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Abstract

This paper proposes a mesh simplification algorithm using a discrete curvature norm. Most of the simplification

algorithms are using a distance metric to date. The distance metric is very efficient to measure geometric error, but it is

difficult to distinguish important shape features such as a high-curvature region even though it has a small distance

metric. We suggest a discrete curvature norm to measure geometric error for such features. During simplification the

new vertex resulted from an edge collapse takes a position using a butterfly subdivision mask to minimize geometric

error. This paper shows that simplification results have smaller geometric errors than previous works, when a discrete

curvature norm and a distance metric are together applied to its criterion. r 2002 Published by Elsevier Science Ltd.
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1. Introduction

In real-time or interactive applications, 3D polygonal

models with millions of polygons are burdening some

even with fast graphics hardware. Therefore mesh

simplification has been the subject of a great deal of

research. Simplification is the act of transforming a 3D

polygonal model into a simpler version. A good

simplification algorithm reduces the number of polygons

while trying to retain the good approximation of the

original shape and appearance. Polygonal models

reconstructed from range-scanning systems may also

be represented in several levels of details (LOD) in

addition to being compressed and simplified. LOD can

be built easily by consecutive simplifications with

different error metrics.

In spite of extensive use of triangle meshes in

geometric modeling and computer graphics, there is no

agreement on the most appropriate way to estimate

simple geometric attributes such as curvatures on

discrete surfaces. Many surface-oriented applications

need an approximation of the first- and second-order

differential properties. Unfortunately, since meshes are

piecewise linear surfaces, the concept of continuous

curvatures is not common. For example, most simplifi-

cation algorithms use the geometric distance [1,2] as

their simplification criteria, which is another way to

approximate local curvature [3]. But the discrete

curvature can be computed by many schemes [4–6],

and is useful to enhance the shape description of a

triangular surface. Therefore, a discrete curvature is also

one of the good criteria of simplification to preserve the

shape of an original model.

Some simplification methods have used approximated

curvatures as their criteria. In retiling [7], curvature

is approximated to the radius of the largest sphere

that is placed on the more curved side of the surface, but

it is just the extension of 2D case into 3D. In data

reduction scheme [8], it is proposed how to determine

the principal curvatures and their associated directions

by a least-squares parabolic fitting of the adjacent

vertices, though the difficult task of selecting an

appropriate tangent plane was left to the user. In static

polyhedron simplification [9], the Gaussian curvature

is used and error zone is defined with a sphere as

error bound at each vertex. Like above, although

the discrete curvature is useful for describing character-

istics of polygonal model, it is rarely formalized as an

error metric.
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An error metric is the difference between two

polygonal models. Small error metric between two

models means to be very similar to each other. Like a

simplification criterion, the geometric distance has been

used for defining an error metric between an original

and a simplified model [1,10,11]. Some error metrics

combine it with other attributes—color, normal, and

texture coordinates—but they are too complex to be

represented altogether [12,13]. Recently, other notions

of an error metric, other than a geometric distance, are

introduced. For example, image-driven simplification

[14] defines an image metric, which is a metric based on

pixel-wise differences between two images, and simplifies

a mesh using image metrics between images from some

views. In this paper we define a discrete curvature norm

on meshes. By [5], we can approximate curvatures on a

discrete surface reasonably, and be relieved from the

difficulty of computation. A discrete curvature norm

means the difference between discrete curvatures of an

original and those of a simplified model. It can

complement a distance metric for a high-curvature

region with a small distance metric. Also the butterfly

subdivision mask is used to minimize the distortion of

discrete curvatures after collapsing an edge. When a

discrete curvature norm and a distance metric are

together applied to simplification criterion, the simpli-

fied results are closer to an original than those of

previous works because they have smaller geometric

error.

2. Problem statement

2.1. Notation

A triangular mesh M consists of a set of vertices

V ¼ fvigiCR
3; which are connected by a set of

edges E ¼ fej ¼ ðvj1 ; vj2 Þgj and a set of faces F ¼ ffk ¼
ðvk1 ; vk2 ; vk3 Þgk: Let vAV be a vertex of a mesh M and let

v1;y; vn be the ordered neighboring vertices of v (cf.

