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Abstract

We study the relationship of transformations between Legendre and Bernstein basis. Using the relationship, we
present a simple and efficient method for optimal multiple degree reductions of Bézier curves with respect to the
Lo-norm.
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1. Introduction

We can express a polynomial curve with an appropriate basis for its use. The use of orthogonal basis
such as Chebyshev and Legendre polynomial permits optimal degree reduction to exchange, convert
or reduce data, or compare geometric entities which is an important task in CAGD (Li and Zhang,
1998; Mazure, 1999). For example, we have seen the use of Chebyshev and Legendre polynomial
in degree reduction schemes (Watkins and Worsey, 1988; Eck, 1993, 1995). On the other hand, the
Bernstein form of a polynomial having the recursive formula and the property of partition of unity offers
valuable insight into its geometrical behavior, and has won widespread acceptance as the basis for Bézier
curves and surfaces in CAGD (Farin, 1993). But Bernstein polynomials are not orthogonal. So the basis
transformation is important and has been studied in many ways. Farouki (2000) found the explicit form
of the basis transformation between Legendre and Bernstein basis.
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In this paper, we find the relationships between the Gram m@triand the Legendre—Bernstein basis
transformation matrixd/,, the M, and the Bernstein—Legendre basis transformation mM;ik, and the
orthogonal matrixU,, andM,,. We also obtain the relationships between the basis transformation matrices
M,, M and the degree elevation matffy, the basis transformation matrices and the degree reduction
matrix.

This paper is organized as follows. We explain the degréegendre and Bernstein basis, and their
transformations in Section 2. We discuss the relationship among transformatipn&, -, eigenvalues
of Gram matrix and an orthogonal matr%, in Section 3. We present the explicit method to degree
elevation and degree reduction of Bézier curves in Sections 4 and 5.

2. Legendre and Bernstein basis

The Bézier representation uses Bernstein polynomials as basis functions for the linear space of
polynomials. In terms of the Bernstein polynomials of degree

B(1) = (?)(1—0"_7", i=0,1,...,n,

a parametric polynomial curvi, (¢) of degreen (n > 0) in the plane can be expressed as

n
Pt)=) B, O0<r<1L,
i=0
where the{c;}!_, are the set ofn 4 1) control points.
The product of Bernstein polynomials is

() ()

Bl (1) BT (1) = - BT (1) 6y
(%))
and the integration is
1
f Bl (t)dt = ! )
k 41

0
The Legendre polynomials constitute an orthonormal basis that is well suited to least-squares
approximation. To emphasize symmetry properties they are traditionally defined on the iptdrvall],
but for our purpose it is preferable to map this[@1]. The Legendre polynomials, () ont € [0, 1]
can be generated by the explicit form

i,

ln/2] _
L,t)=+2n+1 Z ( n) (2 —1) (2t — )",
i=0
where(if’j) = m This gives, in the first few instances,
Lo(t) = 1,
Li(r) = V32 - 1),
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Lo(t) = v/5(61> — 61 + 1),
La(r) = V7(20° — 30 + 12 — 1).

The orthonormality of these polynomials is expressed by the relation
1

ij(t)Lk(t)dt = {(1) :I j ;i 3)
0

Consider a polynomiaP,(t) of degreen, expressed in the degr@eBernstein and Legendre basis on
t €0, 1]:

Pi(t)=) ¢;B}(t) =Y LLi().
=0 k=0
We are interested in the linear transformation

=> "M\, j=0.1,....n

k=0
that maps the Legendre coefficierits!y, ..., [, into the Bernstein coefficients, ¢4, ..., c,, and its
inverse. Writinge = [co, ¢1, ..., ¢,]' andl = [lo, I1, . .., ,]', we may express this in vector-matrix form
as
c=M,l.

Then we have the following theorem, see (Farouki, 2000).

