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Abstract. This paper presents a new fast and local method of 3D sur-
face reconstruction for scattered data. The algorithm makes use of quasi-
interpolants to compute the control points from a coarse to fine hierar-
chy to generate a sequence of bicubic B-spline functions whose sum ap-
proaches to the desired interpolation function. Quasi-interpolants gives
a procedure for deriving local spline approximation methods where a B-
spline coefficient only depends on data points taken from the neighbor-
hood of the support corresponding B-spline. Experimental results demon-
strate that high-fidelity reconstruction is possible from a selected set of
irregular samples.

1 Introduction

The problem of recovering a surface from scattered data is one of those interest-
ing problems that is simple in concept but tricky when get into the detail. As
we know, the real world is made up of continuous surfaces, not discrete points.
So, we want to create a continuous surface from the unorganized data points.
The ultimate goal of this paper is a surface reconstruction method as getting a
smooth and high fidelity of 3D surface from scattered data points. In particular,
the description should be sufficiently completed to reconstruct the 3D surface
within a certain tolerance error, given their relative locations and expected noise.

There exist many techniques for surface approximation to improve the ap-
proximate continuity and smoothness in handling scattered data[1,6,7,8]. Tensor
product of B-splines surfaces is widely used to approximate rather than to work
with other types of approximation because of the advantages inherent in working
with tensor products. Tensor product guarantee internal continuity if the knot
vectors are set properly.

This paper is based on the multilevel B-splines approximation techniques
presented by the publication of Lee, Wolberg and Shin[11]. In the previous works,
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Forsey and Bartels[5] developed a surface fitting method which is adaptive on
hierarchical spline functions. However, this method cannot deal with scattered
data. Lee presented a multilevel B-spline algorithm to fit a uniform bicubic B-
spline surface to scatterd data where multilevel or hierarchy is used to reduce
the approximation errors. Although the previous methods are processed locally,
they can not only be computationally expensive when they applied to the large
number of points sets, but also not guarantee a reasonable global approximation
at initial level.

The splines approximation technique used in this paper is quasi-interpolants,
first developed by de Boor and Fix[3]. The quasi-interpolants operators were later
generalized by Lyche and Schumaker[9], and it is their version that used in the
alternative surface approximation technique. A quasi-interpolants operator ap-
proximates a curve by calculating coefficients that are used to weight samplings
of the curve to be approximated. The Lyche and Schumaker quasi-interpolants
operator uses coefficients that are inexpensive to calculate and samplings that
are relatively expensive to calculate. It turns out to produce splines approxima-
tion with the required accuracy.

We introduce a new algorithm using quasi-interpolants to implement the
multilevel B-spline approximation and apply to scattered data. The proposed
method converges in a few iterates while maintaining the accuracy. This algo-
rithm achieved C2-continuous interpolation function from arbitrary scattered
data with numerically stable. The algorithm is described in section 2. Section 3
gives the explanation on how to reconstruct the quasi-interpolants. Then, section
4 shows the experimental results for numerical examples and finally, conclusions
are given in section 5.

2 Multilevel B-Spline Approximation

The methods explored in this paper take a set of scattered data as input and
produce tensor product B-spline surfaces as output. The algorithms run in a
multiresolutional setting over uniform partitions such that the final surface f is
composed of a sequence of surfaces at dyadic scales,

f = f0 + f1 + . . . + fk,

where fi ∈ Si, i = 0, 1, . . . , k, and S0, S1, . . . , Sk is a nested sequence of subspaces
of Sk,

S0 ⊂ S1 ⊂ . . . ⊂ Sk.

The basic algorithms used for the results presented in this paper were pub-
lished in 1997 by Lee, Wolberg and Shin. They called the schemes Multilevel
B-splines. Our interest is mainly scattered data interpolation and approxima-
tion, which is also the main focus in [11].
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Fig. 1. The configuration of control lattice Ω

2.1 The Basic Schemes of B-Spline Approximation

Given a set of scattered points P = {Pi}n
i=1, Pi = (xi, yi, zi) ∈ R3 and let

Ω = {(x, y)|0 ≤ x < mx, 0 ≤ y < my} be a rectangular domain in the xy-plane
such that (xi, yi) is a point in Ω. Let Φ be a control lattice overlaid on a domain
Ω. The control lattice Φ is an uniform tensor product grids over Ω.

