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Figure 1.1: An image of a scene
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Figure 1.2: Back-projection of a point along the line of sight.
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Figure 1.3: Reconstruction of three-dimensional point through triangulation.
.
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Visual 3D Modeling from Images

6 Ibg@dongseo.ac.kr 4/8/2014



AutoStitch

» http://cs.bath.ac.uk/brown/autostit

AUT OSTTTCH

AutoStitch | Gallery | Download (Windows demo) | Buy Autopano | Licensing | Press | FAQ | Publications

AutosStitch :: a new dimension in automatic image stitching

Serratus

Welcome to AutoStitch. If you have an iPhone, please check out our new iPhone
version of AutoStitch below! If you're looking for the windows demo version, you can
download it using the link above, or read on to find out more about AutoStitch.
Thanks for visiting!

New! AutoStitch iPhone

AutoStitch now brings the latest in image
recognition technology to vyour iPhone.
Stitch images in any order or arrangement,
using photos taken from your iPhones
camera. Just select a set of images from
the camera roll or photo albums, and
AutoStitch does the rest. For more details,
see our webpage, or go directly to the app
store:

i Available on the iPhone ]
D App Store
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The AutoStitch Process
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C:/Program Files/autostitch

Image Composite Editor

» http://research.microsoft.com/en-us/um/
redmond/groups/ivm/ice/

Microsoft*

Research

Links

® ICE Forum

® Silverlight Deep Zoom
® HD View

® HD View SL

Compatibility
Microsoft Image Composite
Editor works on 32-bit and
64-bit versions of Windows
XP, Windows Vista, and
Windows 7.

Download
Version 1.4.4
May 26, 2011

wnload for
2-bit Windows

pownioad foul

64-bit Windows

Help: 32-bit or 64-bit?

Image Composite Editor

What is Image Composite Editor?

Microsoft Image Composite Editor is an advanced panoramic image stitcher. Given a
set of overlapping photographs of a scene shot from a single camera location, the
application creates a high-resolution panorama that seamlessly combines the
original images. The stitched panorama can be shared with friends and viewed in
3D by uploading it to the Photosynth web site. Or the panorama can be saved in a
wide variety of image formats, from common formats like JPEG and TIFF to the
multiresolution tiled format used by Silverlight's Deep Zoom and by the HD View and
HD View SL panorama viewers.
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C:/Program Files/Microsoft Research/Image Composite Editor/ICE.exe

Deep Zoom & HD View

» http://research.microsoft.com/en-
us/um/redmond/groups/ivm/HDView/

Microsoft

Research

HD View Home

About HD View

Try HD View

Sites Using HD View
Create HD View Content
Help/FAQs

Forum

Blog

New in Beta3

High Dynamic Range
Color Management
New Input Devices

Fisheye Lens

HD View

What is HD View?

HD View is the camera for the web. Its goal is to create the best picture given (a) a
source with high resolution, arbitrary dynamic range, any field of view & color
gamut; (b) the user’s interaction; and (c) the display being used.

How do I create HD View content?

Microsoft Image Composite Editor (ICE) can now stitch your images and output
directly to HD View or the new platform independent HD View SL. You can also use
our Photoshop plugin or the hdmake command-line utility.

Gigapixel Panoramas

The panorama below was stitched from 800 individual images and contains
approximately 4 gigapixels. Explore our gigapixel panoramas using HD View, or
read about how these images were made.

Ibg@dongseo.ac.kr

Explore other images.

Grossglockner by Voal

High Dynamic Range
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http://research.microsoft.com/en-us/um/redmond/groups/ivm/HDView/

Photosynth

» http://photosynth.net/

Microsoft*

Photosynth™  Home

About My Photosynths _E Create Account | Signln | Upload

Rainier - Sunrise
mw_1972 9/6/2011 1748 Views

Click on the white
boxes to see
different photos.

Use the arrows to |
see more of the
scene.

Use the buttons or
mouse scroll whee

to zoom in & out. |

Ibg@dongseo.ac.kr

*
2

t Freemont Lookol
—

Vit Rainier Summit

Capture your world in 3D

Shoot wraparound panoramas or full "synths”,
share them with friends, and publish them to Bing.

Gear up by checking out some of the best:

Bridges
Towers
Collections
Museums
National Parks
Markets
Insects
Forests
Archaeology
Aerial Views
Beaches

1e 50,000+ panoramas and
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http://photosynth.net/

PhotoCity

» http://photocitygame.com/

/2 PhotoCity - Windows Internet Explorer

PhotoCity

Capture the world, one photo at a time

How do you play PhotoCity? Explore PhotoCity
PhotoCity Gameplay Tutorial UW (round 1)
P hOTOC”, Cornell (round 1)
Capture the workd. ane.phalo of @ fime UW (round 2)
Cornell (round 2)
Competition Round 1 and Round 2
(M Tube)

0:00/1:35 @
Learn more!

Research Page

Check out more videos on YouTube

@ 2/EL #100% -
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http://photocitygame.com/

Projective Transformations
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Homogeneous coordinates

Homogeneous representation of lines
ax+by+c=0  (abc)
(ka)x+(kb)y+kc=0,vk =0  (ab,c) ~k(ab,c)

equivalence class of vectors, any vector is representative
Set of all equivalence classes in R3—(0,0,0)T forms P2

Homogeneous representation of points
x=(xy,1)'on I=(ab,c)" if and only if ax+by+c=0
(xyDabc) =(xyl)I=0 (x,y1) ~k(x,y1)", vk =0
The point x lies on the line | if and only if x"I=1"x=0

.

Homogeneous coordinates (X, Y, Z) but only 2DOF
. T

Inhomogeneous coordinates (X, y)

13 Ibg@dongseo.ac.kr
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Points from lines and vice-versa

Intersections of lines

The intersection of two lines | and I'is X =IxI'

Line joining two points

The line through two points X and X is | =XxxX

Example
R i j k
a X b = |1 da da
by by by
y=1 |2 dgz|. fly ©dz|. (1 g
: axb= b bal_ b, E}3_] b, bgk
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Ideal points and the line at infinity

Intersections of parallel lines
|=(a,b,c)" andl'=(a,b,c') IxI'=(b,—a,0)'

Example
(b,—a) tangent vector

(a,b) normal direction

X=1x=2
Ideal points (x,,%,,0)"
Line at infinity 1, =(0,01)"
P?=R®Ul, Note that in P2 there is no distinction
between ideal points and others

|5 Ibg@dongseo.ac.kr 4/8/2014



A model for the projective plane

A
A\

exactly one line through two points
exactly one point at intersection of two lines

16 Ibg@dongseo.ac.kr 4/8/2014



Duality

X <

x'1=0

v
—

I"'x =0

X=Ix]" «— |=xxX

Duality principle:

To any theorem of 2-dimensional projective geometry
there corresponds a dual theorem, which may be
derived by interchanging the role of points and lines in
the original theorem
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Projective 2D Geometry
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Projective transformations

Definition:

A projectivity is an invertible mapping h from P2 to itself
such that three points x,,x,,x; lie on the same line if and
only if h(x,),h(x,),h(x;) do.

