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Abstract

We study the relationship of transformations between Legendre and Bernstein basis. Using the relationship, we
present a simple and efficient method for optimal multiple degree reductions of Bézier curves with respect to the
L2-norm.
 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

We can express a polynomial curve with an appropriate basis for its use. The use of orthogonal basis
such as Chebyshev and Legendre polynomial permits optimal degree reduction to exchange, convert
or reduce data, or compare geometric entities which is an important task in CAGD (Li and Zhang,
1998; Mazure, 1999). For example, we have seen the use of Chebyshev and Legendre polynomial
in degree reduction schemes (Watkins and Worsey, 1988; Eck, 1993, 1995). On the other hand, the
Bernstein form of a polynomial having the recursive formula and the property of partition of unity offers
valuable insight into its geometrical behavior, and has won widespread acceptance as the basis for Bézier
curves and surfaces in CAGD (Farin, 1993). But Bernstein polynomials are not orthogonal. So the basis
transformation is important and has been studied in many ways. Farouki (2000) found the explicit form
of the basis transformation between Legendre and Bernstein basis.
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In this paper, we find the relationships between the Gram matrixQn and the Legendre–Bernstein basis
transformation matrixMn, theMn and the Bernstein–Legendre basis transformation matrixM−1

n , and the
orthogonal matrixUn andMn. We also obtain the relationships between the basis transformation matrices
Mn, M−1

n and the degree elevation matrixTn, the basis transformation matrices and the degree reduction
matrix.

This paper is organized as follows. We explain the degreen Legendre and Bernstein basis, and their
transformations in Section 2. We discuss the relationship among transformations,Mn, M−1

n , eigenvalues
of Gram matrix and an orthogonal matrixUn in Section 3. We present the explicit method to degree
elevation and degree reduction of Bézier curves in Sections 4 and 5.

2. Legendre and Bernstein basis

The Bézier representation uses Bernstein polynomials as basis functions for the linear space of
polynomials. In terms of the Bernstein polynomials of degreen,

Bn
i (t) =

(
n

i

)
(1− t)n−i t i , i = 0,1, . . . , n,

a parametric polynomial curvePn(t) of degreen (n > 0) in the plane can be expressed as

Pn(t) =
n∑

i=0

ciB
n
i (t), 0 � t � 1,

where the{ci}n
i=0 are the set of(n + 1) control points.

The product of Bernstein polynomials is

Bn
i (t)Bm

j (t) =
(
n

i

)(
m

j

)
(
n+m

i+j

) Bn+m
i+j (t) (1)

and the integration is

1∫
0

Bn
k (t)dt = 1

n + 1
. (2)

The Legendre polynomials constitute an orthonormal basis that is well suited to least-squares
approximation. To emphasize symmetry properties they are traditionally defined on the interval[−1,+1],
but for our purpose it is preferable to map this to[0,1]. The Legendre polynomialsLn(t) on t ∈ [0,1]
can be generated by the explicit form

Ln(t) = √
2n + 1

�n/2�∑
i=0

(
n

i, i

)(
t2 − t

)i
(2t − 1)n−2i ,

where
(

n

i,j

) = n!
i!j !(n−i−j)! . This gives, in the first few instances,

L0(t) = 1,

L1(t) = √
3(2t − 1),
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L2(t) = √
5
(
6t2 − 6t + 1

)
,

L3(t) = √
7
(
20t3 − 30t2 + 12t − 1

)
.

The orthonormality of these polynomials is expressed by the relation
1∫

0

Lj(t)Lk(t)dt =
{

1 if j = k,
0 if j �= k.

(3)

Consider a polynomialPn(t) of degreen, expressed in the degreen Bernstein and Legendre basis on
t ∈ [0,1]:

Pn(t) =
n∑

j=0

cjB
n
j (t) =

n∑
k=0

lkLk(t).

We are interested in the linear transformation

cj =
n∑

k=0

Mn(j, k)lk, j = 0,1, . . . , n,

that maps the Legendre coefficientsl0, l1, . . . , ln into the Bernstein coefficientsc0, c1, . . . , cn, and its
inverse. Writingc = [c0, c1, . . . , cn]t and l = [l0, l1, . . . , ln]t, we may express this in vector-matrix form
as

c = Mnl.

