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DEGREE REDUCTION OF B{SPLINE CURVES

BYUNG-GOOK LEE AND YUNBEOM PARK

Abstract. An algorithmic approach to degree reduction of B{spline

curves is presented. The new algorithms are based on the blossoming

process and its matrix representation. The degree reduction of B{

spline curves are obtained by the generalized least square method. The

computations are carried out by minimizing the L2 distance between

the two curves.
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1. Introduction

Degree elevation and reduction of B{spline curves are well understood

and several algorithms are published[9, 10, 11, 12, 13, 14]. From a software

engineering point of view, it is desirable to implement a simple and easy-

to-understand algorithm. This approach was taken by Piegl and Tiller([10,

11, 12], who implemented the simplest algorithm; they decomposed the B{

spline curve into piecewise B�ezier curves, reduced the degree of each B�ezier

piece, and then composed the piecewise B�ezier curves into B{spline curves.

We describe here the modi�ed form of Piegl and Tiller's degree reduction

algorithm. The procedure allow to reduce the degree from n to m in one

step. The new algorithms are based on the blossoming analysis[2, 6, 15, 16]

and matrix representation of the degree elevation process[8].

Since a B{spline curve is a piecewise polynomial curve, it is possible to

elevate its degree from p to p+ r. That is, there must exist control points
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~P and a knot vector ~U for the degree elevated curve such that

C
n

P
(u) = C

~n
~P
(u) =

~nX
i=0

~PiNi;p+r(u):

The curve C
n

P
(u) and C

~n
~P
(u) are geometrically and parametrically same.

The computing of ~n, ~P and ~U is referred to as degree elevation. The knot

vector ~U and the number of points ~n can easily be computed as follows.

Assume that U has the form

U = fa; a; : : : ; a| {z }
p+1

; u1; : : : ; u1| {z }
m1

; : : : ; us; : : : ; us| {z }
ms

; b; b; : : : ; b| {z }
p+1

g

where the end knots a and b are repeated with multiplicity p+1 , the interior

knots ui are repeated with multiplicity mi and s is the number of distinct

interior knots. Since the curve Cn

P
(u) is Cp�mi�continuous at the knot of

multiplicity mi, C
~n
~P
(u) must have the same continuity. Consequently, the

new vector must take the form

~U = fa; a; : : : ; a| {z }
p+r+1

; u1; : : : ; u1| {z }
m1+r

; : : : ; us; : : : ; us| {z }
ms+r

; b; b : : : ; b| {z }
p+r+1

g

which gives ~n = n+ (s+ 2)r.

The computation of ~P can be done by the procedure as follows[8]:

(1) Decompose the B{spline curve into piecewise B�ezier curves by using

decomposition matrix Md.

(2) Elevate the degree of each B�ezier piece by using elevation matrix

Me.

(3) Make the B{spline curve from the piecewise B�ezier segment by using

composition matrix Mc.

Lee and Park[8] presented the algorithms for computing the matrices Md,

Me, Mc. The degree elevation process of the B{spline curves is represented

as the elevation matrix M , where

M =McMeMd:

2. Degree Reduction

In general degree reduction of B{spline curves address the following prob-

lem.
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Problem 1 (Degree Reduction). Let fPig
n

i=0 be a given set of control points

which de�ne the B{spline curve

C
n

P
(u) =

nX
i=0

PiNi;p(u) ; a � u � b

of degree p. Then �nd another points set fQig
l

i=0 de�ning the approximat-

ing B{spline curve C l

Q
(u) of lower degree q < p so that a suitable distance

function d(Cn

P
; C

l

Q
) between C

n

P
and C

l

Q
is minimized.