Theorem:

A mapping h:P2—P? is a projectivity if and only if there
exist a non-singular 3x3 matrix H such that for any point
in P2 reprented by a vector x it is true that h(x)=Hx

Definition: Projective transformation

Xll _hll hlZ hlS_ Xl

Xy | = h21 h22 h23 X,

or X=HX
8DOF

X5 _h31 h32 h33_ X;

projectivity=collineation=projective transformation=homography
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Mapping between planes

central projection may be expressed by x'=Hx
(application of theorem)
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Removing projective distortion

e i [N

L e

ak Al i il
iuﬂliii |

select four points in a plane with know coordinates
X' = X'y _ h11X+h12y+hlB y'= X', _ h21X+h22y+h23
X'3 h31X + h32y + h33 XI3 h31X + h32y + h33

X (h31X +hy,y + hes) =h,X+h,y+h;,
y (h31X +hg,y + h33) =h, X+h,,y +hy,
(2 constraints/point, 8DOF = 4 points needed)

(linear in hy)
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Appears in: Proceedings of International Conference on Computer Vision, 2001

Smarter Presentations: Exploiting Homography in Camera-Projector Systems

Rahul Sukthankar2, Robert G. Stockton'. Matthew D. Mullin!

Just Research 2The Robotics Institute
4616 Henry Street Carnegie Mellon
Pittsburgh, PA 15213 Pittsburgh, PA 15213

{rahuls, rgs, mdm}@justresearch.com*

At first glance. it may appear that this mapping is impos-
sible to determine in the presence of so many unknowns.
Fortunately. we can exploit the fact that all of the observed
points in the scene lie on some unknown plane (the flat pro-
jection screen), and this establishes a homography between
the camera and projector frames of reference. Thus. we can
show that the compounded transforms mapping (z, y) in the
projector frame, to some unknown point on the projection
screen. and then to pixel (X,Y) in the camera frame. can
be expressed by a single projective transform,

( ):(p1X+sz+p3 p4X+p5Y+-ps)
’ prX +psY +po” pr X +psY +po )’

with eight degrees of freedom. 7 = (p1... po)? con-
strained by || = 1. The same transform is more concisely
expressed in homogeneous coordinates as:

Tw Pi P2 D3 X
yw | =1 p1 Ps Do Y
w pP7r pPs Po 1

22 Ibg@dongseo.ac.kr

Projected image frame (inferred)
N

=

Camera image frame

Source image frame

p can be determined from as few as four pixel correspon-
dences’: when more than four correspondences are avail-
able, the system finds the best estimate in a least-squares
sense. Given n feature point matches. {(z;, v;), (X, Yi)}.

let A be the following 2n x 9 matrix:

Xi Y1 1 0 0 0 —-Xym -Yiri —-m

0 0 0 Xy 1 1 Xy Y —wm
Xo Y5 1 0O 0 0 —Xoxs —Yomo —mx9

0 0 0 Xy Yo 1 —Xoyo —Yous —uo
X, Y. 1 0 0 0 -X,zr, Y.z, —z.

\ 0 0 X, Y, 1 —Xoun —Youn —un

The goal is to find the unit vector p that minimizes |Ap.
and this is given by the eigenvector corresponding to the
smallest eigenvalue of AT A.
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Examples
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Transformation for lines

For a point transformation

X=HX
Transformation for lines
I'=H" I
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Isometries

X\ [gcosd -sind t | x
y'|=|&sind cos6 t |y g==41
1) | 0 0 1|1

orientation preserving: g =1
orientation reversing: &=-1

R t .
X=HgX= N 1x R'R=I

3DOF (1 rotation, 2 translation)

special cases: pure rotation, pure translation

Invariants: length, angle, area

25 Ibg@dongseo.ac.kr
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Similarities

(scos® —ssingd t, |(x

X
y'|=|ssin@ scos@ t, |y
1

0 0 1(\1

SR t
Xl:HSX: OT 1X RTRZI

4DOF (1 scale, 1 rotation, 2 translation)

also know as equi-form (shape preserving)
metric structure = structure up to similarity (in literature)

Invariants: ratios of length, angle, ratios of areas, parallel lines

26 Ibg@dongseo.ac.kr
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Affine transformations

XV ey a, t|x
Yii=|lay 8, t |y .
1) o o 1)1

A t

deformation

A=R(OR(-¢)DR(g) D= Fol Aoj

6DOF (2 scale, 2 rotation, 2 translation)

non-isotropic scaling! (2DOF: scale ratio and orientation)

Invariants: parallel lines, ratios of parallel lengths, ratios of areas
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Projective transformations

e=Hox=| oL V=)
V \"

AN

Invariants: cross-ratio of four points on a line (ratio of ratio)

sR t|{K O 1l O A t
I_|:HSI_IAI_|P:OT 1lo™ 1|v" v| |vT v

A =sRK +tv'

decomposition unique (if chosen s>0) K " lar det K =1
upper-triangular, =

8DOF (2 scale, 2 rotation, 2 translation, 2 line at infinity)

Action non-homogeneous over the plane
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Overview Transformations

29

Projective
8dof

Affine
6dof

Similarity
4dof

Euclidean
3dof

hy,

21

31

e
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Concurrency, collinearity,
order of contact (intersection,
tangency, inflection, etc.),
cross ratio

Parallellism, ratio of areas,
ratio of lengths on parallel
lines (e.g midpoints), linear
combinations of vectors
(centroids).

The line at infinity I,

Ratios of lengths, angles.
The circular points 1,J

lengths, areas.
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Line at infinity

0 Vo X, +V, X,

Line at infinity becomes finite,
allows to observe vanishing points, horizon,
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The line at infinity

VI Ioo V2

/0\
I =HTI = 0|=1
1)

The line at infinity | is a fixed line under a projective
transformation H if and only if H is an affinity
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Affine properties from images

projection rectification
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Affine Rectification

VI Ioo V2
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Projective 3D geometry

34

Projective
| 5dof

Affine
| 2dof

Similarity
/dof

Euclidean
6dof

|

A

—

Vv

Ibg@dongseo.ac.kr

Intersection and tangency

Parallellism of planes,
Volume ratios, centroids,
The plane at infinity mrt,,

The absolute conic Q,

Volume

4/8/2014



Camera Calibration
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Pinhole Camera Model

(X,Y,Z2) = (fX1Z,fY/1Z)

X _ (X i - (X
XY [f 0 XY [f 1 0

Y Y Y
= =] 0 Y |=| f 1 0

Z Z Z
Z 1 0 Z 1 1 0

1 - 1 - = 1

iY
X o X

= 7
P AN
principal axis
camera ) )
centre %gc plane
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Pinhole Camera Model

T Yeam cam
Yol pe —» f pX
x
j‘rﬂ cam K = f py
1 1
L - L —
x x

L . Calibration Matrix
Principal point offset
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Internal Camera Parameters

_ - _ — ){':
u o, s x, 0 1 o = fk X, =u'/w
V= o, vy, 0 {S with _ flk : —
W 0O 1 0 —15 v ¥ Spx 0T
o s x, 0] [e. s x, 1 0 0 0]
0 @ » 0/=/0 o y|0 1 0 0=K[I, | o]
0 0 1L 0/ |0 0 1f0 01 0f

« o_and ¢, “focal lengths” m pixels

* x, and y, coordinates of image center in pixels

*Added parameter S 1s skew parameter ‘ >

* K 15 called calibration matrix. Five degrees of freedom.