Then we have the following theorem, see (Farouki, 2000).

Theorem 1. The Legendre polynomial Lk(t) can be expressed in the Bernstein basis Bn
0(t),Bn

1(t), . . . ,

Bn
n(t) of degree n as

Lk(t) = √
2k + 1

k∑
i=0

(−1)k+i

(
k

i

)
Bk

i (t)

=
n∑

j=0

√
2k + 1(

n

j

) min(j,k)∑
i=max(0,j+k−n)

(−1)k+i

(
k

i

)(
k

i

)(
n − k

j − i

)
Bn

j (t).

The elements of the matrixMn that transforms the Legendre coefficients of degreen polynomials into
the Bernstein coefficients according to equation, are given for 0� j, k � n by

Mn(j, k) =
√

2k + 1(
n

j

) min(j,k)∑
i=max(0,j+k−n)

(−1)k+i

(
k

i

)(
k

i

)(
n − k

j − i

)
. (4)

For Bernstein to Legendre transformation matrixM−1
n , see (Farouki, 2000).

Theorem 2. The elements of the inverse M−1
n are given for 0 � j, k � n by

M−1
n (j, k) =

√
2j + 1

n + j + 1

1(
n+j

n

) j∑
i=0

(−1)j+i

(
j

i

)(
k + i

k

)(
n − k + j − i

n − k

)
. (5)
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Example 1.

M1 =
[

1 −√
3

1
√

3

]
, M−1

1 =
[ 1

2
1
2

−
√

3
6

√
3

6

]
,

M2 =

1 −√

3
√

5

1 0 −2
√

5

1
√

3
√

5


 , M−1

2 =



1
3

1
3

1
3

−
√

3
6 0

√
3

6√
5

30 −2
√

5
30

√
5

30


 ,

M3 =




1 −√
3

√
5 −√

7

1 −
√

3
3 −√

5 3
√

7

1
√

3
3 −√

5 −3
√

7

1
√

3
√

5
√

7


 , M−1

3 =




1
4

1
4

1
4

1
4

−3
√

3
20 −

√
3

20

√
3

20
3
√

3
20√

5
20 −

√
5

20 −
√

5
20

√
5

20

−
√

7
140

3
√

7
140 −3

√
7

140

√
7

140


 .

3. L2-norm of the polynomial Pn

We compute theL2-norm of a Bézier curve of degreen. From these equations (1) and (2), we obtain
the following computation for theL2-norm of the polynomialPn with Bernstein basis:

‖Pn‖2
2 =

1∫
0

∣∣∣∣∣
n∑

i=0

ciB
n
i (t)

∣∣∣∣∣
2

dt =
1∫

0

∑
i,j

cicjB
n
i (t)Bn

j (t)dt

=
∑
i,j

cicj

1∫
0

(
n

i

)(
n

j

)
( 2n

i+j

) B2n
i+j (t)dt = 1

2n + 1

∑
i,j

cicj

(
n

i

)(
n

j

)
( 2n

i+j

) .

Let the elements of the Gram matrixQn of the Bernstein basis be the

Qn(i, j) = 1

2n + 1

(
n

i

)(
n

j

)
( 2n

i+j

) , i, j = 0,1, . . . , n. (6)

Then theL2-norm of the polynomialPn is

‖Pn‖2
2 = ctQnc. (7)

Here are some examples ofQn.

Example 2.

Q1 =
[ 1

3
1
6

1
6

1
3

]
, Q2 =




1
5

1
10

1
30

1
10

2
15

1
10

1
30

1
10

1
5


 , Q3 =




1
7

1
14

1
35

1
140

1
14

3
35

9
140

1
35

1
35

9
140

3
35

1
14

1
140

1
35

1
14

1
7


 .
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From the definition of the Gram matrixQn and the mathematical induction, all the upper left submatrices
of the Gram matrixQn have positive determinants. SoQn is a real symmetric positive definite matrix,
see (Lee and Park, 1997). Thus it can be diagonalized by an orthogonal matrixUn (i.e.,U−1

n = U t
n) whose

column vectors are orthonormal eigenvectors ofQn, that is,

Qn = UnDnU
t
n,

whereDn is the diagonal matrix with positive eigenvalues of the matrixQn.

