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In this paper, we propose an enhanced computational integral imaging system by both eliminating the
occlusion in the elemental images recorded from the partially occluded 3D object and recovering the
entire elemental images of the 3D object. In the proposed system, we first obtain the elemental images
for partially occluded object using computational integral imaging system and it is transformed to sub-
images. Then we eliminate the occlusion within the sub-images by use of an occlusion removal tech-
nique. To compensate the removed part from occlusion-removed sub-images, we use a recursive appli-
cation of PCA reconstruction and error compensation. Finally, we generate the entire elemental images
without a loss from the newly reconstructed sub-images and perform the process of object recognition.
To show the usefulness of the proposed system, we carry out the computational experiments for face rec-
ognition and its results are presented. Our experimental results show that the proposed system might
improve the recognition performance dramatically.

� 2010 Elsevier B.V. All rights reserved.
1. Introduction

The integral imaging method is widely used among the recent
3D imaging techniques because it provides auto-stereoscopic and
parallax image in space [1–6]. It is applied to various applications
such as 3D display, 3D object recognition and so on [2–13]. For 3D
object recognition using integral imaging, the concept of the com-
putational integral imaging (CoII) systems have been introduced
[8]. It is composed of the optical pickup and the computational
integral imaging reconstruction (CIIR) process. In the optical pick-
up, a 3D object is recorded as the elemental images through a lens-
let array. In the CIIR, the elemental images are digitally processed
by use of a computer where 3D images can be easily reconstructed
at a desired reconstruction plane without optical devices.

As a good application of CoII, a study to recognize a 3D object
that is partially occluded in a given scene has been proposed
[8,10]. The main principle of recognition for a partially occluded
object is to produce a series of plane images computationally and
then to correlate them with the original 3D object. In the partially
occluded 3D object recognition, however, the unknown occlusion
makes the resolution of computationally reconstructed plane
images degraded seriously because it hides the 3D object to be rec-
ognized. Recently, to solve this problem, we proposed an occlusion
removal technique for improved recognition using CoII [14]. In the
proposed technique, we eliminated the unknown occlusion using
ll rights reserved.
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sub-image block matching in the elemental images and to recon-
struct 3D images computationally. Then, the resolution-improved
3D plane images were reconstructed through the computational
reconstruction process. However, the occlusion-removed elemen-
tal images have partially information loss because the pixels repre-
sented by occlusion are removed and thus useless in the CIIR
process.

In general, the CoII system can utilize the prior knowledge of 3D
objects to be recognized. If the system learns the prior knowledge
from the given training objects, the occluded regions in the ele-
mental images can be recovered by comparing the prior knowledge
for the training 3D objects. If the CoII system has such ability for
occlusions, it is expected that the recognition performance can
be improved and the applicability of the system can be extended.

In this paper, to improve the recognition performance of CoII
system, we propose a new CoII system by both eliminating the
occlusion in the elemental images recorded from the partially oc-
cluded 3D object and then recovering the entire elemental images
of the 3D object. In the proposed system, we first record the ele-
mental images for partially occluded object using the CoII system
and then eliminate the occlusion within the recorded elemental
images. To generate the removed part from occlusion-removed
elemental images, we use a recursive application of principal com-
ponent analysis (PCA) reconstruction and error compensation. Fi-
nally, we obtain the entire elemental images and perform the
recognition process. To show the usefulness of the proposed
system, we carry out the experiments for face recognition and its
results are presented.

http://dx.doi.org/10.1016/j.optcom.2010.01.044
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2. Review of CoII system for partially occluded 3D object
recognition

The main principle of partially occluded 3D object recognition
using the CoII is to reconstruct the 3D plane images for partially oc-
cluded 3D object and perform the recognition by comparing the
reference plane images of 3D object to be recognized [8,10]. Gener-
ally, the CoII-based 3D object recognition system can be divided
into two steps as shown in Fig. 1.