*K 1s a 3x3 upper triangular matrix

38 Ibg@dongseo.ac.kr

4/8/2014



Camera rotation and translation

Xan =R(X-C) x = K[1]0]X

cam

{R —RC}X x = KR |-C[X

X =PX
P=K[R|t] t=-RC
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Camera Parameter Matrix P

 Further simplification of P:

K:K[I.a | 03]{R -RC}X

0, 1
1, | mlz '?aziﬁ RC|=R]I, | -C]

x=KR|l, | -C|x

P-KR|, | -C]

* P has 11 degrees of freedom:
* 5 from triangular calibration matrix K, 3 from R and 3 from C
* P 15 a fairly general 3 x 4 matrix
oleft 3x3 submatrix KR 1s non-singular
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CCD Cameras

41

_PINCUSHION
DISTORTION

| NO DISTORTION

O

I BARREL
DISTORTION
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Correcting Radial Distortion of Cameras

T
ik

u f(O,P,

P (©,P)
Xy = Cx+(xd = Cx)ﬁ(rdz) m{}xu + mlyu + m:-!

=y + (g = c)(1 + kqr2 + kor# + ksrsf) p =

Yu =Cy T (yd - Cy)ﬁ(rdz) mﬁxy_:_ " yu++1
= oy + (ya - c)(1 + kar + korg + ksr) = Mt T Yy TS

y =
P omgx, +may, +1

ré? = (xg = c)? + (Ya - cy)?

» 42 Ibg@dongseo.ac.kr 4/8/2014



Correcting Radial Distortion of Cameras with
Wide Angle Lens Using Point Correspondences

Leonardo Romero and Cuauhtemoc Gomez

Division de Estudios de Postgrado, Facultad de Ingenieria Eléctrica
Universidad Michoacana de San Nicolds de Hidalgo

Morelia, Michoacian, México

exk = Xp( O, Xa Yar) - Xrk
eyk = Yp(O, Xk, Yar) - Yrk

EOFY le,’ +e,)
k=1

O=argmin E(©)
5.1 Non-Linear Optimization
The Gauss-Newton-Levenberg-Marquardt method (GNLM) (Press et al., 1986) is a non-
linear iterative technique specifically designated for minimizing functions which has the
form of sum of square functions, like E. At each iteration the increment of parameters,
vector 0@, is computed solving the following linear matrix equation:

[A+A]]6©=B (8)
If there is n point correspondences and g parameters in ©, A is a matrix of dimension gxg
and matrix B has dimension gx1 and 6@=[ 66, 60,..., 60, J*. A is a parameter which is allowed

to vary at each iteration. After a little algebra, the elements of A and B can be computed
using the following formulas,

W

n al av dy, o 0x -
= Pk Pk | h = Pe, +— ¢,
Z i g 89; xk 89; Vi

“ 39 ae 96 )
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Calibration Process

44

5.4 The Calibration Process

The calibration process starts with one image from the camera, I;, another image from the

calibration pattern, [,, and initial values for parameters @. In the following algorithm, ® and

00 are considered as vectors. We start with (c,¢c,) at the center of the image, k;=k,=k;=0 and

the identity matrix for M. The calibration algorithm is as follows:

From the reference image, compute the reference feature points (xxyx), (k=1,...n).

From @ and the distorted image, compute a corrected image.

From the corrected image compute the set of feature points (x,x y1), (k=1,...1n).

From (x5, Y1) (k=1,...n) and © compute (X, ya)(k=1,...11).

Find the best @ that minimize E using the GNLM algorithm:

(a) Compute the total error, E(©) (eq. 7).

(b) Pick a modest value for A, say A=0.001.

(c) Solve the linear system of equations (8), and calculate E(©+00).

(d) If E(@+0@) >= E(®), increase A by a factor of 10, and go to the previous step. If A
grows very large, it means that there is no way to improve the solution ©.

(e) If E(@+6@) < E(®), decrease \ by a factor of 10, replace ©® by ©+60, and go to step
Sa.

6. Repeat steps 2-5 until E(®) does not decrease.

When A=0, the GNLM method is a Gauss-Newton method, and when A tends to infinity, 6@

turns to so called steepest descent direction and the size of 60; tends to zero.

The calibration algorithm apply several times the GNLM algorithm to get better solutions.

At the beginning, the clusters of the distorted image are not perfect squares and so point

features can not match exactly the feature points computed using the reference image. Once

a corrected image is ready, point features can be better estimated.

Gl W
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45

X, =C, +(X; —C,)A+ k] +k,r +k,r’)cosd
—(Yq —C, )A+Kyrs +K 1y +kgry)sin g
Yo =C, + (% —C)A+Kyrd +K,ry +kgry)sin g

+(yg —C, YA+ kit +k 1 +kyr) cos 6

I Calibration Debug Image

_ MeX, + My, +m,

" mgx, +my, +1

_ MyX, +m,y, +my

p
meX, +m,y, +1

B Calibration Debug Image3

I Calibration Debug Image

I Calibration Debug Image3
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OpenCV

» http://opencv.willowgarage.com/documentation/camera_c
alibration_and 3d reconstruction.html

ﬂ: Camera Calibration and 3D Heconstruction — OpenCV¥ 2.0 C Reference - Windows Internet Explorer

¥~ |;f:, http.//opency, willowgarage, com/documentation/carmera_calibration_and_3d_reconstruction, html v‘ 2| % | | Folid

B BEEE 200 SHENA (0 =SEH @ 2 FHaH- 8 O

»

W Ic':; Camera Calibration and 30 Reconstruction —.., Iil -8 - [EHHOAE® - =20 -

&

2.0 C Reference » cv. Image Processing and Computer Vision » previous | next | index B8
Camera Calibration and 3D Reconstruction

The functions in this section use the so-called pinhole camera model. That is, a scene view is formed by projecting 3D points into the image plane using a

perspective transformation.
Table Of Contents

’ ’
Camera Calibration and 3D sm' = A[R[{]M
1
or

omputeCorrespondEpilines ¥

onvertPointsHomogeneous w0 0 e ry T2 T f S e . . S

reatePOSITODject fz R I B % UL

reateStereoBMState slvl =0 fy o |tn re ot f2] | x ¥

reateStereoG 1 0 0 1 T3] Taz Ta I3 1 e 2

Where (X, Y, Z) are the coordinates of a 3D point in the world coordinate space, (u, v) are the coordinate
camera matrix, or a matrix of intrinsic parameters. (cx, cy) is a principal point (that is usually at the im
expressed in pixel-related units. Thus, if an image from camera is scaled by some factor, all of these par
respectively) by the same factor. The matrix of intrinsic parameters does not depend on the scene viewed ai
the focal length is fixed (in case of zoom lens)). The joint rotation-translation matrix [R2[t] is called a matrix of
camera motion around a static scene, or vice versa, rigid motion of an object in front of still camera. That is, [.
to some coordinate system, fixed with respect to the camera. The transformation above is equivalent to the fo