To approximate scattered data points P , we formulate initial approximation
function f as a uniform bicubic B-spline function, which is defined by a control
lattice Φ. Let the initial number of control points on the lattice as nx = mx/hx

in x-axis, and ny = my/hy in y-axis. The knot intervals are uniform interval
defined as hx in x-axis and hy in y-axis. So, for uniform cubic B-spline case,
degree d = 3 and the set of knot vectors are defined as below:

τx = {−dhx, . . . , 0, hx, . . . , nxhx, . . . , (nx + d)hx}
τy = {−dhy, . . . , 0, hy, . . . , nyhy, . . . , (ny + d)hy}.

Let cij be the value of the ij-th control point on lattice Φ, located at po-
sition (ihx, jhy) of the grid defined by Φ, for i = −1, 0, 1, . . . , nx + 1 and
j = −1, 0, 1, . . . , ny + 1. The approximation function f is defined in terms of
these control points at position (x, y) ∈ Ω is given as

f(x, y) =
nx+1∑

i=1

ny+1∑

j=1

cijBi,d(x)Bj,d(y) (1)
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where Bi,d and Bj,d are uniform cubic B-spline basis functions, d = 3 and knot
vector for cubic B-spline basis are below:

{(i − 2)hx, (i − 1)hx, ihx, (i + 1)hx, (i + 2)hx}
{(j − 2)hy, (j − 1)hy, jhy, (j + 1)hy, (j + 2)hy}.

2.2 Multilevel B-Spline Approximation

B-spline approximation(BA) algorithm generates a tradeoff exiting between the
shape smoothness and accuracy of the approximation function. To overcome this
tradeoff, multilevel B-splines approximation(MBA) algorithm is introduced [11].
The algorithm makes use of a hierarchy of control lattices to generate a sequence
of function fi and the final approximation function f is defined as the sum of
functions fi,

f =
k∑

i=1

fi. (2)

To optimize this process, B-spline refinement is used to reduce the sum of
these functions into one equivalent B-spline function. The MBA algorithm serves
result as smooth initial approximation f0 to ∆0P = P defined on the coarsest
control lattice Φ0 = Φ, by applying the BA algorithm. To continue to the finer
levels, below explanation are quoted from [11]: The first approximation possibly
leaves large discrepancies at the data points in P . In particular, f0 leaves a
deviation

∆1zi = zi − f0(xi, yi) for i = 0, . . . , n. (3)

The next finer control lattice Φ1 is then used to obtain function f1 that
approximates the difference ∆1P = {(xi, yi,∆

1zi)}.
Then, the sum of f0 + f1 yields a smaller deviation (3) for each (xi, yi) in Ω.

∆2zi = zi − f0(xi, yi) − f1(xi, yi) for i = 0, . . . , n.

In general, for each level k in the hierarchy, the point set ∆kP = {(xi, yi,∆
kzi)}

is approximated by a function fk defined over the control lattices Φk, where

∆kzi = zi −
k−1∑

l=0

fl(xi, yi) = ∆k−1zi − fk−1(xi, yi)

and ∆0zi = zi. This process starts from the coarsest lattice Φ0 and continue
incrementally to the finest lattice Φk with the set of knot vectors are defined as
below:

τk
x = {−d

hx

2k
, . . . , 0,

hx

2k
, . . . , 2knx

hx

2k
, . . . , (2knx + d)

hx

2k
}

τk
y = {−d

hy

2k
, . . . , 0,

hy

2k
, . . . , 2kny

hy

2k
, . . . , (2kny + d)

hy

2k
}.
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The final approximation function f is defined as the sum of the functions (2).
They are many methods for refining a control lattice into another so that they
generate the same B-spline functions. In this paper, B-spline refinement of an
(nx + 3) × (ny + 3) control lattice Φ0 = Φ is always refined to a (2knx + 3) ×
(2kny + 3) control lattice Φk whose the control point spacing is half.

3 Quasi-interpolants

Many applications of splines make use of some approximation method to produce
a spline function from given discrete data. Popular methods include interpola-
tion and least squares approximation. However, both of these methods require
solution of a linear system of equations with as many unknowns as the dimen-
sion of the spline space, and are therefore not suitable for real-time processing
of large streams of data. For this purpose local methods, which determine spline
coefficients by using only local information, are more suitable. To ensure good
approximation properties it is important that the methods reproduce polyno-
mials and preferably the functions in the given spline space. A method based
on derivative information was constructed in [3], while a more general class was
studied in [9]. In order to reproduce the spline space, the local information of
the methods in [9] was restricted to lie in one knot interval. In this paper we re-
move this restriction. We then discuss some specific approximation methods for
quadratic and cubic splines. We use B-splines as a basis for splines and denote
the ith B-spline of degree d with knots τ by Bi,d = Bi,d,τ , and the linear space
spanned by these B-splines by Sd,τ .