In the first step of Fig. 1a, the 3D object to be recognized is
picked up by a lenslet array and recorded by a CCD camera.
The captured image is referred as the reference elemental images.
Each elemental image in the reference elemental images has par-
ticular perspectives of 3D object, which provide the 3D informa-
tion including the distance where 3D object is located. Then,
using the reference elemental images, the 3D plane image can
be reconstructed with computer digitally at the distance where
the 3D object was originally located. The computational recon-
struction process is based on CIIR [8]. In CIIR process, first, each
elemental image is projected inversely through the corresponding
pinhole. Next, when an image is reconstructed on the output
plane of z from the pinhole array, the inversely projected elemen-
tal image is digitally magnified by a factor of z/g where z are g are
the ratio of the distance between the virtual pinhole array and
the output plane to the distance between the pinhole array and
the elemental images, respectively. Finally, the enlarged elemen-
tal images are overlapped each other and summed at the corre-
sponding pixels of the output plane. To obtain a reconstructed
plane image of a 3D object at the distance of z, the same process
must be repeatedly performed to all of the picked up elemental
images through each corresponding pinhole. This reconstructed
plane image is called the template, which is stored for the next
recognition step.
Fig. 1. Principle of CoII (a) generati
In the second step as shown in Fig. 1b, the target objects com-
posed of an occlusion and 3D object to be recognized are recorded
as the target elemental images. Using CIIR process, the target plane
image is reconstructed clearly at the distance z of the 3D object.
Once an output plane image is obtained, the correlation process
can be performed between the stored templates and the output
plane image. From the correlation results, 3D object recognition
can be done.

However, when the output image is reconstructed in the second
step, occlusion degrades the resolution of reconstructed images. To
improve the recognition performance, we should reduce the image
degradation effect by occlusion.
3. Enhanced CoII system

3.1. System structure

In this paper, we present a new CoII system of improving the
recognition performance by eliminating occlusion by using and
recovering the full elemental images without occlusion from par-
tially occluded 3D object. To do so, we use both an occlusion re-
moval technique [14] and a recursive application of PCA
reconstruction [15,16] to generate the removed part from occlu-
sion-removed elemental images.

The proposed system is largely composed of two processes as
shown in Fig. 2. One is an offline process where the reference tem-
plates for the 3D objects to be recognized are generated and their
eigenvectors generated from a set of training reference sub-
images. The other is an online process where the occlusion in ele-
mental images is removed, the error of the occlusion-removed sub-
images compensated recursively and the object recognition is per-
formed using CIIR.
on of template (b) recognition.



Fig. 2. Conceptual diagram of the proposed CoII system (a) offline process (b) online process.
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3.2. Offline process

The offline process is shown in Fig. 2a. Here, we first capture ref-
erence 3D objects as the elemental images. Then we use the re-
corded elemental images for two different ways. One is to
reconstruct the template using the CIIR method. This is identical
with the conventional CoII system. The other is to generate the
eigenvectors from a set of reference templates for the next online
process.

Now, we explain the generation of eigenvectors from a set of
reference elemental images in detail. First, the recorded elemental
images are transformed into sub-images [14] because the sub-im-
age represents the perspectives of 3D object. This transform is call
elemental-image to sub-image transform (EST). The EST is a kind of
computational pixel recombination process [14,17]. That is, we ex-
tract the same position for all of the elemental images and a collec-
tion of pixels of same position is obtained as sub-images.

Next, a set of calculated sub-images is applied to the PCA train-
ing. The PCA training produces a set of eigenvectors for the next
online process using many sub-images obtained from the reference
3D objects. The detail PCA training is shown in Fig. 3. We take each
sub-image as the reference trained image (Xk). The sub-image array
is assumed to be composed of K block images of size N (=d � d) pix-
els. The k-th block image is considered an N-dimensional vector.
We represent N-dimensional vectors to each of sub-image K. Let
us each of sub-image Xk (k = 1,2, . . ., K). The average vector of Xk

is given by

m ¼ 1
K

XK

k¼1

Xk ð1Þ

Next, the average vector is removed from the sub-images. This rep-
resents Fk.