FindFundamentaliMat
FindHomography

rtMap
riRectifyMap T X -
y|l =R |Y| +t¢ | e Gpions ook e Vi
3ok 3 Help
z Z ot RHE SN i
@ =gz ; [
ReleasePOSITObject otz B
ReleaseStereoBMState ¥ =yl i o i CamStudio
ReleaseStereoGCState u= frx' +ep

1.'=fy*1j+cy ——

Pres the hop Button to s recending

L

Real lenses usually have some distortion, mostly radial distorion and slight tangential distortion. So, the abovali el -

ER @ e 005 -
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Camera Calibration Toolbox

amera Calibr: n Toolbox for Matlab, rosoft Internet Ezplorer
DFE(EY HECE) B SHEA =T ZSH) 3

@z © HNREG Lz dezazn @ Q-2 @ - M B & N
Z (D) |a hittp /v, vision, caltech, edu/bouguet)/calib_doc/ V|D|§ Hz @G- Pons Had- 8 O

|

This is a release of a Camera Calibration Toolbox for Matlab® with a complete doc ion. This d may also be used as a tutorial on camera calibration since it includes general information about calibration, references and
related links.
Please report bugs/questions/suggestions to Jean-Yves Bouguet at jbouguet at pmail dor com.

The C implementation of this toolbox is included in the Open Source Computer Vision library distributed by Intel and freely available online.

Content:

System requirements

Getting started

Calibration examples

Description of the calibration parameters
Description of the functions in the calibration toolbox
Doing vour own calibration

Undocumented features of the toolbox

References v
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Extrinsic parameters

Camera Calibration

Imiage 1 - Image poinls [+) and reprojected grd points (7] Image 2 - Image poinls [+) and reprojected gnd points {g)

sof

g

g

200
300
30 Swviteh to world-centered wiew I
40
0 , Extrinsic parameters

l 200 300 400 500 00 Il;l] 200 300 ann 500 B0 10

kmage 3 - Image paints (+) and reprojected grd points (o} S

=

200 4
250
300
380
400
450

R orld Y overid

Switch to camera-centerad view I

Calibration results after optimization {with uncertainties):

Focal Length: fc = [ 661.67881 662._82858 1 + [ 1.17913 1.26567 ]

Principal point: cc = [ 306.09590 248.78987 ] x [ 2.38443 2.17481 ]

Skew: alpha_c = [ 0.888088 ] + [ 6.8080888 ] =>» angle of pixel axes = 90.00000 : 0.080000 degrees

Distortion: ke = [ -8.26425 B.22645 B8.88828 0.08823 ©.0606868 ] + [ B8.088934 8.83826 8.808852 8.88853 0.08088 ]
Pixel error: err = [ B.45338 8.389146 ]
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Calibrating a Ste

Stereo calibration parameters after loading the individual

Intrinsic parameters of left camera:

reo System

Eutrinsic parameters

calibration files:

200 0

Focal Length: fc_left = [ 533.88371 £33.15268 ] = [ 1.87629 1.18913 ]
Principal point: cc_left = [ 341.58612 234.25948 ] = [ 1.248M1 1.33865 ]
Skeu: alpha c_left = [ B.88688 ] + [ A.088808 ] => angle of pixel axes = 90_.00000 + 0.00000 degrees
Distortion: kc_left = [ -8.28947 8.18326 a.80183 -0.008029 0.00088 ] =+ [ B.88596 8.82855 8.88838 8.80837 0.0080880 ]
Intrinsic parameters of right camera:
Focal Length: fc_right = [ 536.98262 536.56938 ] + [ 1.19786 1.15677 ]
Principal point: cc_right = [ 326_47289 240.33257 1 + [ 1.36588 1.34252 ]
Skew: alpha_c_right = [ 9.008688 ] =+ [ 6.886808 | => angle of pixel axes = 90.080600 :+ 0.00088 degrees
Distortion: kc_right = [ -8.28936 B.18677 -0.88878 0.00020 ©.00000 ] = [ O.00488 B.008866 b.000827 8.00062 ©.00000 ]
Extrinsic parameters (position of right camera wrt left camera):
Rotation vector: om = [ @.88611 8.88489 -@8.688359 ]
Translation vector: T =1 -99.84929 8.82221 8.43647 ]
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Robust Multi-camera Calibration

» http://graphics.stanford.edu/~vaibhav/projects/calib-
cs205/cs205.html

2 Robust Multi-Camera Calibration - Microsoft Internet Explorer

mae BEE 220 SHRAA B ZsH)

Ofz- 0 HREA®G PauYraw @ -5 w-MEB L 8W3

FiD) |@ hitp://graphics, stanford, edu/~vaibhav/projects/calib-cs205/c5205, himl V| os 2 @- Lgis Had-8 O

-~

Robust Multi-camera Calibration
CS 205 Project Proposal
Abstract:

Camera calibration is the determination of the relationslip between a the 3D position of a point in the world and the 2D pixel coordinates of its image in the camera. In this project, we explore extension of ona
algorithm for calibraring a singla camera to calibrating an array of 128 cameras. Ow primary goal is implementing a global, nonlinear optimization procedure to compute "optimal" values of all camera parameters.
We hope to achieve more accuracy and stability this way, as opposed to using existing software to calibrate each camera separately. b |

Calibration images Image 5 - Imaga paints ¢+} and raprojacted grid pointe fa}
Contents

« Introduction
» Camera Calibration
+ Current System

» Project Goals
» References

AERDEEN
EEDENN
LS
fonono
.in.l. | party
NOmyy [

Introduction:

The Stanford Graphics Lab is building ar
implementations [2][3] of Zhang's algorif]
than simply calibrate each camera indivic|
techniques from CS 205 could be useful

Camera Calibration:

‘We model a camera as a pin-hole device, that projects the 3-dimensional world onto a 2-dimensional image plane. The parameters we need to calibrate are the position (3 parameters) of the pinhole, the orientation of the image
plane (3 degrees of rotation) and four internal parameters that define the geometry of the pmhole with respect to the image plane. They describe the focal length of the camera and the offset of the optical axis from the center of the

F U SRR SRS PR SRR SO SN SR TR PR SRR [ SRS I ¢ ML) Rt PN R | R

[£3

R TR PR (R S

€] ® 2E2
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Multi-Camera Self Calibration

» http://cmp.felk.cvut.cz/~Esvoboda/

2} Multi-Camera Self-Calibr: - Microsoft Internet Explorer

TFNE) MIE) 220 SHEIA BRI ZSEH

0= 0 HEG PuYom @2 L  ABSEES

=000 €] htpi//emp felk, cvut,c2/% TEsvoboda/SeliCal/ v|Bos 22 @ Qs Gud-HO

Multi—-Camera Self—Calibration

‘Graphical Cukput Valckiion: Viaw fram the topearmsea.

i -zt
3 g = ki

g i

Matlab package for a comeiefe and fully aufomatic calibration of multi-camera setups (3 cams min). A standard lager pointer iz the only hardware you need. Mo calibration object and user
interaction required.

Keywords: multiple cameras calibration, multicamera calibration, selfcalibration, mutti-camera calibration, calibration of a camera network.