The following theorem is the direct result from Proposition 10 in (Lyche and Scherer, 2000).

Theorem 3. From the Gram matrix Qn given by (6) we have

QnMn = MnDn,

where λk = 1
2n+1

(2n+1
n−k )

(2n
n )

(k = 0,1, . . . , n) are eigenvalues of the Gram matrix Qn.

From the orthonormality (3) of Legendre basis, we obtain the following computation for theL2-norm
of the polynomialPn with Legendre basis:

‖Pn‖2
2 =

1∫
0

∣∣∣∣∣
n∑

i=0

liLi(t)

∣∣∣∣∣
2

dt =
∑
i,j

li lj

1∫
0

Li(t)Lj (t)dt = ltl. (8)

From Theorem 3, we get the following theorem that describes the relationship amongM−1
n , Mn andDn.

Theorem 4. For the Bernstein to Legendre transformation matrix M−1
n we have

M−1
n = DnM

t
n.

Proof. From (7) and (8), we have

ctQnc = ltl.

By the definition ofM−1
n , we can also express theL2-norm of the polynomialPn as

ctQnc = ct
(
M−1

n

)t
M−1

n c. (9)

By Theorem 3 and (9) we obtain

Qn = MnDnM
−1
n = (

M−1
n

)t
M−1

n .

Multiplying both sides byMn and considering the transpose of both sides, we complete the proof.✷
The following theorem enables us to computeUn with the explicit forms ofMn andDn.

Theorem 5. For the orthogonal matrix Un of the Gram matrix Qn we have

Un = Mn

√
Dn.
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Proof. From Theorem 4, we have

Qn = MnDnM
−1
n = MnDnDnM

t
n = Mn

√
DnDn

(
Mn

√
Dn

)t
.

And we can easily check the orthogonality ofMn

√
Dn(

Mn

√
Dn

)−1 = √
Dn

−1
M−1

n = √
DnM

t
n = (

Mn

√
Dn

)t
.

This completes the proof.✷
Here are some examples ofUn andDn.

Example 3.

U1 =
[ 1√

2
− 1√

2
1√
2

1√
2

]
, D1 =

[ 1
2 0

0 1
6

]
,

U2 =



1√
3

− 1√
2

1√
6

1√
3

0 − 2√
6

1√
3

1√
2

1√
6


 , D2 =




1
3 0 0

0 1
6 0

0 0 1
30


 ,

U3 =




1
2 − 3√

20
1
2 − 1√

20
1
2 − 1√

20
−1

2
3√
20

1
2

1√
20

−1
2 − 3√

20
1
2

3√
20

1
2

1√
20


 , D3 =




1
4 0 0 0

0 3
20 0 0

0 0 1
20 0

0 0 0 1
140


 .

4. Degree elevation

For raising the degree of Bézier curve by one without changing the shape of the curve. We can show
that new verticesc(1)

i are obtained from the old polygon by piecewise linear interpolation at the parameter
valuesi/(n + 1), see (Farin, 1993).

c
(1)
i = i

n + 1
ci−1 +

(
1− i

n + 1

)
ci, i = 0,1, . . . , n + 1. (10)

We can rewrite the formula (10) as a linear systemTnc = c(1), where the(n + 2) × (n + 1) matrix Tn is

Tn = 1

n + 1




n + 1 0 0 . . . 0 0 0
1 n 0 . . . 0 0 0
0 2 n − 1 . . . 0 0 0
...

...
...

. . .
...

...
...

0 0 0 . . . n − 1 2 0
0 0 0 . . . 0 n 1
0 0 0 . . . 0 0 n + 1



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and the(n + 1) vectorc and the(n + 2) vectorc(1) are

c = (c0, c1, . . . , cn)
t,

c(1) = (
c
(1)

0 , c
(1)

1 , . . . , c(1)
n

)t
.