Theorem 1. The Legendre polynomial L, (¢) can be expressed in the Bernstein basis B (¢), Bi (1), ...,
B! (t) of degree n as

Le(t) = V2 Z( 1>’<+’( )B"(x)

V1 MY i (R (K (n =K\
£ R ()0

i=maxO, j+k—n)

The elements of the matril, that transforms the Legendre coefficients of degreelynomials into
the Bernstein coefficients according to equation, are given forj0k < n by

. S eri (K (k) (n =k
M B ="y 2 Y (i)(i)(i—i)' *
j i=max(0, j+k—n)

For Bernstein to Legendre transformation matvix*, see (Farouki, 2000).

Theorem 2. The elements of the inverse M,jl aregivenfor 0< j,k <n by

VIFI 1 < k k4 j—i
MY k) = +’11 Z( ’*’()( :l)(n ,:,i l)- ©)

n
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Example 1.
[1 -3 -1 % %
Ml__l \/§:|a Ml _[_é ga
1 1 1
1 —v/3 5 3 33
Mp=|1 0 -2/5|, M'=|-£L o B
1 V3 V5 V5 _2/5 5
30 30 30
F1 -3 B VT i3 i i
_3 33 3 /3 33
M= 1 3 V5 3/7 Mol = 20 20 20 20
- 3 _ _ ’ 3 7| 45 J5 5 5
13 5 —3V7 20 20 20 20
7 3/7 3/7 7
1 VR B % #® % &

3. L,-norm of the polynomial P,

We compute the.,-norm of a Bézier curve of degree From these equations (1) and (2), we obtain
the following computation for thé&,-norm of the polynomialP, with Bernstein basis:

1

IP,1I2 = /

0

1 n n
= cicjf (i)(j)B.Z" (t) dt
0

(Zn) i+j

n

> Bl (1)
0

i=

2 1
dr = f Z cic; B} (t) B! (1) dt
0 B

()

= — CiCj .
21599

Let the elements of the Gram matnx, of the Bernstein basis be the

R T O [¢)
Q"(l’J)_Zn——i—l(z")’ i,j=0,1,...,n. (6)

i+j

Then theL,-norm of the polynomialP, is

1P1I5 = ¢! Que. 7
Here are some examples ©f,.

Example 2.
1 1 1 1
1 01 1 7 14 35 140
101 5 10 30 1 3 9 1
0,=|3 8 0,=| 4+ 2 1L 0 14 35 140 35
=11 1 27|10 13 10|’ 371 L o 3 1
6 3 1 1 1 35 140 35 14
30 10 5 1 1 1 1
140 35 14 7
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From the definition of the Gram matriQ,, and the mathematical induction, all the upper left submatrices
of the Gram matrixQ, have positive determinants. 39, is a real symmetric positive definite matrix,
see (Lee and Park, 1997). Thus it can be diagonalized by an orthogonal Matiie., U = U!) whose
column vectors are orthonormal eigenvectorgf that is,

Qn = UnDnU,E’

whereD, is the diagonal matrix with positive eigenvalues of the magijx
The following theorem is the direct result from Proposition 10 in (Lyche and Scherer, 2000).

Theorem 3. From the Gram matrix Q,, given by (6) we have

QnMn = MnDna
1 2)l+l> . .
where A, = Sl (;,f) (k=0,1,...,n) areeigenvalues of the Gram matrix Q,,.

From the orthonormality (3) of Legendre basis, we obtain the following computation fdrtmerm
of the polynomialP, with Legendre basis:

1

1Pull2 = f

Xn: LiLi(1)
0 i=0

From Theorem 3, we get the following theorem that describes the relationship aiond/, andD,.

2 1
dt:Zlilj/L,»(t)Lj(t) dr =11 (8)
ij 0

Theorem 4. For the Bernstein to Legendre transformation matrix M, we have
M *=D,M.
Proof. From (7) and (8), we have
Qe =14.
By the definition ofM 1, we can also express tlig-norm of the polynomialP, as
ctQe=c' (M;l)tM,flc. 9)
By Theorem 3 and (9) we obtain
Q. =M,D,M;* = (MY M.
Multiplying both sides byM, and considering the transpose of both sides, we complete the proof.