Given a function f , the basic problem of spline approximation is to determine
B-spline coefficients (ci)n

i=1 such that

Pf =
n∑

i=1

ciBi,d

is a reasonable approximation to f . The basic challenge is therefore to devise a
procedure for determining the B-spline coefficients. We assume that f is defined
on an interval [a, b], and that we have selected a space of splines Sd,τ defined on
[a, b] (i.e., so that τ = (tj)n+d+1

j=1 is nondecreasing with td+1 = a and tn+1 = b).
When determining ck, this procedure gives us the freedom to restrict our

attention to a local subinterval I = [tµ, tν ] of our choice. By doing this we may
reduce the complexity of the problem. Secondly, we have the freedom to choose
the local approximation method PI . Typical choices will be interpolation, least
squares approximation, or a smoothing spline.

A general class of approximation methods are obtained by letting PI be given
as point functionals of the form

λk,jf = f(xk,j) for j = 1, . . . , mk,
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where mk = ν − µ + d and xk,1, . . . , xk,mk
are given points. With this choice, it

is well known (see page 200 of [1]) that if

Bµ−d−1+j,d(xk,j) > 0 for j = 1, . . . ,mk,

then we obtain ck in the form

ck = λkf =
mk∑

j=1

wk,jf(xk,j), (4)

for some vector wk = (wk,j). Equivalently, we can find wk by solving the linear
system

δi,k = λk(Bi,d) =
mk∑

j=1

wk,jBi,d(xk,j), (5)

for i = µ − d, . . . , ν − 1 where δi,k = 1 if i = k and δi,k = 0 otherwise, as usual.
In practice one would usually determine ck numerically, either from (4), or (5),
except in special cases where the formulas are particularly simple. We consider
some examples in the case where the knots and the degree of the spline are given.

Example 1. In the cubic spline case (d = 3). To determine coefficient ck, we
choose the interval I = [tk, tk+4] which means that the local spline space has
dimension 7,

Sd,τ,I = span{Bk−3,d, Bk−2,d, . . . , Bk+3,d}.
Here, the data points {Pk,i}mk

i=1, Pk,i = (xk,i, yk,i) ∈ R2 are restricted to lie in
the interval I = [tk, tk+4].

xx
xx

t k+2t k+1 t k+3 t k+4 t k+5t kt k-1

Pk,1 Pk,mk
Pk,2

Fig. 2. A cubic spline, I = [tµ, tν ] = [tk, tk+4]

Coefficient matrix :
⎡

⎢⎢⎢⎣

Bk−3,3(xk,1) Bk−3,3(xk,2) . . . Bk−3,3(xk,mk
)

Bk−2,3(xk,1) Bk−2,3(xk,2) . . . Bk−2,3(xk,mk
)

...
...

. . .
...

Bk+3,3(xk,1) Bk+3,3(xk,2) . . . Bk+3,3(xk,mk
)

⎤

⎥⎥⎥⎦

The tensor product of the two spline spaces is defined as a family of all
functions of the form

(Pf)(x, y) =
nx∑

i=1

ny∑

j=1

cijBi,d(x)Bj,d(y)

where Bi,d and Bj,d are the B-splines on τx = (tj)nx+d+1
j=1 and τy = (sj)

ny+d+1
j=1

respectively.
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Example 2. In the tensor product cubic spline case (d = 3). To determine co-
efficient cij , we choose the interval I = [tµ, tν ] × [sµ, sν ] = [ti, ti+4] × [sj , sj+4]
which means that the local spline space has dimension 49,

Sd,τ,I = span{Bi−3,dBj−3,d, . . . , Bi+3,dBj+3,d}.
Here, the data points {Pij,k}mij

k=1, Pij,k = (xij,k, yij,k, zij,k) ∈ R3 are restricted
to lie in the interval I = [ti, ti+4] × [sj , sj+4]

xx
xx
xx

Pij,1

Pij,2

Pij,mij

t i+2t i+1 t i+3 t i+4 t i+5t it i-1

s j+2

sj+1

s j+3

s j+4

s j+5

s j

s j-1

Fig. 3. A tensor product cubic spline, I = [tµ, tν ] × [sµ, sν ] = [ti, ti+4] × [sj , sj+4]

Coefficient matrix :
⎡

⎢⎢⎢⎣

Bi−3,3(xij,1)Bj−3,3(yij,1) . . . Bi−3,3(xij,mij
)Bj−3,3(yij,mij

)
Bi−3,3(xij,1)Bj−2,3(yij,1) . . . Bi−3,3(xij,mij

)Bj−2,3(yij,mij
)

...
. . .

