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Abstract

In this paper, we propose a level set based energy func-
tional, the minimization of which results in simultaneous
background modeling, foreground segmentation, and con-
tour smoothing. The simultaneous dealing of background
modeling and foreground segmentation has the effect that
the two processes constrain each other positively, such that
a good estimate of the background can be obtained with a
small number of frames, and a temporal change in the scene
is reflected quickly in the construction of the background
image. Furthermore, the simultaneous level set based con-
tour smoothing eliminates spurious regions, and smooths
the contour that encompasses the object, so that a good rep-
resentation for the boundary of the object is obtained. The
level set based approach makes it possible to derive a level
set based Euler-Lagrangian equation, which can be directly
implemented and works in real-time.

1. Introduction

Nowadays, there is a large demand for intelligent surveil-
lance systems that can automatically detect the object. This
is due to the fact that it is difficult for the observer who mon-
itors a property or a room by a surveillance camera to look at
the screen continuously (see Fig. 1). Therefore, algorithms
which can automatically detect the moving object are the
key technologies for intelligent surveillance systems. Back-
ground subtraction refers to the class of motion detection
techniques that segment out moving objects by comparing
an observed image with an estimate of the background im-
age which is usually estimated from a given sequence taken
of the same scene for a certain time interval. However, the
difficulty in estimating the reference background image lies

in the fact that all the frames in the given image sequence
may contain moving objects, where ideally the reference
background image should contain no moving objects in it.
The difficulty increases when the memory of the surveil-
lance system is limited, and only a small number of frames
can be used in the modeling.

Another difficulty lies in the fact that there exists a trade-
off between the acquirement of a clean background image
and the fast recognition of changes in the scene, i.e., ei-
ther tails of the moving object become apparent in the back-
ground image or the background image is updated slowly.
For a fast recognition of changes in the scene, it is crucial
that only a small number of frames are used in the back-
ground modeling.

Algorithms that model the background image by mod-
eling the color of each pixel with a single or a mixture
of Gaussians [4]-[6] usually need more than hundreds of
frames for training, and therefore, a change in the scene is
reflected very slowly in the background image. Background
modeling techniques that update the reference background
image by blending the current background image with the
current frame [1]-[3] also need many frames to reflect a
change in the scene depending on the blending parameter.

The number of frames used in the background model-
ing can be reduced if the mutual dependence of the fore-
ground segmentation and the background image modeling
are taken into account. A variational approach in which the
background image modeling and the foreground segmenta-
tion affect each other positively has been introduced in [7].
However, an Euler-Lagrange equation cannot be obtained
directly from the variational form, and therefore, the imple-
mentation is based on half quadratic minimization which
takes a lot of time, making it difficult for the algorithm to
be applied for real-time applications.

In this paper, we propose an energy functional that for-
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mulates the problem of simultaneous background model-
ing, foreground segmentation, and contour smoothing into
a level set based energy minimization problem. In other
words, the minimization of a single level set based energy
functional deals with all the problems simultaneously. Due
to the use of the level set, a level set based Euler-Lagrange
equation can be derived directly from the energy functional,
which makes the foreground-background segmentation and
contour smoothing work in real-time. The simultaneous
dealing of the background image modeling and the fore-
ground segmentation makes it possible to obtain a clean
background image with a relatively small number of frames.
Due to the use of a small number of frames, a change in
the scene is reflected fast in the formation of the reference
background image, so that objects that starts(stops) moving
are rapidly recognized as the foreground(background). Fur-
thermore, the level set based contour smoothing eliminates
spurious regions and noise to reduce the false alarm rate in
surveillance systems, and smooths the contour that encom-
passes the moving object to obtain a better representation of
the boundary of the object.

Besides being used as a partitioning operator that seg-
ments the foreground and the background, and as an aux-
iliary function used in the contour evolution, the level set
function is also used as a weighting function in the model-
ing of the background image. The weighting is determined
such that colors that are close to those in the background
image are given a larger weight in the modeling of the next
background image than colors that are not. This reduces er-
roneous segmentation results which can result from the uni-
form blending parameter that is used in temporal blending
based background subtraction schemes[1]-[3].

