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Abstract. This paper presents an efficient implementation of moving
least square(MLS) approximation for 3D surface reconstruction. The
smoothness of the MLS is mainly determined by the weight function
where its support greatly affects the accuracy as well as the computa-
tional time in the mixed dense and scattered data. In a point-set, possibly
acquired from a 3D scanning device, it is important to determine the sup-
port of the weight function adaptively depending on the distribution and
shape of the given scatter data. Particulary in case of face data includ-
ing the very smooth parts, detail parts and some missing parts of hair
due to low reflectance, preserving some details while filling the missing
parts smoothly is needed. Therefore we present a fast algorithm to es-
timate the support parameter adaptively by a raster scan method from
the quantized integer array of the given data. Some experimental results
show that it guarantees the high accuracy and works to fill the missing
parts very well.

1 Introduction to MLS approximation

There are many methods to reconstruct the continuous 3D surface from discrete
scattered data. The moving least square(MLS) method is introduced to interpo-
late the irregularly spaced data. The relationship between MLS and G.Backus
and F. Gilbert [2] theory was found by Abramovici [1] for Shepard’s method and
for the general case by Bos and Salkauskas [3]. For scattered data X = {xi}n

i=1

in IRd and data values {f(xi)}n
i=1, the MLS approximation of order m at a point

x ∈ Ω ⊂ IRd is the value p∗ ∈ Πm is minimizing, among all p ∈ Πm, the weighted
least-square error

n∑

i=1

(p(xi)− f(xi))2θ(||x− xi||), (1)

where θ is a non-negative weight function and || · || is the Euclidian distance in
IRd. To get the local approximation θ(r) must be fast decreasing as r →∞. So
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D. Levin [4] suggested the weight function for approximation

η(||xi − x||) = exp(
||xi − x||2

h2
) (2)

and prove that (1) is equivalent to find the coefficient vector ā = {a1, a2, · · · , an}
for approximation f̂(x) =

∑I
i=1 aif(xi) by minimizing the quadratic form

Q =
n∑

i=1

η(||xi − x||)a2
i , (3)

subject to the linear constraints

n∑

i=1

aipj(xi) = pj(x), j = 1, · · · , J =
(

d + m
m

)
(4)

with η(||xi − x||) = θ(||xi − x||)−1 in (1). The coefficient vector ā is determined
by

ā = D−1E(EtD−1E)−1c̄, (5)

where D = 2Diag{η(||x1 − x||), · · · , η(||xn − x||)} , Eij = pj(xi) and c̄ =
(p1(x), · · · , pJ(x))t. Here h is an average distance between the data points and
pj , j = 1, · · · , J are the fundamental polynomials in Πm. This uses the whole
given data, so that it takes too long time to process with the large numbers of
data.

D. Levin and H.Wendland [5] suggested the parameter s to choose local data
and keep the high approximation order but it is very slow and fit to real data
because of the fixed

h = sup
x∈Ω

min
xj∈X

||x− xj ||, (6)

so that we suggest the new algorithm to determine the local parameter s and
take h adaptively according to data in section 2. By calculating RMS error
for 5 smooth test functions and comparing the results with Levin method, we
demonstrate the accuracy of our method. The results show that the adaptiveness
of h is very important and it works well for filling hole case in section 3.

2 A local and fast algorithm

2.1 Fixed h local MLS algorithm

To generate C2 surface, we let m = 3 and d = 2 which mean the degree of approx-
imant and the dimension of domain, respectively. Let P = {(xi, yi, zi) ∈ IR3}n

i=1

be the set of scattered sample data and Ω = Ωx×Ωy be the rectangular domain
which contains the given a set of its projected points to xy-plane. By dividing
Ωx = [a, b] and Ωy = [c, d] uniformly with respect to any fixed resolution(nx, ny),
we get the evaluation points W = {ωij ∈ IR2|0 ≤ i ≤ nx, 0 ≤ j ≤ ny} , where
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dx = (b − a)/nx, dy = (d − c)/ny. To determine h, we do not calculate the
distance between evaluation point and data points unlike the previous methods.
This is achieved by mapping sample data to grid point and calculating their
distribution using simple raster scan method. When the sample data is mapped
into grid point, one more points can be mapped into the same grid point. In
this case we take their average value for each x, y, z component as representa-
tive and index it. For each ω ∈ W , we can find the numbers of grids from ωij

to nonzero grid point along right, left, up and down direction, denoting it by
qr
ω, ql

ω, qu
ω, qd

ω, respectively. And then we set qω = 1
4 (qr

ω +ql
ω +qu

ω +qd
ω). By taking

q = maxω∈W (qω), we can set

h = q ·max(dx, dy) (7)

Ω

i i+si-s

w

j-s

j

j+s

dx

dy

ij

Fig. 1. Domain Ω and local extracted sample data domain

Next, sample data is chosen locally within window of size 2s× 2s, where

s = [
3√
2
· q], (8)

centered at each evaluation point ω and [ ] denotes the Gauss’s symbol. This
comes from the property of the weight function related to Gaussian function and
the relation between h and q. Actually the standard deviation σ in Gaussian
function is related to h, like 2σ2 = h2. Because data within 6σ is contributed
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to the accuracy of the approximated function, we can get the above equation
(8). Under these initial conditions, we extract the local subdata set consisted
with the above representative data. Since the wanted degree of approximated
function is 3, we must increase the magnitude of s by one until the number of
data in subdata set is greater than 10. Using this the final local subdata, we
calculate the coefficient vector.