We may repeat this process and then obtain a sequence of control points. Afterr degree elevations, we
have a linear systemTn,rc = c(r), where the(n + r + 1) × (n + 1) matrix

Tn,r = Tn+r−1Tn+r−2 . . .Tn+1Tn

has elements

Tn,r (i, j) =
(
n

j

)(
r

i−j

)
(
n+r

i

) , i = 0,1, . . . , n + r andj = 0,1, . . . , n.

By the orthogonality of Legendre basis, the degree elevation of a polynomial with Legendre basis is given
by

l = (l0, l1, . . . , ln)
t,

l(1) = (l0, l1, . . . , ln,0)t.

After r degree elevations, we have a linear systemĨn,r l = l(r), where the(n + r + 1) × (n + 1) matrix
Ĩn,r has elements

Ĩn,r(i, j) =
{

1 if i = j ,
0 if i �= j .

After transforming the Bernstein coefficients to the Legendre coefficients byM−1
n , the degree elevation

by Ĩn,r , and finding the Bernstein coefficients byMn+r , we obtain the following theorem.

Theorem 6. The degree elevation matrix Tn,r can be expressed in M−1
n , Ĩn,r and Mn+r as

Tn,r = Mn+r Ĩn,rM
−1
n .

5. Degree reduction

When we find the best approximation in the sense ofL2-norm, in general, the degree reduction of
Bézier curves address the following problem.

Problem 1 (L2 degree reduction). Let {ci}n
i=0 be a given set of control points which define the Bézier

curve

cn(t) =
n∑

i=0

ciB
n
i (t)

of degreen. Then find another point set{bi}m
i=0 defining the approximative Bézier curve

bm(t) =
m∑

i=0

biB
m
i (t)

of lower degreem < n so that anL2-distance functiond2(b
m, cn) betweenbm andcn is minimized.
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TheL2-distance of the two Bézier curvesbm andcn is defined as following:

d2
2

(
bm, cn

) =
1∫

0

∣∣bm(t) − cn(t)
∣∣2

dt =
1∫

0

∣∣∣∣∣
m∑

i=0

biB
m
i (t) −

n∑
i=0

ciB
n
i (t)

∣∣∣∣∣
2

dt.

Using the matrixTm,r , we can elevate the degree ofbm from m to n, wherer = n − m,

b(r) = Tm,rb.

Then the curvebm of degreem is rewritten as a curve of degreen

bm(t) = b(r)(t) =
n∑

i=0

b
(r)
i Bn

i (t),

and the distance is

d2
2

(
bm, cn

) = d2
2

(
b(r), cn

) =
1∫

0

∣∣∣∣∣
n∑

i=0

b
(r)
i Bn

i (t) −
n∑

i=0

ciB
n
i (t)

∣∣∣∣∣
2

dt =
1∫

0

∣∣∣∣∣
n∑

i=0

(
b

(r)
i − ci

)
Bn

i (t)

∣∣∣∣∣
2

dt.

Thus we obtain the following theorem for theL2-distance between the Bézier curvebm of degreem and
the Bézier curvecn of degreen.

Theorem 7. The L2-distance between the two Bézier curves bm and cn is

d2
2

(
bm, cn

) = d2
2

(
b(r), cn

) = AtQnA,

where A = c − Tm,rb, b = (b0, b1, . . . , bm)t and c = (c0, c1, . . . , cn)
t.

For developing the method, rewrited2
2(bm, cn).

d2
2

(
bm, cn

) = AtQnA

= [c − Tm,rb]tQn[c − Tm,rb]
= ctQnc − 2btT t

m,rQnc + btT t
m,rQnTm,rb.

One method of obtaining the vectorb is so-called the method of least squares (Lee and Park, 1997;
Lutterkort et al., 1999). This method consists of minimizingAtQnA with respect tob. We choose the
vector b̂ as that the value ofb minimizes AtQnA. Equating∂(AtQnA)/∂b to zero and writing the
resulting equations in terms ofb̂, we find that these equations are

T t
m,rQnTm,r b̂ = T t

m,rQnc.