Authors of the code

« Tomas Svoboda. Corresponding author. Design of the package, Euclidean stratification, Finding points, IO operations, interfacing, robust reconstruction for calib validations ...
« Daniel Martinec and Tomas Pajdla. Filing points in projective reconstruction via rank-4 factorization.
« Jean-vves Bouguet, Radial distortion routines.

Tomas Wemer. Projective Bundle Adjustment.
QOndrej Chum. RANSAC implementation

History

o February, 2077 Code slightly modified and made Octave compatible by Andrew Straw and his callaborators. See the readme for more details. Thanks Andrew!
May 24, 2005, Version 1.0 released.

Oclober 28, 7004, Sample data available for download.

ey 15, 2004, Our journal paper accepted.

20 August, 2003, Documentation uparade.

&) (2N 25 EH8) htip://counter, cnw,cz/arial. caitSelfCala7a0000008FFFFFFaon J8 CH22E ...

<

© CE
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Multi-Camera Self Calibration

52

Pl

P3
Problem definition: - .
From uj points, for which Aju; = P*X; holds

estimate Euclidean projection matrices P*

and coordinates of the 3D points X;
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ARToolKit Camera Calibration

Accurate two-step method (2/3)

‘ Accurate two-step method (3/3)

= Step 1: Gefting distortion parameters: 'calib_dist’

getting distorticn parameters

selacting dots with mouse - .
by automatic line-fitting

— Take pattern pictures as large as possible
— Slant in various directions with big angle
— 4 times or more

Augment=d Realty - Sping 2007 Univ. of Incheon, CSE e

*  Step 2: Getting perspective projection matrix: ‘calib_cparam’

Grid zordbeand have to bo moved in the

| ‘l’//" perpendicular diroction of the plnse
- Camera should be placed in almost

perpendizular divacton of the plone.

Augmentzd Raalty - Sping 2007 unw. of icnecn, CSE T

Easy one-step method: ‘calib_camera2’

Camera Parameter Implementation

* Same operation as ‘calib_dist’
* (etting all camera parameters including distortion parameters and
perspective projection matrix
= Mot require careful setup
» Accuracy is good enough for image overay
— [But, Not good encugh for 3D measurement.]

* Camera parameter structure
sypedef strucs |
int xsige, yaige;
double mat[3] H
double dist_factor[2];
} ARParam;

*  Adjust camera parameter for the input image size
int arParamChanges3ise (ARParam “=source,
int xsige, int ysisze, ARParam *newparam];
* Read camera parameters from the file

int arParamload(char *filename, int num, ARFaram ‘*param, -l;
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Epipolar Geometry and
3D Reconstruction.
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Introduction

Computer vision is concerned with the theory behind artificial systems that
extract information from images. The image data can take many forms, such as
video sequences, views from multiple cameras. Computer vision is, in some
ways, the inverse of computer graphics. While computer graphics produces
image data from 3D models, computer vision often produces 3D models from
image data. Today one of the major problems in Computer vision is
correspondence search.
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Epipolar Geometry

» http://www.ai.sri.com/~luong/research/Meta3DViewer/EpipolarGeo.html

epipolar plane 7T

» 56 Ibg@dongseo.ac.kr 4/8/2014


http://www.ai.sri.com/~luong/research/Meta3DViewer/EpipolarGeo.html
http://www.ai.sri.com/~luong/research/Meta3DViewer/EpipolarGeo.html
http://www.ai.sri.com/~luong/research/Meta3DViewer/EpipolarGeo.html

Epipolar Geometry

e
.

epipole
epipolar line
forx
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pipolar Geometry
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Epipolar Geometry

\+
,\

baseline

Family of planes p and lines | and I
Intersection in e and €’

59 Ibg@dongseo.ac.kr

4/8/2014



Epipolar Geometry

epipoles e,e’

= intersection of baseline with image plane

= projection of projection center in other image
= vanishing point of camera motion direction

an epipolar plane = plane containing baseline (1-D family)

an epipolar line = intersection of epipolar plane with image
(always come in corresponding pairs)
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The Fundamental Matrix F

X=H_X
I'=e'xx'=[e'] H x=Fx

\//"\\ A

Hy

/
| 2 ™

€

H . projectivity=collineation=projective transformation=homography
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Cross Products

i j k
by b by
|2 dg|. B (i1 fl3]. fly (o
axX b= b T b b T b Bl

The vector cross product also can be expressed as the product of a skew-symmetric matrix and a vector:

0 —(l3 Iy ETH_
axb=1J[alyb=| a3z 0 —a||b
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Epipolar Lines
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Three Questions

(i)

(i1)

(iii)

64

Correspondence geometry: Given an image point X in the first
view, how does this constrain the position of the corresponding

point X’ in the second image?

Camera geometry (motion): Given a set of corresponding image
points {x, <x’}, i=1,...,n, what are the cameras P and P’ for the two

views?

Scene geometry (structure): Given corresponding image points
X, <>X’; and cameras P, P’, what is the position of (their pre-image)

X in space?
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Parameter estimation

» 2D homography
Given a set of (x;,x’), compute H (x/=Hx))

» 3D to 2D camera projection
Given a set of (X;,x;), compute P (x=PX)

» Fundamental matrix
Given a set of (x;,x’), compute F (x/TFx;=0)
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The fundamental matrix F

Algebraic Derivation
X(A)=P*x+AC
I'=e'xx'=[e'] Hx=Fx
I'=P'CxPP"x

F=[e] PP

e
L

A
1“;‘/ epipolar line
forx

(note: doesn’t work for C=C’ = F=0)
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The fundamental matrix F

Correspondence Condition

The fundamental matrix satisfies the condition that for
any pair of corresponding points x<x’ in the two images

XTFx=0
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The Fundamental Matrix Song

» http://danielwedge.com/fmatrix/

The Fundamental Matriz Song

dows Internet Explorer

@1@ - |E http//danielwedge, com/fmatriz/ VHE| |z| |Guug\e
oFE(EY BEE) B2 SHEME BRI ZEH G| P2Ead-8 e - @
* & The Fundamental Matriz Song ]_l & - i - [EHOAE - G20 - @- 8 0 o 5 @ 3

A
The Fundamental Matrix Song

The fundamental matrix ¢y E0te E 8200 FORLICKL 280 228 FO0REH= N 023 e
Used in stereo geometry ol
A matrix with nine entries
It's square with size 3 by 3
Has seven degrees of freedom
It has a rank deficiency 5
Its only of rank two The Fundamental Matrix Song
Call the matrix F and you'll see...