Fig. 1). We define the edges ~eei ¼ vi � v and the angle

between two successive edges ai ¼ +ð~eei;~eeiþ1Þ: The

triangle between ~eei and ~eeiþ1 is named fi ¼ ðv; vi; viþ1Þ;

the corresponding face normal ~nni ¼ ð~eei �~eeiþ1Þ=jj~eei �
~eeiþ1jj: The dihedral angle at an edge ~eei is the

angle between the normals of the adjacent triangles,

bi ¼ +ð~nni�1;~nniÞ:

2.2. Simplification problem

Our goal is to simplify a polygonal model using

consecutive edge collapses based on a discrete curvature

norm. An edge collapse ðv1; v2Þ-v (cf. Fig. 2) allows us

to control the new vertex position for retaining the

geometry of the original model. Therefore, the quality of

our simplification result depends on how to assign the

position of a new vertex v: If a new vertex takes a

position to minimize geometric error between an

original and a simplified model using an edge collapse,

this simplified model will have good quality. Many

previous works used a distance metric for finding such

position. But with only a distance metric it is difficult to

measure the variance of appearance such as simplifying

high-curvature region with a small distance metric. A

new metric is needed to measure geometric error for

such region during surface simplification.

3. Discrete curvatures

3.1. Computation of discrete curvatures

From a theoretical point of view triangle meshes do

not have any curvature at all, since all faces are flat and

the curvature is not properly defined along edges and at

vertices because the surface is not C2 differentiable

there. But thinking of a triangle mesh as a piecewise

linear approximation of an unknown smooth surface,

one can try to estimate the curvatures of that unknown

surface using only the information that is given by the

triangle mesh itself.

We are particularly interested in computing the sum

of absolute principal curvatures jk1j and jk2j at the

vertices of a mesh, since the cost to be minimized in

simplification process is based on it. But, first let us

derive the Gaussian curvature K and mean curvature H ;
and then get the sum of principal curvatures jk1j þ jk2j
using them.

Gaussian curvature of a vertex is related to angles and

faces that are connected to that vertex, and mean

curvature is related to dihedral angles and edge lengths.

Fig. 1. A vertex v and the related variables for this local

configuration (left). The blending cylinder along ~eei between

triangles fi�1 and fi ; seen from the side (right). Fig. 2. Edge collapse ðv1; v2Þ-v:
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We can define the integral Gaussian curvature %K ¼ %Kv

and the integral mean curvature %H ¼ %Hv with respect to

the area S ¼ Sv attributed to v by

%K ¼
Z

S

K ¼ 2p�
Xn

i¼1

ai and

%H ¼
Z

S

H ¼
1

4

Xn

i¼1

jj~eei jjbi;

where ai is the angle between two successive edges, jj~eei jj
is the length of the edge~eei; and bi is the dihedral angle of

the edge ~eei (cf. Fig. 1).

To derive the curvatures at the vertex v from these

integral values we assume the curvatures to be uniformly

distributed around the vertex and simply normalize by

the area

K ¼
%K

S
¼
2p�

Pn
i¼1 ai

1
3
A

and

H ¼
%H

S
¼

1
4

Pn
i¼1 jj~eei jjbi

1
3A

;

where A is the sum of the areas of adjacent faces around

a vertex v:
At last the sum of the absolute principal curvatures

jk1j and jk2j can be computed. From the relations K ¼
k1k2 and H ¼ ðk1 þ k2Þ=2; we get k1;2 ¼ H7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2 � K

p
:

Therefore, the sum of the absolute principal curva-

tures is

jk1j þ jk2j ¼
2jH j if KX0;

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2 � K

p
otherwise:

(

Note that k1 and k2 are always a real number, even if

H2oK ; which corresponds to complex principal curva-

ture values. Of course, this cannot happen for smooth

surfaces, but since we are dealing with discrete surfaces

it can occur for some vertices.Fig. 3. The buttefly subdivision mask.

Fig. 4. Example of surface simplification using e2; the variance of a discrete curvature L2-norms. Each about (b) 30%, (c) 92%, and (d)

98% simplification.
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3.2. Discrete curvature norm

Now we can define a discrete curvature norm, that is

the norm of principal curvatures at all vertices. We

consider two kinds of discrete curvature norms, namely

the L1-norm and the L2-norm.

jjkjj1 ¼
X
vAV

jk1j þ jk2j

¼
X
vAV

2jHvj if KvX0;

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2

v � Kv

p
otherwise:

(
ð1Þ

jjkjj22 ¼
X
vAV

jk1j2 þ jk2j2

¼
X
vAV

ð4H2 � 2KÞ: ð2Þ

During simplification, a discrete curvature norm is

checked before and after an edge collapse. The

difference between them means the variance of appear-

ance and plays a role as an error metric in surface

simplification. Note that our greedy simplification

algorithm chooses first an edge that has the smallest

quantity of difference between discrete curvature norms

before and after collapsing it.