2 Proposed Model

We introduce the following energy functional that for-
mulates the problem of simultaneous background model-
ing, foreground segmentation and contour smoothing into a
level set based minimization problem:

E(B, φ) =
∫

∆t

∫

Ω

F (φ)
[
α− (B − I(t))2

]
+λ|∇φ|2 drdt,

(1)
where B is the background image, φ is the level set func-
tion, I(t) is the frame at time t, Ω is the domain of the im-
age, ∆t is a certain time interval along the temporal axis, α
and λ are positive constant parameters, and F (φ) is a func-
tion of φ defined as follows:

F (φ) =





k
φ−φmin,φ≥0

φmax,φ≥0−φmin,φ≥0
+ (1− k), if φ ≥ 0

k
φ−φmin,φ<0

φmax,φ<0−φmin,φ<0
, if φ < 0

(2)

(a)

(b)

Figure 1. (a) The main closed-circuit televi-
sion(CCTV) control center in Gangnam dis-
trict, Seoul, Korea. Security officers keep
on watching hundreds of video channels dis-
played on monitor screens. (b) Intelligent
surveillance system, that automatically ob-
tains the contour of the intruding object.

where φmax,φ≥0 and φmin,φ≥0 are the maximum and the
minimum values of φ(r) in {r|φ(r) ≥ 0}, respectively, and
φmax,φ<0 and φmin,φ<0 are the maximum and the mini-
mum values of φ(r) in {r|φ(r) < 0}, respectively, and k is
a constant lying in the interval 0 ≤ k ≤ 1.

The energy functional is minimized with respect to the
background image B and the level set function φ, which
are the solutions being sought. The level set function is an
auxiliary 3 dimensional function which domain has the size
[Ω × ∆t]. However, it is actually composed of several 2
dimensional frames, where each frame corresponds to each
image frame in ∆t.

The level set function plays several different roles in the
scheme. First, the use of the level set function makes it
possible to derive a level set based Euler-Lagrange equa-
tion from (1), so that a real-time working scheme can be
implemented. Second, it acts as a partitioning operator
which segments the image region into the foreground and
the background region, where {r|φ(r) ≥ 0} represents the
foreground region and {r|φ(r) < 0}, the background re-
gion. Third, the value of the level set function determines
the value of F (φ) which acts as a weighting function that is
used in the construction of the background image. Fourth,
it is used in the smoothing of the contour that encompasses
the moving object. Besides these, the level set function can
also be used to obtain an adaptive thresholding used in the
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segmentation of the foreground. In the following sections,
it is shown how the minimization of (1) results in the back-
ground image modeling, foreground segmentation, and the
contour smoothing.

3 Background Image Modeling

The equation for background image modeling is ob-
tained by minimizing the energy functional in (1) with re-
spect to the background image. The minimization is done
directly by letting the gradient of the functional be zero.
Keeping φ fixed and minimizing the energy E(B, φ) with
respect to the background image B, gives:

∫

∆t

∫

Ω

2F (φ)(B(r) − I(r, t))drdt = 0

⇔
∫

∆t

∫

Ω

F (φ)B(r)drdt =
∫

∆t

∫

Ω

F (φ)I(r, t)drdt

⇔
∫

Ω

B(r)dr =

∫
∆t

∫
Ω

F (φ)I(r, t)drdt∫
∆t

F (φ)dt

⇔
∫

Ω

B(r)dr =

∫
Ω

∫
∆t

F (φ)I(r, t)dtdr∫
∆t

F (φ)dt

One solution that satisfies the above equation is:

B(r) =

∫
∆t

F (φ)I(r, t)dt∫
∆t

F (φ)dt
. (3)

We use (3) to construct the background image. It should
be noticed that the integration in (3) is along the sequential
axis, and not over the image domain. The brightness value
of B(r) for each pixel r is a weighted average of the bright-
ness values I(r, t) at the same position r and different t in
∆t, where F (φ) acts as the weighting function.

As can be observed from (2), F (φ) lies in the interval
0 ≤ F (φ) < k, if φ is negative, while it lies in the interval
1−k ≤ F (φ) ≤ 1, if φ is positive. For example, if k = 0.3,
then 0 ≤ F (φ) < 0.3, if φ is negative, i.e., if the pixel r be-
longs to the foreground region, while 0.7 < F (φ) ≤ 1, if
the pixel r belongs to the background region. Therefore, if
k < 0.5, current image intensities corresponding to pixels
that are classified as the background region are taken more
into account in the formation of the next background image
than intensities of pixels that are classified as the foreground
region. Normally, we use k = 0.1.