The following theorem enables us to compUtewith the explicit forms ofM,, andD,,.

Theorem 5. For the orthogonal matrix U, of the Grammatrix Q,, we have

U,=M,D,.
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Proof. From Theorem 4, we have
Q.= M,D,M;*=M,D,D,M, = M,v'D,D,(M,VD,)".
And we can easily check the orthogonality Mf,+/D,

(M,VD,) =D, Mt=vD,M' = (M,D,)"

This completes the proof. O

Here are some examples©@f andD,,.

Example 3.

U].: \ii Jt/i}a Dl_[é 1]’
7 X~ 5
— 1 1 1
A TR 3 00

Up=|7% 0 —%|,  D=|0 % 0],
1 1 1 1
5 % 00 =
-1 _3 1 __1 1
2 J20 2 /20 7 0O 0 O
i1 _1 3 3

=11 1 1 _3 | 1o o L o
2 J20 2 /20 20
13 1 1 0 0 0 =+
L > J/20 2 v/20 140

4. Degree elevation

For raising the degree of Bézier curve by one without changing the shape of the curve. We can show
that new verticesfl) are obtained from the old polygon by piecewise linear interpolation at the parameter
valuesi/(n + 1), see (Farin, 1993).

o i i .
= i 1- i =0,1,..., 1. 10
¢ n+1c 1+( n+1)c i n+ (10)
We can rewrite the formula (10) as a linear systEm= ¢V, where the(n + 2) x (n + 1) matrix 7, is
n+1 0 0 0 0 0
1 n 0 0 0 0
1 0 2 n—1 ... 0 0 0
T, = 1 : : : g : : :
"0 0 o0 ...oa-12 o0
0 0 0 0 n 1
0 0 0 0 0 n+1
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and the(n + 1) vectorc and the(n + 2) vectorc® are

t

C:(007Cla"'ac}’l)’
@ _ (D O M\t

c _(co,cl,...,cn).

We may repeat this process and then obtain a sequence of control points: Aétgree elevations, we
have a linear systerfj, ,c = ¢, where the(n + r + 1) x (n + 1) matrix
Tn,r = n+rflTn+r72 cee Tn+lTn
has elements
()G)

(n—!—r) ’
By the orthogonality of Legendre basis, the degree elevation of a polynomial with Legendre basis is given
by

l - (lOa lla MR ln)ta

Y=o, 1, ..., 1, 0".

After r degree elevations, we have a linear sysfém =17, where the(n + r + 1) x (n + 1) matrix
I, , has elements

T, j)= i=01,...,n+randj=0,1,...,n.

= . |1 ifi=j,

In,r(l’])—{o |fl#]

After transforming the Bernstein coefficients to the Legendre coefficient® by, the degree elevation
by I, ., and finding the Bernstein coefficients b, we obtain the following theorem.

Theorem 6. The degree elevation matrix 7, . can be expressed in M %, I, and M, as
Tn,r = n+rl~n,rM;1-

5. Degreereduction

When we find the best approximation in the sensd. ghorm, in general, the degree reduction of
Bézier curves address the following problem.

Problem 1 (L, degree reduction). Let {c;}7_, be a given set of control points which define the Bézier
curve

() = Z ¢;BI(t)
i=0
of degreen. Then find another point sé¢b; }”, defining the approximative Bézier curve

m
b (t) = Z b; B (1)
i=0
of lower degreen < n so that anl,-distance functionl, (6™, c") betweenb™ andc” is minimized.
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The L,-distance of the two Bézier curvég andc” is defined as following:
1 1
d22(bm’ Cn) — /|bm([) _ Cn([)|2d[ :f

m n 2
> BiBI'(t) =) B!t dt.
0 0 i=0 i=0

Using the matrix7,, ., we can elevate the degree/df from m to n, wherer =n — m,

b\ =T, .b.