Two points that correspond
Column vectors called x and x-prime
x-prime transpose times F times x

Equals zero every time

The epipolar constraint
Involves epipolar lines
Postmultiplying F by x
Results in vector l-prime
It's the epipolar ling
In the other view passing through x-prime
A three component vector
Of homogeneous design

The left and right nullspaces of F
Are the epipoles e-prime and &
All of the epipolar lines
Should pass through these

Here's a linear estimation example:
Take a set of 8 point samples
Construct a matrix, take the SVD

You may also be interested in 2.71828183: The e Song.
; Video with Japanese subtitles
And the elements of F are in the last column of ¥ D load a high-quality version of the video (about 25MB) (requires Xvid
codec)
IFyou try to estimate Download video with English subtitles
F with a coplanar set of points
Your sample set will be degenerate

ownload the MP3 (about 4MB)

D load the Opera House
And will not bring you joy

When doing the estimation

Thanks to:
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The Fundamental Matrix

» http://www.cs.unc.edu/~blloyd/comp290-089/fmatrix/

/= F-Matrix - Windows Internet Explorer

(S A3 A “E http://www, cs,unc, edu/~blloyd/comp290-089/fmatrix/ v‘ 4% ‘u o)

DE BRE 2N AW EXD E822@ 2 @- L ezi-8 @dws -0

w & [@ F-Matrix [_\ - o v PHORE - G5O -@- N0 & N & 3
Computation of the Fundamental Matrix

The fundamental matrix F relates points in two images. If x is a point in one image and x' a point in another image. then x'Fx = 0. To compute F completely automatically we begin by using a corner detector to find interest points in an

»

"x

» JEC R
£< 9 s ¥ i

ASHe . by
4

“ g % 5

-
9

3

Feature points extracted by a corner detector.

Putative matches of the feature points in both images are computed by using a correlation measure for points in one image with a features in the other image. Only features within a small window are considered to limit computation
time. Mutually best matches are retained.
HE

@ 2

69
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Epipolar geometry: basic equation

XTFx=0

Xl Xfll + X' yf12 + Xl f13 + yl Xf21 + y' yf22 + yl f23 + Xf31 + yf32 + f33 = O

separate known from unknown

DX XY XY XYY Y X Y i fios i fors B, Fags fag o, o] =0

(data) (unknowns)

Xll. Xl Xll. yl X.'1 yll Xl yI1. yl y.ll )fl Yl 1

XX X ¥e Xo VaXe YaVe Ve X, Y. 1

Af =0
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the NOT normalized 8-point algorithm

71

~10000 ~10000 ~100 ~10000 ~10000 ~100 ~100 ~100

AN

XX YiX X X%Yr Yivi W
XoXo  YoXo  Xo Xo¥o Yo¥o Yo

XnXn o YnXn Xp

Xa¥n  YnYn Vi

Y1
Yo

Yn

Orders of magnitude difference
Between column of data matrix
— least-squares yields poor results

Ibg@dongseo.ac.kr
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the normalized 8-point algorithm

Transform image to ~[-1,1]x[-1,1]

(0,500) (700,500) - _ ) (1,1)
£ 0 -1
700
2
500
1
>
(0,0) (700,0) (-1,-1) (1,-1)

Least squares yields good results (Hartley, PAMI"97)
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The fundamental matrix F

F is the unique 3x3 rank 2 matrix that satisfies x’TFx=0 for all x<>X’

(i) Transpose: if F is fundamental matrix for (P,P’),
then FT is fundamental matrix for (P’,P)

(ii) Epipolar lines: '=Fx & I=F™X’
(iii) Epipoles: on all epipolar lines, thus e’TFx=0, Vx =e’TF=0, similarly Fe=0
(iv) Fhas 7 d.o.f.,i.e. 3x3-1(homogeneous)-1(rank?2)

(v) Fis a correlation, projective mapping from a point x to a line I'=Fx
(not a proper correlation, i.e. not invertible)
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Fundamental matrix for pure translation

74

mage R o

— \ 1 iy

—_— b
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Fundamental matrix for pure translation
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Fundamental matrix for pure translation

FlelH. =[] (H. -KRK)

Example:
. 0 0 O
e=(1,00) F=|0 0 -1
01 0]
X'Fx=0cy=Y
X =PX = K[| 0]X (XY,Z) =K*x/Z

X =P'X =K[l| t][K;X} X =X+ Kt/Z

motion starts at x and moves towards e, faster depending on Z
pure translation: F only 2 d.o.f., x"[e],x=0 = auto-epipolar
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General Motion

" H W™

P -

« NIV /// .
N
T

x'T [e] Hx=0

xTle'l x=0

X

X = K'RK*x +K't/Z
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Projective transformation and invariance

Derivation based purely on projective concepts
X=Hx X=H'X=>F=H"FH"

F invariant to transformations of projective 3-space
x =PX = (PH)HX)=PX
X=P'X=(PHYHX)=P'X
(P,P)—>F  unique
Fi— (p’ p') not unique

Canonical form

P=[10] F=[mlM F=[e] PP
P'=[M|m]
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Projective ambiguity of cameras given F

previous slide: at least projective ambiguity this slide: not more!

Show that if F is same for (P,P’) and (P,P’), there exists a
projective transformation H so that P=HP and P’=HP’

P=[1|0]P'=[A|a] P=[1|0]P'=[A|3]
F=[alA=[a] A

emma.

rank 2

d=kaA=k*(A+av') aF=afa] A=0=aF—a=ka
] A=[aA=[a].(KA-A)=0=(KA-A)=

Kk 0
=l ¢
P'H = [Ala][ _1
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Canonical cameras given F

F matrix corresponds to P,P’ iff P’TFP is skew-symmetric

(X"PT FPX =0,VX)

F matrix, S skew-symmetric matrix

P=[1]0] P'=

:SF | e'] (fund.matrix=F)

([SF e']' F[1]0]

Possible choice;

_[F's"™F 0] _[F'STF 0
e'F 0 0 0

P=[110] P'=[[e'].F|€]
Canonical representation:

P=[110] P'=[[€].F+€V"|re]

80
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The Essential matrix
~ Fundamental matrix for calibrated cameras (remove K)

E=[tJ]R=R[R"t],

XTEX =0 (% =K g =K*x)
E=K'"FK

5d.o.f. (3for R; 2 for t up to scale)

E is essential matrix if and only if two singularvalues are equal (and third=0)

E = Udiag(1,1,0)V'
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3D Reconstruction
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Epipolar Geometry

Underlying structure in set of P
matches for rigid scenes L
2
C
T
I, 1, L L
—A 7~ e

m,Fm, =0 e
’

Fundamental matrix \
(3x3 rank 2 matrix)

Computable from corresponding points
Simplifies matching

Allows to detect wrong matches
Related to calibration

Canonical representation:

P=[1]10] P=[[€].F+eV"|Ae]

N e
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3D reconstruction of cameras and structure

Reconstruction Problem:

given xi—Xx', , compute P,P* and X;
X, = PXI X; = PX: forall i

without additional informastion possible up to projective ambiguity

84 Ibg@dongseo.ac.kr 4/8/2014



Outline of 3D Reconstruction

() Compute F from correspondences
(i) Compute camera matrices P,P‘ from F
(i) Compute 3D point for each pair of corresponding points

computation of F
use x';Fx=0 equations, linear in coeff. F
8 points (linear), 7 points (non-linear), 8+ (least-squares)

computation of camera matrices

use P=[110] P'=[[e'].,F+e'Vv'|Ae']

triangulation
compute intersection of two backprojected rays
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Reconstruction ambiguity: similarity

X, =PX, = (PHZHsX;)