Furthermore, the weighting is adaptive based on the dif-
ference of the current image intensity and the background
image intensity at the pixel r. It is large at pixels where the
difference of the intensity value of the background and the
current image is small, and small at pixels where the differ-
ence is large. This is due to the fact that the value of F (φ) is
large when φ is large, which again is large if (B − I(t, r))2

is small, and vice versa. Therefore, the weighted average is

more weighted to the intensities in the current frame that are
similar to the intensities of the current background image.
In this way, the formation of the next background image
becomes constrained by the former segmentation result and
the intensity values of the former background image, and
thus, is less affected by moving objects than conventional
background modeling schemes. Therefore, moving objects
leave less tails in the next background image even with a rel-
atively small number of frames than conventional schemes.

On the other side, the use of a relatively small number
of frames in the formation of the background image has the
effect that the change of state of a certain object, i.e., the
change from a static state to a moving state or vice versa,
becomes reflected fast into the background image.

4 Foreground Segmentation

The classification of the background and the foreground
region is determined by the parameter α which acts as a
threshold value. The thresholding is done indirectly via the
Euler-Lagrange equation relating the level set function. The
Euler-Lagrange equation is obtained by keeping B fixed,
and minimizing the energy functional in (1) with respect to
φ.

Supposing that the background image B is fixed, and ig-
noring the regularization term(|∇φ2D|2) for a while, it can
be seen from (1), that the integrand in (1) decreases as the
value of F (φ) decreases, if the value α − (B − I(t, r))2

at the pixel r and time t is positive. According to (2),
the decrease of F (φ) indicates the decrease in the value of
φ, and thus the minimization process makes φ go to −∞.
As a result, every pixel in the current frame at which the
value (B(r) − I(r))2 is smaller than α becomes classi-
fied in the region {r|φ(r) < 0}, that is, the background re-
gion. Likewise, φ(r) becomes positive at the pixel r where
(B(r)− I(r))2 ≥ α, and thus, the pixel becomes classified
in the region {r|φ(r) ≥ 0}, the foreground region.

The minimizer φ is in fact a 3 dimensional function in
the domain [Ω ×∆t], and has to be computed using all the
image frames in the time interval ∆t. However, since B
is being kept fixed, and the image frames in ∆t are inde-
pendent to each other, we find a 2 dimensional minimizer
φ2D function for each frame instead of the 3 dimensional
minimizer φ function, and assume that the 3 dimensional
minimizer is the stack of all φ2D slices in ∆t. Therefore,
we formulate the problem as:

arg min
φ2D

∫

∆t

∫

Ω

F (φ2D)
[
α− (B − I(t))2

]
+λ|∇φ2D|2drdt,

(4)
for each frame in ∆t. Then, the following Euler-Lagrange
equation for φ2D is deduced for each frame in ∆t:

∂φ2D

∂t
= F ′(φ2D)

[
(B − I(t))2 − α

]
+ λ∇2φ2D, (5)
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where ∇2 is the laplacian operator and F ′(φ2D) is the
derivative of F (φ2D) with respect to φ2D:

F ′(φ2D) =





k 1
φmax,φ≥0−φmin,φ≥0

, if φ ≥ 0

k 1
φmax,φ<0−φmin,φ<0

, if φ < 0

where φmax,φ≥0, φmin,φ≥0, φmax,φ<0, and φmin,φ<0 have
been regarded as constants. The Euler-Lagrange equation
is solved using the forward difference scheme with a pre-
scribed number of iterations.
Here, F ′(φ2D) acts as a normalizing function, that nor-
malizes the value of (B − I(t))2 − α with respect to the
maximum and minimum values of φ in {r|φ(r) ≥ 0} and
{r|φ(r) < 0}. By observing (5) and F ′(φ2D), it can be
seen that the same normalized result can be obtained regard-
less of the number of iterations, if the regularization term is
omitted, and therefore, in this case, it is enough to solve (5)
for one iteration, with the initial condition φ2D(r) = 0 for
all r. Even with the regularization term, only a few itera-
tions are required, since the normalization keeps the abso-
lute value of φ2D(r) small and since the laplacian operator
smooths out φ2D(r) very fast. The small number of itera-
tions greatly saves the execution time.