Fk ¼ Xk �m ð2Þ

And, the covariance matrix of sub-images becomes

Q ¼
XK

k¼1

FT
k Fk ¼ FT F: ð3Þ
where F = [F1, F2, . . ., FK] has N � N. From Eq. (3), eigenvalue and
eigenvector are computed. The eigenvector Vi can calculated as
follows:

FT FVi ¼ kiV i ð4Þ

where ki is the eigenvalue. Since N is too large, this calculation
would be impractical to implement. A computationally feasible
method was used to find out the eigenvectors. In other words, con-
sider the covariance matrix as FFT instead of FTF. Premultipying Eq.
(4) by F, we have

FFT FVi ¼ kiFVi ð5Þ

From Eq. (5), ki is the i-th eigenvalue and the i-th eigenvector is gi-
ven by

ui ¼ FVi ð6Þ

After we get the eigenvectors (ui), the normalized eigenvectors are
used as the new basis. Then, each of the reference trained images
is projected on the new basis using Eq. (7).

yi ¼ uT
i ðX �mÞ ð7Þ

where ui means i-th eigenvector and yi is i-th element of the coeffi-
cients y toward ui. And m is the average of all reference images. The
result is a set of coefficients (projection) of the reference image onto
the new basis. Since the new basis reduces the redundant informa-
tion, the number of the coefficient is less than the original data. For
the use in the next online process, the coefficients and eigenvectors
of all the reference objects are stored in the computer.

3.3. Online process

Now, we consider the online process as shown in Fig. 2b. Let us
assume that the unknown occluding object and a target object are
located at arbitrary distances zo and zr, respectively. Then, these
objects are picked up by using a CCD camera. This pickup process
provides us target elemental images. The target elemental images
are transformed into target sub-images using EST. Since target
sub-images contain the occlusion, the online process starts with
removing occlusion within sub-images. This occlusion removal



Fig. 3. Detail PCA training in the offline process.

Fig. 4. Occlusion removal method in the CoII system.

Fig. 5. Experimen
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method is shown in Fig. 4. To remove the unknown occlusion in the
sub-images, we may use disparity information by the sub-image
block matching algorithm, which is well known in the stereo vision
[14]. After applying the sub-image block matching between two
sub-images as shown in Fig. 4, we extract the depth map between
them. Based on the extracted depth map, we can perform segmen-
tation of occlusion and then remove it. This process is repeated for
all the sub-images. As a result, we obtain the modified sub-images
without occlusion image as shown in Fig. 4.

In fact, the occlusion-removed elemental images cause the seri-
ous degradation in the performance of 3D object recognition be-
cause of losing some information of 3D object. To overcome this
problem, in this paper, we restore the lost information using the
eigenvectors generated in the previous offline process. The restora-
tion process starts with making a reconstruction image of the
occlusion-removed sub-image. This is given by

X̂j ¼ mþ
Xk

i¼1

yj�1
i ui ð8Þ
tal structure.



Fig. 6. Ten faces for computational experiments.

Fig. 7. Examples of eigenvectors produced from our offline process.
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where X̂ is the reconstructed sub-image from an input sub-image
and the subscript ‘j’ is j-th iteration. k is the number of the eigenvec-
tors and y is the projection coefficient onto each eigenvector which
can be computed by Eq. (7). In the j-th recursive iteration, y is cal-
culated by

yj
i ¼ uT

i ðX
j �mÞ ð9Þ

Using the original sub-image (X) and the reconstructed sub-image
(X̂), the restored sub-image can be obtained by using the Eq. (10),
which is shown in
Fig. 8. (a) Captured elemental images (b) sub-i
�Xj ¼ w � X þ ð1�wÞ � X̂j ð10Þ

Here, w is weight in range [0,1]. And w is a matrix contains ‘1’ for
every remaining pixel on the occlusion-removed sub-image and
‘0’ for every eliminated pixel. This matrix means that it keeps the
remaining part and replaces the missing part with the predicted
sub-image. The location of missing pixels can be known using the
depth map produced by the block matching process.