-1 RIT 'RIT tl _ T 1 T o
PH: =K[R|( R "R T |=K[RRT|-RRT t+4
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Reconstruction ambiguity: projective
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Terminology

Xi<—>X‘i

Original scene X;
Projective, affine, similarity reconstruction
= reconstruction that is identical to original up to
projective, affine, similarity transformation

Literature: Metric and Euclidean reconstruction
= similarity reconstruction
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The projective reconstruction theorem

If a set of point correspondences in two views determine the
fundamental matrix uniguely, then the scene and cameras may be
reconstructed from these correspondences alone, and any two such
reconstructions from these correspondences are projectively equivalent

X; > Xi (PP Xy ) (P Py Xa )
P,=PH™ P,=PH™ X, =HX, (except:Fx, =x/F=0)

v
theorem from last class

Pz (Hxli ) = PlH_leli — P1X1i =X = P2X2i

— along same ray of P,, idem for P,

two possibilities: X,=HXj;, or points along baseline

key result : allows reconstruction from pair of uncalibrated images
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Stratified reconstruction

(i) Projective reconstruction
(i)  Affine reconstruction
(i) Metric reconstruction
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Projective to affine

Remember 2-D case
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Projective to affine
(P.P"{Xi})
n, =(AB,C,D) (0,001
H'n_=(0,001)

H :P |O} (if D#0)
T

o0

theorem says up to projective transformation,
but projective with fixed p., is affine transformation

can be sufficient depending on application,
e.g. mid-point, centroid, parallellism
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Translational motion

points at infinity are fixed for a pure translation
= reconstruction of X« x; is on p.,

F=[e] =[¢]. P=[10]
P=[le]
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Scene constraints

95

Parallel lines

parallel lines intersect at infinity
reconstruction of corresponding vanishing point yields
point on plane at infinity

3 sets of parallel lines allow to uniquely determine p.,

remark: in presence of noise determining the intersection of
parallel lines is a delicate problem

remark: obtaining vanishing point in one image can be sufficient
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Scene constraints
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Scene constraints

Distance ratios on aline
known distance ratio along a line allow to determine point at
Infinity (same as 2D case)
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The infinity homography

P=[M|m] P'=[M[|m]
H, =M'M*

unchanged under affine transformations

P:[I\/I|m]{'g‘ ﬂ:[MA|Ma+m]

X, =(X,0/
_ ] 'l '1 X T[oo
H =MAA"M \//\\ \
affine reconstruction < AN ,

P=[I10] P=[H, €]

//. e S 7
‘/ .e e’
X, =MX X, =M'X
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One of the cameras is affine

According to the definition,
the principal plane of an affine camera is at infinity

to obtain affine recontruction,
compute H that maps third row of P to (0,0,0,1)"
and apply to cameras and reconstruction

e.g. if P=[l|0], swap 3" and 4" row, i.e.

NNl
Nl e
—ROOO
OO0
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Affine to metric

100

identify absolute conic

transform so that €3 : X +Y?+2Z%=0,0n T,

then projective transformation relating original and
reconstruction is a similarity transformation

In practice, find image of W.,
Image w,, back-projects to cone that intersects p., in W,,

note that image is independent
of particular reconstruction

&

projection
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Affine to metric
given P=[M|m] ®
possible transformation from affine to metric is

L_[At 0] AAT=(MToM]
10 1 (cholesky factorisation)

proof:
P, =PH™ =[MA|m]

. < [1 o0
o =M, M, =MAA™M’' (Q :[o OD
Mo = AAT
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Orthogonality

vanishing points corresponding to orthogonal directions
T _
v,ov, =0

vanishing line and vanishing point corresponding
to plane and normal direction

| = v
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Correspondence and
RANSAC Algorithm.
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Correspondence Search
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Feature Matching

To match the points in one image to the points in the other
Image by exhaustive search(to match one point in one image to
all the points in the other image) is a difficult and long process
SO some constraints are applied. As geometric constraint to
minimize the search area for correspondence.

The geometric constraints is provided by the epipolar geometry
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Harris Detector: Mathematics

Change of intensity for the shift [x,y]:

E(xy) =D WU, V[ (x+u,y+v)—1(x,y)I

Window Shifted

Window function W(U,V) = |

1 in window, O outside Gaussian
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E(y) =D [1(%y)- I (X+AX, y+AY)]  u=AxXv=Ay
AXY
=ZW]£I (% y) = 1% y) =L 6 ) (%, y)]LyD

ATY
= %‘,[[lx(x, I, (X, y)]LyD

20y’ le(x,yny(x,y)[Ax}

=[{AX A W
R T

AX
=[Ax  Ay|C(x,y) Ly}
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Harris Detector: Mathematics

For small shifts [u,v] we have a bilinear approximation:

EQuv)=[uv] M m

where M is a 2x2 matrix computed from image derivatives:

|2

I 1
s

N
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Harris Detector: Mathematics

Intensity change in shifting window: eigenvalue analysis

E(u,v)=[u,v] M {u} Kl, 7»2 — eigenvalues of M

Y

If we try every possible orientation n,
the max. change in intensity is A,

Ellipse E(u,v) = const

109 Ibg@dongseo.ac.kr 4/8/2014



Harris Detector: Mathematics

Classification of image
points using
eigenvalues of M:

» 110 Ibg@dongseo.ac.kr 4/8/2014



Harris Detector: Mathematics

Measure of corner response:

R =detM —k(traceM )2

detM =44,
traceM =4, + 4,

(k — empirical constant, k = 0.04-0.06)
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Harris Detector: Mathematics

* R depends only on eigenvalues
of M

R is large for a corner

* R is negative with large
magnitude for an edge

* |R| is small for a flat region
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Harris Detector

» The Algorithm:
Find points with large corner response function R
Take the points of local maxima of R
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Harris Detector : Workflow
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Compute corner response R

_Harris Detector : Workflow
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Find points with large corner response: R>threshold

Harris Detector : Workflow
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Take only the points of local maxima of R

Harris Detector : Workflow

Ibg@dongseo.ac.kr 4/8/2014




Harris Detector : Workflow

e - - .‘-, " ,j -
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Correlation for Correspondence Search

»
»

0,0

7,7

Left image: 1. From the left feature point image we select one feature point.
2. Draw the window(N*N) around, with feature point in the center.
3. Calculate the normalized window using the formula

N N
S, :\/ZZwl (i, ) *w(, j) N is the size of window

i=1 j=1
w (1, J)

1
119 Ibg@dongseo.ac.kr 4/8/2014

W1(nor) (I’ J) =



Correlation Algorithm

»  Select one feature point from the first image.
» Draw the window across it(7*7).
» Normalize the window using the given formula.