5 Smoothing of the Contour and Removal of
Spurious Regions

After the foreground segmentation via the φ function,
the zero level contour of the φ function becomes the con-
tour that represents the boundary of the foreground. A
clean extraction of the boundary and the removal of spu-
rious regions caused by noise are important for higher com-
puter vision tasks, such as behavioral analysis, and also
for the reduction of false alarm rate and memory alloca-
tion. To this end, some extra morphological post-processes
such as opening and closing are used in conventional track-
ing schemes. However, with the proposed model, such a
process is incorporated in the minimization of (1). The
minimization of the regularization term(|∇φ|2) of the inte-
grand in (1) results in a smoothing of the level set function,
which again results in the elimination of spurious regions
and smoothing of the zero level contour.

6 Implementation of the Algorithm

Even though the algorithm uses several frames for the
computation of the current reference background image
and implements a partial differential equation, it can be
executed in real-time. This is due to the fact that the number
of iterations in implementing (5), normally, is less than 5
iterations, and the number of frames in ∆t are small. The

number of frames can be further reduced if the frame-rate
decreases, that is, if a sampled version of the frames are
taken from the video sequence. In the experiments, we
usually used 5 ∼ 10 frames. The fundamental steps of the
proposed algorithm are presented below.

Principle Steps of the Algorithm

1. At the initial step, an initial reference background im-
age is constructed, e.g., by taking the average image of
contiguous frames.

2. Using the initial reference background image com-
puted in step 1, The φ2D functions for every frame in
the time interval ∆t are computed using (5).

3. Compute the reference background image according to
(3) using all the φ2D functions in ∆t.

4. Update ∆t such that all the frames in ∆t are shifted by
one frame along the sequential axis.

5. Compute φ2D functions for every frame in the time
interval ∆t using (5).

6. Repeat step 3–5.

7 Experimental Results

The video sequence which we used in the experiments
contains moving objects in all frames. Figure 2 compares
the segmented foreground images and the estimated back-
ground images obtained by different methods. The sim-
ple averaging, median, and the proposed method all use 10
sampled frames, which are sampled every second frame,
i.e., have a frame rate of 15 fps. For Gaussian modeling
based methods, 10 frames are too few and have been ex-
cluded from the comparison. As can be observed, the av-
eraging method and the blending method leave “tails” of
the moving objects in the background image, which again
affects the foreground segmentation. The median method
shows better results similar to the proposed algorithm, but
the computational cost is larger due to the sorting process.
In comparison, the proposed method leaves less “tails” than
the averaging or blending methods, and due to the inherent
smoothing of the contour, the boundary of the object is bet-
ter defined as can be seen in Fig. 2(o). The processing time
for each computation in ∆t was about 0.04 seconds using
frames of size 160 × 120. Figure 3 shows the enlarged fig-
ures of the contours in Fig. 2. It can be seen that the contour
obtained with the proposed scheme is smooth and includes
the object entirely. We computed the Dice coefficient for
the object in Fig. 3 compared with a manually segmented
region. Figure 4 compares the proposed method with the
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blending method in the case that the moving object comes
to a static state. It can be seen that the proposed scheme re-
flects the static object in the background image faster than
the blending method. Figure 5 compares the case that the
static object starts moving and becomes excluded from the
background image. The proposed scheme obtains a “clean”
background image faster than the blending method.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

Figure 2. The first column shows the esti-
mated background images obtained by (a) av-
eraging (d) median (g) blending with blending
parameter 0.1 (j) blending with blending pa-
rameter 0.05 (m) proposed method. The sec-
ond column shows the corresponding seg-
mented foreground, where the foregrounds
in (b),(e),(h) and (n) have been obtained by
thresholding with threshold value of 30, and
the foreground in (j) has been obtained by
the proposed method with α = 30. The third
column shows the corresponding zero level
contours in red colors.
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(a) (b)

(c) (d) (e)

Figure 3. Enlarged figures of the contours in
Fig. 3. (a) averaging dv = 0.75 (b) median
dv = 0.87 (c) blending with blending param-
eter 0.1 dv = 0.79(d) blending with blending
parameter 0.05 dv = 0.82(e) proposed method
dv = 0.88

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4. Comparison of the estimated back-
ground image when the moving object comes
to a static state. The first column shows
the frame image, the second shows the es-
timated background image obtained by the
blending method, and the third shows that
obtained by the proposed method. The first,
second, and the third row correspond to the
frame 226, 235, and 243, respectively.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 5. Comparison of the estimated back-
ground image when the static object starts
moving. The first column shows the frame
image, the second shows the estimated
background image obtained by the blending
method, and the third shows that obtained
by the proposed method. The first, second,
third, and the fourth rows correspond to the
frame 313, 316, 321, and 325, respectively.
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