They are known as the normal equations.

Theorem 8. The (n + 1) × (n + 1) matrix T t
n−1QnTn−1 has the following property:

T t
n−1QnTn−1 = Qn−1.



B.-G. Lee et al. / Computer Aided Geometric Design 19 (2002) 709–718 717

Proof.

T t
n−1QnTn−1(i, j) = 1

2n + 1

n+1∑
l=0

(
n−1

i

)( 1
l−i

)
(
n

l

) n+1∑
k=0

(
n

l

)(
n

k

)
( 2n

l+k

)
(
n−1
j

)( 1
k−j

)
(
n

k

)
= 1

2n + 1

(
n − 1

i

)(
n − 1

j

) n+1∑
l=0

n+1∑
k=0

( 1
l−i

)( 1
k−j

)
( 2n

l+k

)
= 1

2n − 1

(
n−1

i

)(
n−1
j

)
(2n−2

i+j

) , i, j = 0,1, . . . , n − 1. ✷

From Theorem 8, we haveT t
m,rQnTm,r = Qm. Hence, the real symmetric positive definite matrix

T t
m,rQnTm,r is invertible. Provided(T t

m,rQnTm,r)
−1 exists, we have the unique solution forb̂,

b̂ = (
T t

m,rQnTm,r

)−1
T t

m,rQnc. (11)

The approximate curve given by (11) is the best approximation with respect to theL2-norm.
By the orthogonality of Legendre basis, the degree reduction of a polynomial with Legendre basis is

given by

l = (l0, l1, . . . , ln)
t,

l(−1) = (l0, l1, . . . , ln−1)
t.

After r degree reductions, we have a linear system

Ĩn,−r l = l(−r),

where the(n − r + 1) × (n + 1) matrix Ĩn,−r is

Ĩn,−r =




1 0 . . . 0 0 0 . . . 0
0 1 . . . 0 0 0 . . . 0
...

...
. . .

...
...

...
...

...

0 0 . . . 1 0 0 . . . 0
0 0 . . . 0 1 0 . . . 0


 . (12)

After transforming the Bernstein coefficients to the Legendre coefficients byM−1
n , the degree reduction

by Ĩn,−r , and finding the Bernstein coefficients byMm, we obtain the following theorem.

Theorem 9. The degree reduction matrix can be expressed in M−1
n , Ĩn,−r and Mm as(

T t
m,rQnTm,r

)−1
T t

m,rQn = MmĨn,−rM
−1
n .

For the degree reduction with Bernstein basis, we can use the explicit matrix forms ofMm, M−1
n

and Ĩn,−r to computeMmĨn,−rM
−1
n given by the formula (4), (5) and (12), respectively. Therefore, our

method using the relationship of transformations between Legendre and Bernstein basis is a simple and
efficient method for optimal multiple degree reductions with respect to theL2-norm. However, this best
approximation does not in general interpolate the given curve at its endpoints. Thus we have to consider
the smoothness of our method for the practical use.
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Here is the example given by the explicit matrix form and we have the same results with (Lutterkort
et al., 1999).

Example 4 (Parametric case, n = 4).

c = [0,1,2,1,0]t,

l = M−1
4 c =

[
4

5
,0,−6

√
5

35
,0,

2

105

]t

,

∥∥c4
∥∥2

2 =
(

4

5

)2

+
(

6
√

5

35

)2

+
(

2

105

)2

,

M2Ĩ4,−2M
−1
4 = 1

35

[ 31 9 −3 −5 3
−13 17 27 17 −13

3 −5 −3 9 31

]
,

l(−2) = Ĩ4,−2M
−1
4 c =

[
4

5
,0,−6

√
5

35

]t

,

c(−2) = M2Ĩ4,−2M
−1
4 c =

[−2

35
,

88

35
,
−2

35

]t

,

∥∥c(−2)
∥∥2

2 =
(

4

5

)2

+
(

6
√

5

35

)2

.
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