This recursive iteration stops if the difference between two suc-
cessive coefficients (yj and yj�1) becomes less than a given thresh-
old (e). The D value can be calculated as given in

D ¼maxðjyj
i � yj�1

i jÞ < e ð11Þ

As a result of recursive PCA reconstruction, the target sub-
images without occlusion can be generated in the last iteration
of the proposed system.

Next, with this modified target sub-images, we apply the re-
verse EST to it and we obtain the modified target elemental images.
Based on the CIIR method, the target plane image is reconstructed
at a specific distance. Finally, the cross correlation is done by com-
paring the reconstructed plane image of the target 3D object and
the reference templates.

4. Computational experiments and results

To show the usefulness of the proposed technique, we per-
formed computational experiments for face recognition, which
has been regarded as a useful application of image restoration.
The experimental structure is shown in Fig. 5. A pinhole array
was used instead of a lenslet array for computational experiments.
The target object to be recognized is the ‘face’ image. This is located
at zr = 45 mm. The ‘tree’ image is used as the unknown occluding
object located at zo = 18 mm from the pinhole array.
mages (c) occlusion-removed sub-images.



Fig. 10. Reconstructed plane images using CIIR method (a) original face image (b)
5-th iteration, (c) 10-th iteration, (d) 30-th iteration.
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First, we simulated the offline process in the proposed system.
The elemental images for target object are synthesized through a
pinhole array in the reference CoII system. Here 10 faces are used
as target object set as shown in Fig. 6. The pinhole array consists of
30 � 30 pinholes and the pinhole pitch is 1.08 mm. With this pin-
hole array, we obtained the elemental images with the resolution
of 900 � 900 pixels. The synthesized elemental images were trans-
formed into the corresponding sub-images. In the offline process,
10 faces’ elemental images were transformed into 6 � 6 sub-
images in order to obtain high-resolution sub-images for easy
occlusion removal. Then, we took each sub-image as the reference
training images as shown in Fig. 3. In this experiment, we used to-
tal 360 images as reference training images for 10 faces. Eigenvec-
tors were calculated using the procedure of Fig. 3 and stored in a
computer. The eigenvectors produced from our offline process
are shown in Fig. 7. Although the offline process can produce max-
imal 360 eigenvectors, Fig. 7 shows 144 eigenvectors with high
eigenvalue. This was arranged as 12 � 12 eigenvector images.

Next, in the online process as shown in Fig. 2b, the target ele-
mental images including the target object ‘face’ and the occluding
object ‘tree’ was captured. The captured target elemental images
are shown in Fig. 8a. The target elemental images were trans-
formed into the sub-images as shown in Fig. 8b. We applied the
block matching as described in Fig. 4 to two images among sub-
images and then obtained occlusion-removed sub-images as
shown in Fig. 8c. As shown in Fig. 8c, the occlusion-removed
sub-images have black regions where occlusion exits after elimi-
nating it. This means that occlusion-removed elemental images
have partially information loss because the pixels of black regions
represented by occlusion become zero value in a gray level. In this
paper, to minimize the information loss, we reconstructed com-
pensated sub-images by using the recursive PCA method as de-
scribed in Chapter 3.3. The iterations repeated until the
difference between the compensated images and the previous
images satisfied the threshold value. Examples of the compensated
sub-images according to the iteration are shown in Fig. 9. From the
Fig. 9. Examples of compensated sub-images (a) 1-st iteration (b) 5-th iteration (c)
10-th iteration, (d) 30-th iterations.
results of Fig. 9, it is seen that the image quality of the recon-
structed sub-images improved significantly as the iteration of the
recursive PCA method increases.

By using the reconstructed sub-images, the 3D object recogni-
tion experiments were performed. The sub-images were trans-
formed into the modified elemental images using the reverse EST
and the plane image was reconstructed at 45 mm by using CIIR
method. Fig. 10 shows the reconstructed images of the proposed
CoII system using the recursive PCA method. The originally recon-
Fig. 11. Examples of compensated sub-images when z = 51 mm (a) 1-st iteration (b)
5-th iteration (c) 10-th iteration, (d) 30-th iterations.