2.2 Adaptive h local MLS for data with holes

If the sample data have big holes, the above fixed h algorithm is unsuitable to
reconstruct the original image as shown in Fig. 4 (b),(c). Larger the size of holes
is, bigger h is taken. Then the dense part, like nose, eyes and lips, are getting
to lose their characteristic property. Therefore, we do not use global q but use
local qω for each ω ∈ W . Then the adaptive hω

hω = qω ·max(dx, dy) (9)

and the initial adaptive sω

sω = [
3√
2
· qω]. (10)

Under the adaptive initial conditions, we follow the same process as fixed
algorithm. Refer the experimental results in section 3.4.

3 Experimental results and conclusions

3.1 Reconstruction accuracy

In this section we demonstrate the accuracy of our proposed algorithm by the
use of 5 test function as follows:

g1(x, y) = 0.75 exp[−((9x− 2)2 + (9y − 2)2)/4] + 0.5 exp[−((9x− 7)2 + (9y − 3)2)/4]

+ 0.75 exp[−(9x− 2)2/49− (9y − 2)2/10]− 0.2 exp[−(9x− 4)2 − (9y − 2)2]

g2(x, y) = (tanh(9− 9x− 9y) + 1)/9

g3(x, y) = (1.25 + cos(5.4y))/(6 + 6(3x− 1)2)

g4(x, y) = (exp[(−81/4)((x− 0.5)2 + (y − 0.5)2)])/3

g5(x, y) = (
√

64− 81((x− 0.5)2 + (y − 0.5)2)/9− 0.5

where x, y are in the domain [0, 1]. We perform experiments with some sample
data generated randomly in [0, 1]. Here M100 and M500 means 100 and 500
sample data with 49 and 625 uniform data respectively, while others are ran-
domly sampled. On the other hand R500 is 500 totally random data. Fig. 2 is
the feature of g3 and its approximated image. The points on the surface are the
sample data for M100 case. For each test function gi, we can find the accuracy
of the approximation f by comparing the normalized RMS(root mean square)
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error which is divided the RMS error by the difference if maximum and minimum
values of gi between the function values on a dense grid. That is,

RMS =

√∑nx

i=0

∑ny

j=0(gi(xi, yi)− f(xi, yj))2

(nx + 1)(ny + 1)
,

where xi = i/nx, y = j/ny and nx = ny = 50. Under the same h, we compare the
RMS values for each case. Table 1 shows that the fact that MLS approximation
theory does not need to have the whole data(WD) but is enough only local
data(LD).

Fig. 2. Feature of g3(left) and its approximated image for M100(right)

Table 1. Comparison of RMS error between WD and LD for M100, M500 and R500

M100 g1 g2 g3 g4 g5

WD .01076 .00694 .00070 .00199 .00020

LD .01085 .00699 .00070 .00201 .00020

M500 g1 g2 g3 g4 g5

WD .00079 .00047 .00004 .00013 .00001

LD .00089 .00045 .00005 .00018 .00001

R500 g1 g2 g3 g4 g5

WD .00080 .00143 .00009 .00020 .00002

LD .00089 .00152 .00009 .00022 .00004

3.2 Time complexity

Table 2 shows that our proposed algorithms makes the processing time faster
about 5 times than the use of WD and it is more efficient if the distribution of
sample data is more dense and its number is larger.
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Table 2. Time complexity between whole data and local data

Time (sec) M100 M500

WD 10.64 46.22

LD 7.32 9.42

3.3 Filling holes with adaptive h local MLS

Firstly we have experimented for g with additive random noise data of magnitude
20 and some data in original data set is removed to have one hole of the cross
shape.

g(x, y) =
{

50((sin 2πx) + sin(2πy)) if x < y,
32((cos 2πx)− sin(2πy)) o.w.

Fig. 3. g function with cross hole by generating noise(left) and its filling hole im-
age(right)

Although the given surface is smooth, if it has missing data with the big
sized hole, then fixed h local MLS algorithm is unsuitable. Next, we experiment
with real face range data having many noisy data and very big holes. If we take
the large fixed h from the largest hole, it can work well for filling holes but it
cannot preserve the details. but if we use the adaptive h local algorithm, then
we get the nice result like Fig. 4 (d).

3.4 Conclusions and further studies

Some experimental results announce us that the proposed algorithm is very
simple and efficient with reasonable accuracy for real range data approximation.
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By introducing h adaptively in every evaluation points, we get the smooth surface
that preserves the detail parts such as nose, eyes and lips and fills holes nicely.
However, this algorithm occurs some discontinuity on the boundary of each hole
due to abrupt change of h near it. So we are researching about multilevel method
for getting more smooth results. Some experimental results give us clues that it
is very reasonable guess.

Fig. 4. (a) original face range image, (b) approximated image with fixed h = 3, (c)
h = 15 (d) approximated image with adaptive h
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