The schemes for degree reduction depend on the choice of the distance

function and the requirement of the solution to be either best or only nearly

best relative to the distance function. For the degree reduction of any

given curve, we must compute a distance of two B{spline curves. The most

appropriate metric in geometrical terms would be the Hausdor� distance[3,

4]. Suppose (M;d) is a metric space with subsets A and B. We de�ne the

Hausdor� metric dH by

dH(A;B) = max

(
sup
x2A

d(x;B); sup
y2B

d(y;A)

)
;

where

d(x;B) = inf
y2B

d(x; y):

If we regard a plane curve as simply a locus of points without any underlying

parameterizations, the Hausdor� metric for two such curves is essentially

the radius of the largest circle with its center on one curve and touching

the other curve. For general parametric curves, this measure is truly inde-

pendent of the relative parameterizations of two curves. Emery[5] presents

a method for explicit computation of Hausdor� metric for piecewise lin-

ear curves, but the computation of Hausdor� distance dH of two nonlinear

curves is not so easy. So we solve the degree reduction problem of B{spline

curves with respect to the L2 distance.

Replacing the distance function d in the Problem 1 as the L2 distance

dLS , then the Problem 1 can be rewritten as follows:

Problem 2 (L2 Degree Reduction). Find another points set fQig
l

i=0 de�n-

ing the approximating B{spline curve C l

Q
(u) of lower degree q < p so that
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the least squares distance function

dLS(C
n

P
; C

l

Q
) =

sZ
b

a

kCn

P
(u)� C l

Q
(u)k2du

between C
n

P
and C

l

Q
is minimized on the interval [a; b] where k � k denotes

the Euclidean distance.

Computing of l, Q and V is referred to as degree reduction. The knot

vector V and l can easily be computed as follows. Assume that U has the

form

U = fa; a; : : : ; a| {z }
p+1

; u1; : : : ; u1| {z }
m1

; : : : ; us; : : : ; us| {z }
ms

; b; b; : : : ; b| {z }
p+1

g

Since degree reduction is thought of as the inverse of degree elevation, the

new vector becomes of the form

V = fa; a; : : : ; a| {z }
p�r+1

; u1; : : : ; u1| {z }
m1�r

; : : : ; us; : : : ; us| {z }
ms�r

; b; b; : : : ; b| {z }
p�r+1

g

which gives l = n� (s+ 2)r, where r = p� q. The computation of Q has

been done in the past by applying a global approximation method. For

developing the method, we compute the L2 distance function dLS .

We �rst consider the computation of the L2 distance of two B�ezier curves.

Let two sets fAig
n

i=0 and fBig
n

i=0 represent the control polygons of two

di�erent B�ezier curves of the same degree n. Then, the L2 distance[7]

between two B�ezier curves an and b
n is

dLS(a
n
; b

n) =
p
DtQnD;

where D = A � B, A = (A0; : : : ; An)
t, B = (B0; : : : ; Bn)

t, and Qn be the

(n+ 1) � (n+ 1) matrix with elements

qi;j =
1

2n+ 1

�
n

i

��
n

j

�
�
2n
i+j

� ; �
i = 0; 1; : : : ; n

j = 0; 1; : : : ; n:
(1)

Let us now consider the B{spline curves, If two sets fAig
n

i=0 and fBig
n

i=0

represent the control polygons of two di�erent B{spline curves of degree p

over a knot vector

U = fa; a; : : : ; a| {z }
p+1

; u1; : : : ; u1| {z }
m1

; : : : ; us; : : : ; us| {z }
ms

; b; b; : : : ; b| {z }
p+1

g
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denoted by Cn

A
and C

n

B
. Since the two B{spline curve are de�ned over the

same knot vector U , we can decompose the two curves with same number

of curve segments. Moreover, the two B�ezier segments are de�ned over the

same segments. Then we have,

dLS(C
n

A
; C

n

B
)2 = D

t
M

t

D
Qp;sMDD; (2)

where D = A � B is (n + 1){vector, MD is the (p(s + 1) + 1) � (n + 1)

decomposition matrix[8] and the Qp;s is (p(s+1)+1)�(p(s+1)+1) square

matrix. The Qp;0 is Qp in (1) and Qp;s(s > 0) is a block structured matrix

with overlapping the one elements, for example,

Qp;1 =

0
BBBBBBBBB@

q0;0 q0;1 : : : q0;p

q1;0 q1;1 : : : q1;p
...