Fig. 12. Reconstructed plane images using CIIR method when z = 51 mm (a) 1-st
iteration (b) 5-th iteration, (c) 10-th iteration, (d) 30-th iteration.

Fig. 13. Average PSNR results for reconstructed plane images.

Fig. 14. Experimental results for image correlation (a) when t
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structed plane image is shown in Fig. 10a. For comparison, the face
image reconstructed in the conventional CoII system is shown in
Fig. 10b. This is not clear and it has low contrast because of the
blurring effect caused by the unknown occlusion. However, we
can see that the high contrast images reconstructed from the pro-
posed CoII system are obtained as shown in Fig. 10c and d. This
may improve the correlation performance.

The additional experiments were performed to find the charac-
teristics on the location of target object. The online process was re-
peated for various distance of target object. Among them, the
compensated sub-images according to the iteration and recon-
structed images when the target object is located at z = 51 mm
were shown in Figs. 11 and 12, respectively. From these experi-
ments, it is seen that it is possible to compensate elemental images
regardless of the distance of target object. This is because the dis-
tance information of target object is transformed into shifting in
sub-images [17] and these shifted sub-images are already trained
in the offline process.

To objectively evaluate our experiments, we measured PSNR
between the original image and the reconstructed one. PSNR is de-
fined as

PSNRðIo; IrÞ ¼ 10log10
2552

MSEðIo; IrÞ

 !
ð12Þ

where Io is an original image; and Ir is the reconstructed image. And
Mean Squared Error (MSE) is given by

MSE ¼ 1
XY

XX�1

x¼0

XY�1

y¼1

½Ioðx; yÞ � Irðx; yÞ�2 ð13Þ

where x and y are the pixel coordinates of images having X � Y pix-
els. The calculated PSNR results are shown in Fig. 13. The average
PSNR of 10 face images was calculated for the various reconstructed
images according to the iteration number of recursive PCA method.
When using the CIIR images reconstructed from the occlusion-con-
tained elemental images as shown in Fig. 8b, the PSNR was aver-
agely 19.46 dB. On the other hand, we obtained the high PSNR
value of 36.81 dB after 70 iterations using the proposed method.
It is seen that the proposed CoII system provides a substantial gain
in terms of PSNR value or visual quality. This is due to eliminating
occlusion by the proposed technique and recovering the loss by
occlusion.

Finally, to show the improved performance of the proposed
method for 3D object recognition, we reconstructed various plane
images according to the iteration number and performed the cor-
he object is matched (b) when the object is not matched.
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relation between an original image Io(x,y) and its reconstructed
plane image Ir(x,y). The correlation is defined as

Cðxc; ycÞ ¼
1

uv
Xu

x¼1

Xv

y¼1

½Irðx; yÞIoðxc þ x; yc þ yÞ�: ð14Þ

Using Eq. (14), we can calculate the correlation coefficients between
Io(x,y) and Ir(x,y). Fig. 14a shows the correlation results for 4 differ-
ent images including original image and three reconstructed images
as shown in Fig. 10a–c. For comparison, the correlation results
when the object is not matched with the trained faces were shown
in Fig. 14b. The results of Fig. 14 indicate that the correlation peak
increases as the iteration number increases.

5. Conclusion

In conclusion, we have proposed a new CoII system based on a
recursive PCA method for improved recognition of 3D objects that
are occluded partially. We have introduced a recursive PCA method
to eliminate occluding objects and recover the loss information in
elemental images. This can provide a substantial gain in terms of
the image quality of reconstructed plane image of 3D objects. To
show the usefulness of the proposed technique, we represented
some experiments for face recognition and demonstrated the
improvement of recognition performance. Therefore, it is expected
that the proposed system will aid to improve the performance of
3D object recognition.
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