix(knots, m+(s+2)r, p+r) : Mw

D

knots= fa; a; : : : ; a| {z }
p+r+1

; u1; : : : ; u1| {z }
m1+r

; : : : ; us; : : : ; us| {z }
ms+r

; b; b; : : : ; b| {z }
p+r+1

g

M
w

c
= [(Mw

D
)tMw

D
]�1(Mw

D
)t

Then,
~W =M

w
W and ~P =M

p
P

where

M
w =M

w

c
M

w

e
M

w

d
and Mp = diag(1= ~W )Mw

diag(W ):
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