Then the curvé™ of degreen is rewritten as a curve of degree

n

b"(t)=b" (1) =Y b B! 1),

i=0
and the distance is

2 1

dt=/
0

Thus we obtain the following theorem for tlig-distance between the Bézier cu/e of degreen and
the Bézier curve” of degreen.

2
dr.

b B(1) — Zc,- BI(1)

i=0 i=0

n

1
B ) =B ) =
0

(b — i) Bl (1)
0

i=

Theorem 7. The L,-distance between the two Bézier curves ™ and ¢" is
ds(b", ") =di (b7, ") = A'Q,A,
where A=c —T,,,b, b= (bo, b1, ...,b,)t and ¢ = (co, c1, ..., cp)".
For developing the method, rewri#g(b™, c").
ds(b", ") = A'Q,A
= [¢ = T.,/b]' Qulc — T, b]
= c'Quc = 2'T,, , 04+ b'T,, QT /b

One method of obtaining the vectéris so-called the method of least squares (Lee and Park, 1997;
Lutterkort et al., 1999). This method consists of minimiziAtD, A with respect tah. We choose the
vector b as that the value ob minimizes A'Q, A. Equatingd(A'Q,A)/db to zero and writing the
resulting equations in terms 6f we find that these equations are

TntLr On Tm,rb = T,:,r Qnc.
They are known as the normal equations.

Theorem 8. The (n + 1) x (n + 1) matrix Tnt_lQn T,_1 has the following property:

T,:_j_ Qn Tn—l = Qn—l-
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Pr oof.

O O YT Ky T w9
O S EA ST B O

R
1

=0 k=0
nl l) n]l)
1)
From Theorem 8, we havé! 0,7, = Q,. Hence, the real symmetric positive definite matrix
T\ ,OnTn, is invertible. ProwdedTt 0.T,.,)" ! exists, we have the unique solution far

l;: (TntLr Qn T;n,r)i Tnt,l’r an- (11)
The approximate curve given by (11) is the best approximation with respect g therm.
By the orthogonality of Legendre basis, the degree reduction of a polynomial with Legendre basis is
given by
l = (105 ll’ AR ll'l)t’
IY=(lo 1, ..., L))"
After r degree reductions, we have a linear system

i,j=01,...,n—1 O

L =17,

where the(n — r + 1) x (n + 1) matrix I, _, is

1 0 ... 00O ... 0
o1 ... 00 O0...0O0
Li,=|: ¢+ .+ ). (12)
00 .. 100..0
00 .. 010...0

After transforming the Bernstein coefficients to the Legendre coefficientd bl the degree reduction
by I, ., and finding the Bernstein coefficients bg,, we obtain the following theorem.

Theorem 9. The degree reduction matrix can be expressed in M;l , in,_, and M,, as
(T8, QuTnr) T}, Qn = My B, M.

For the degree reduction with Bernstein basis, we can use the explicit matrix forifs, ,oM;l
and/, _, to computeM,,,fn,,,Mn‘l given by the formula (4), (5) and (12), respectively. Therefore, our
method using the relationship of transformations between Legendre and Bernstein basis is a simple and
efficient method for optimal multiple degree reductions with respect td theorm. However, this best
approximation does not in general interpolate the given curve at its endpoints. Thus we have to consider
the smoothness of our method for the practical use.
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Here is the example given by the explicit matrix form and we have the same results with (Lutterkort
et al., 1999).

Example 4 (Parametric case, n = 4).

c=[0,1,21,0[,

=M= 4() 6v5 0 2 |
I A TR T I

2 2 2
=(5) + (%) ()
5 35 105
i 13 9 -3 -5 3
M214,,2M4—1=3—5 [—13 17 27 17 —13]

3 -5 -3 9 31

- 4 657
12 =1, Mtc=|=,0——r
4,-2 4 c 5’ ) 35 9
- -2 88 27
2 = Mol oM c=|—, —, —
¢ 2042 € [35’35’35]’

2 2
—2p2_ (4 6v@)
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