4. Simplification algorithm

4.1. Edge collapse with butterfly mask

An edge collapse allows the new vertex position

to be controlled for retaining the geometry of the

original model. Therefore, the quality of a simplified

mesh depends on how to assign the position of

a new vertex. To minimize the change of a discrete

curvature norm after collapsing an edge, we decide

the new vertex position using the butterfly sub-

division mask (cf. Fig. 3), which is one kind of

subdivision mask.

Fig. 5. Simplified results of a helicopter model: (a) an original (number of faces: 34,708), (b) using only a distance metric, and (c) using

a distance metric and a discrete curvature norm (number of faces: 986).
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4.2. Surface simplification

In our algorithm, the simplification cost is the

quantity of the variance of a discrete curvature norm

after an edge collapse. During simplification, it is

minimized. The butterfly subdivision mask helps the

position of a new vertex after an edge collapse to be

assigned to keep the geometry of the original. Using a

discrete curvature norm and the butterfly rule, the

surface simplification algorithm is as follows:

* Our simplification algorithm reads an input original

mesh.
* It calculates the discrete curvatures for all vertices

and the simplification costs of all edges, which are the

quantities of variance of a discrete curvature norm

using Eq. (1), or (2) after an edge collapse.
* In ascending order of the simplification cost, the

priority queue is constructed for all edges. Therefore

there is always the edge with the smallest quantity of

variance of a discrete curvature norm on the top of

the priority queue.
* If the simplification cost of the edge on the top of the

priority queue is smaller than a user-given value, then

our algorithm collapses this edge. Otherwise, it ends

the simplification process, since all other simplifica-

tion costs in the priority queue are larger than it.
* After the edge is collapsed, the discrete curvatures of

its 1-neighbor vertices and the simplification costs of

its 2-neighbor edges are updated. Three edges are

removed from the priority queue, and the positions

of 2-neighbor edges in the priority queue are

updated.

We have tested a new metric on many different

polygonal models. Fig. 4 shows the results of surface

simplification with respect to various discrete curvature

L2-norms. Many edge collapses were happened within

no variance of a discrete curvature norm. In other

words, Fig. 4(b) has the same shape as the original

Fig. 4(a) although it is reduced by about 30%. Also, the

simplification results using discrete curvature L1 and L2

norms are similar to each other.

We experimented with applying a discrete

curvature norm to surface simplification together

with a distance metric [1] (cf. Figs. 5 and 6). Compared

with Fig. 5(b), which is a simplified result using

only a distance metric, our simplified result Fig. 5(c)

kept thin and long propellers. Because the vertices

on a propeller have small distance metrics but

at the same time large discrete curvature norms,

when only a distance metric is used for surface

simplification, a propeller is disappeared earlier than

when a discrete curvature norm is used together.

Therefore, our scheme has the advantage of keeping

such sharp and thin features like Fig. 5(c). As in

Fig. 6, there is no obvious difference for a model

that does not have thin and long features. But a

little more triangles lie on the region where high-

curvature vertices are Fig. 6(c) shows that the region

of a forehead has fewer triangles than Fig. 6(b), but

those of eyes, a nose and a lip have a little more

triangles.

Fig. 7 shows the mean geometric deviation between an

original and a simplified model measured by Metro [15].

Graphs say that it results in smaller geometric error to

use a discrete curvature norm with a distance metric

than only a distance metric.

Fig. 6. Simplified results of an Igea model: (a) an original (number of faces: 268,686), (b) using only a distance metric, and (c) using a

distance metric and a discrete curvature norm (number of faces: 3,000).
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5. Conclusion

A discrete curvature norm is proposed for surface

simplification. It is efficient to measure geometric error

for a high-curvature region even though it has a small

distance metric. Also after an edge collapse a new vertex

takes a position using a butterfly subdivision mask to

minimize geometric error. We show that simplification

results have smaller geometric error than previous

works, when a discrete curvature norm and a distance

metric are together applied to its criterion.

In future work, we need to approximate curvatures of

vertices appropriately in non-differentiable regions. At

some vertices because the square of mean curvature is

smaller than the Gaussian curvature, principal curvature

becomes a complex number. Also we have to find the

optimal position of a new vertex resulting from an edge

collapse with respect to discrete curvatures.
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