...
Bi+3,3(xij,1)Bj+3,3(yij,1) . . . Bi+3,3(xij,mij

)Bj+3,3(yij,mij
)

⎤

⎥⎥⎥⎦

4 Experimental Results

To demonstrate the accuracy of reconstruction by the proposed algorithm, we
performed experiments with the same test functions used in [11]. Given a test
function g(x, y), we first sampled data points from it and applied the algorithm
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to obtain an approximation function f . The difference between g and f is then
measured by computing the normalized RMS(root mean square) error which is
divided the RMS error by the difference of maximum and minimum values of g
between the function values on a dense grid. That is,

RMS =

√∑M
i=0

∑N
j=0(g(xi, yj) − f(xi, yj))2

(M + 1)(N + 1)

where xi = i/M , yj = j/N , and M = N = 50.
The test functions are

g1(x, y) = 0.75 exp
[
− (9x − 2)2 + (9y − 2)2

4

]

+ 0.75 exp
[
− (9x + 1)2

49
− 9y + 1

10

]

+ 0.5 exp
[
− (9x − 7)2 + (9y − 3)2

4

]

− 0.2 exp
[−(9x − 4)2 − (9y − 1)2

]

g2(x, y) = (tanh(9 − 9x − 9y) + 1)/9
g3(x, y) = (1.25 + cos(5.4y))/(6 + 6(3x − 1)2)

g4(x, y) = exp
[
−81

4
((x − 0.5)2 + (y − 0.5)2)

]
/3

g5(x, y) =
√

64 − 81((x − 0.5)2 + (y − 0.5)2)/9 − 0.5

where the domain is {(x, y)|0 ≤ x ≤ 1, 0 ≤ y ≤ 1}
For each test function, we used three data sets, M100, M500 and R500, where

M100 and M500 are small and large data sets, which consist of 100 and 500

Table 1. Normalized RMS errors between test functions and their approximations

M100 g1 g2 g3 g4 g5

1 .01451 .03020 .00693 .00215 .00025

2 .01174 .03345 .00515 .00830 .00024

3 .00902 .02800 .00447 .00540 .00022

M500 g1 g2 g3 g4 g5

1 .01176 .02747 .00567 .00163 .00016

2 .00416 .00776 .00046 .00148 .00002

3 .00047 .00115 .00017 .00024 .00002

R500 g1 g2 g3 g4 g5

1 .01328 .03098 .00627 .00189 .00021

2 .00689 .01367 .00079 .00166 .00006

3 .00244 .00801 .00034 .00053 .00005
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points, respectively. We uniformly sampled 7 × 7 and 15 × 15 data points, re-
spectively, while the others was randomly sampled. And R500 points were totally
randomly sampled.

Fig. 4 shows 5 tested functions used in the experiment. Fig. 5 shows approx-
imation surface of g1 and error surface at initial level, respectively, where the
circle represent the sampled data. The second level approximation result is ob-
tained from sum of A) and B). Table 1 demonstrates that the proposed method
reconstructs test functions very accurately regardless of type of the function
within a few level. We started from the number of control points of 7x7 at initial
level to three levels. Particularly, it generates good approximation corresponding
to reasonable global approximation at initial level for smooth functional surface.

g5

g3

g4

g2g1

Fig. 4. Test functions

A)

B)

C)

Fig. 5. A) Initial approximation surface from g1 B) Error surface with ∆1z = zi −
f0(xi, yi) C) Multilevel B-spline approximation with level 2, f0 + f1
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5 Conclusion

This paper focuses on multilevel B-spline approximation based on quasi-interpol-
ants for scattered data approximation and interpolation. The algorithm is fast
and generates a C2-continuous surface through a set of unevenly spaced points.
Experimental results reveal that smooth 3D object reconstruction is possible
from scattered data and irregular samples. Multilevel B-spline approximation
was presented to circumvent the tradeoff which exists between the shape smooth-
ness and approximation accuracy of the function, depending on the control lat-
tice density. It is effectively gain in large performance. The quasi-interpolants is
a special case of more general constructions and performs better approximation
to reduces error results.
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