...
. . .

...

qp;0 qp;1 : : : qp;p + q0;0 q0;1 : : : q0;p

q1;0 q1;1 : : : q1;p
...

...
. . .

...

qp;0 qp;1 : : : qp;p

1
CCCCCCCCCA

So, the Problem 2 can be rewritten as follows with the distance dLS in

(2):

Problem 3 (L2 Degree Reduction). Find the control points set fQig
l

i=0 so

that the least squares distance function

dLS(C
n

P ; C
l

Q)
2 = dLS(C

n

P ; C
~l
~Q
)2 = D

t
M

t

DQp;sMDD

between fPig
n

i=0 and f ~Qig
~l
i=0 is minimized, where ~l = n.

In order to develope the reduction scheme, we compute the

D
t
M

t

D
Qp;sMDD

= [P �MQ]tM t

D
Qp;sMD[P �MQ]

= P
t
M

t

D
Qp;sMDP � 2Qt

M
t
M

t

D
Qp;sMDP +Q

t
M

t
M

t

D
Qp;sMDMQ

where M is B{spline degree elevation matrix in [8].

One method of obtaining the vector Q is so-called method of least squares[1].

This method consists of minimizing D
t
M

t

D
Qp;sMDD with respect to Q.

Choosing as the estimator Q̂ that value ofQ which minimizeDt
M

t

D
Qp;sMDD

involves di�erentiating Dt
M

t

D
Qp;sMDD with respect to the elements of Q.
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Equating @(Dt
M

t

D
Qp;sMDD)=@Q to zero and writing the resulting equa-

tions in terms of Q̂, we �nd that these equations are

M
t
M

t

D
Qp;sMDMQ̂ =M

t
M

t

D
Qp;sMDP:

They are known as the normal equations.

Lee and Park[8] show that Mc = (M t

D
MD)

�1
M

t

D
. Thus

MDM =MDMcMeMd =MD(M
t

D
MD)

�1
M

t

D
MeMd =MeMd;

and we have

M
t

d
M

t

e
Qp;sMeMdQ̂ =M

t

d
M

t

e
Qp;sMDP:

Since Me and Md have full column rank, MeMd has full column rank,

and from the de�nition of the matrix Qp;s and mathematical induction,

all the upper left submatrices of the matrix Qp;s have positive determi-

nants. Hence, the matrix Qp;s is real symmetric positive de�nite. Thus,

M
t

d
M

t

e
Qp;sMeMd is nonsingular[17], we have the unique solution,

Q̂ = (M t

d
M

t

e
Qp;sMeMd)

�1
M

t

d
M

t

e
Qp;sMDP:

An computed example for degree reduction of a B{spline curve from

degree 7 to degree 5 is illustrated in Figure 1. The Figure 2 shows an

example of reducing the degree from degree 5 to degree 3 with the original

knot vector U . The solid control points curve is the given curve and the

circle control points curve is the degree reduced curve. In Figure 3, we

have computed the degree reduced B{spline curve as treated in Figure 2

with re�ning the knot vector U to U 0, where

U
0 = f0; 0; 0; 0; 0; :25; :25; :25; :5; :5; :5; :75; :75; :75; 1; 1; 1;

1:25; 1:25; 1:25; 1:5; 1:5; 1:5; 1:75; 1:75; 1:75; 2; 2; 2; 2; 2g

The quality of the approximate curve can be improved by introducing extra

knots with multiplicity of at least 3.
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Figure 2. Degree reduction example(from degree 5 to 3).
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Figure 3. Degree reduction example(from degree 5 to 3)

after re�ning the knot vector to U 0.
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