N N
s, :\/ZZ\Nl (i, )*w,(i, j) N is the size of window

i=1 j=1
w (i, J)

1

Wl(nor) (I ! J) =

»  Find the feature in the right image, that are to be considered in the first image,(this should be done by
some distance thresholding)

»  After finding the feature point the window of same dimension should be selected in the second image.
»  The normalized correlstion measure should be calculated using the formula

S,

Szzilewl(i’j)*WZ(i’j) cormat = ———
i=1 j=1 \/ZZWZ(i’ D*w, (1, J)

i=1 j=1
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* Select sample of m
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* Select sample of m points at
random
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' * Select sample of m points at
L
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* Select sample of m points at
random

e Calculate model parameters
that fit the data in the sample

* Calculate error function for
each data point

* Select data that support
current hypothesis
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RANSAC

* Select sample of m points at

‘. . Wi random
] ® ..
" e Calculate model parameters
® . .
‘ . e that fit the data in the sample
@
o * .
® ®
S . . * Calculate error function for
¢
» ¢ . - . each data point
“
e o
o * Select data that support
® L - .
° current hypothesis
®
. *
o . * Repeat sampling
[
P *
®
* ® *
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RANSAC
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* Select sample of m points at
random

e Calculate model parameters
that fit the data in the sample

* Calculate error function for
each data point

* Select data that support
current hypothesis

* Repeat sampling

4/8/2014



* ¢ k ... number of samples drawn
. N ... number of data points
. . ty ... time to compute a single
model
J Mg ... average number of models
¢ per sample
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Feature-space outliner rejection

~— = =]

- K 17?\‘ t

(T [T

= r—

» Can we now compute H from the blue points?
No! Still too many outliers...
What can we do!



Matching features

What do we do about the “bad” matches?




RAndom SAmple Consensus

Select one match, count inliers




RAndom SAmple Consensus

Select one match, count inliers




Least squares fit

Find “average” translation vector




RANSAC for estimating homography

» RANSAC loop:
I, Select four feature pairs (at random)
< 2. Compute homography H (exact)
3. Compute inliers where SSD(p;’, H p <e
4. Keep largest set of inliers

5.  Re-compute least-squares H estimate on all of the
inliers



RANSAC for Fundamental Matrix

Step 1. Extract features
Step 2. Compute a set of potential matches

Step 3. do
Step 3.1 select minimal sample (i.e. 7 matches) (generate
Step 3.2 compute solution(s) for F hypothesis)

Step 3.3 determine inliers (verify hypothesis)
until I'(#inliers,#samples)<95%

Step 4. Compute F based on all inliers
Step 5. Look for additional matches
Step 6. Refine F based on all correct matches

Ibg@dongseo.ac.kr
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RANSAC
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Example: Mosaicking with homographies

www.cs.cmu.edu/~dellaert/mosaicking
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Recognizing Panoramas
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Recognizing Panoramas

140 Ibg@dongseo.ac.kr 4/8/2014



THANK YOU!!
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photosynth

Photomodeller

PhotoCity

PhotoCity

Remove
Perspective
distortion

create account
Take pictures
Construct
photosynth

Select one small
object

Make 3d model
data

Select one small
object

Make 3d model
data

Presentation file
How to install &
use

Cygwin, bunder,

Matlab CC

Load image
Choose feature
points

SIFT & ASIFT
OpenCV CC

PhotoTourism
ARToolkit Camera
Calibration

PhotoTourism

Matlab CC

OpenCV CC

Search others

photosynth works
Select one point in
DSU, take pictures

Projector
Price?

Matlab CC

Lab Image Data
SIFT
Fundamental
Matrix

Remove PT
OpenCV CC PT

PhotoTourism
ARToolkit Camera
Calibration
Fundamental
Matrix

M C C - led lamp



Topics in Image Processing
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Bayesian Modeling of Dynamic Scenes for Object Detection

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHMNE INTELLIGERCE, WOL. 27, NO. 11, NOVEMBER 2005
Yaser Sreicn and Mubarak Skar

oy Ibg@dongsac.ac.«r 2009.02 25

Background @, = {3 ¥y, ¥,}.¥ =(r.g.b.x.3) e R Foreground @, ={2.2,,"-.2..}

l '.‘ 2 ~

P(x|y,) =— 2 u(x= ) P(x|y,)=ay+(1-aym” Y 0. (x~z)
iml iml

d-variate Gaussian density P(xivw,)

- s 1 Y Likelihood ratio classifier ¢ =— m
™ - =42 Trr- Yo,
@, (x)= |H|- (27)° " exp(- 3X H™'x) L

fixdy,)

Background Log-Likelihood
50
. 1
Algorithm o
Initialize v using 1** frame, v’y = 0. At frame ¢, for each pixel, 150 1 5
Detection Step 200 3

1) Find P(x:|¢s) (Eq. 7) and P(x:|t») (Eq. 1) and compute the
Likelihood Ratio 7 (Eq. 8).
2) Construct the graph to minimize Equation 13.

100 200 300

Binary Detection

Model Update Step
1) Append all pixels detected as foreground to the foreground 504
model v'y. 100k
2) Remove all pixels in vy from py frames ago.
3) Append all pixels of the image to the background model v, 150 l;:; &
4) Remove all pixels in v from pp frames ago. 200+
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Real World
Scene

Fast and Robust Multiframe Super Resolution

|IEEE TRANSACTICNS ON IMAGE PROCESSING, VOL. 18, NO. 10, CCTOBER 2004
3ina Farsiu, M. Dirk Robinson, Michas! Elad, and Peyman Mianfar
by log@dongsso.ac.kr 2008.02.23

Y, =D,H.FX+V,

- ArgMin [Z |5 R x -7, "j e Ar%\/ﬁn[é |5 R x -7, ||Z % ﬂ(_gg)]

o > P
YL @O=rxf, Yr@=|vx] YW= >
0

lm—p M=l

x-si50a)
I1+mz0

Robust Mathod

~ - N - P P ) . .
X, =X,- B FHIDlsign(D,H,FX,-Y,)+2 Y. Y o™ NI-57"s Isign(X, - SLS"X,)}
k=l le=P m=0

i=m=0
Fast Robust Msthod

. . P P " - . —
X=X, - Asign(4HX, - 42)+A Y, Y o NI-57"57sign(X, - SIS"X,)}

im—P m=0
J+m20

Camera Blur Noisy, Blurred,

Effect Down Sampling Color Filtering Down Sampled,

Effect Effect Color Filtered,

Outcome Y




Fast Motion Deblurring

Sunghyun Cho
POSTECH

Seungyong Lee
POSTECH

Input blurred image

Deblurring result

Magnified views

Figure 1: Fast single image deblurring. Our method produces a deblurring result from a single image very quickly. Image size: 713 x 549. Motion blur kernel size: 27 x 27.

Processing time: 1.078 seconds.

Abstract

This paper presents a fast deblurring method that produces a deblur-
ring result from a single image of moderate size in a few seconds.
We accelerate both latent image estimation and kernel estimation
in an iterative deblurring process by introducing a novel prediction
step and working with image derivatives rather than pixel values.
In the prediction step, we use simple image processing techniques
to predict strong edges from an estimated latent image, which will
be solely used for kernel estimation. With this approach, a compu-
tationally efficient Gaussian prior becomes sufficient for deconvo-
lution to estimate the latent image, as small deconvolution artifacts
can be suppressed in the prediction. For kernel estimation, we for-
mulate the optimization function using image derivatives, and ac-
celerate the numerical process by reducing the number of Fourier
transforms needed for a conjugate gradient method. We also show
that the formulation results in a smaller condition number of the nu-
merical system than the use of pixel values, which gives faster con-
vergence. Experimental results demonstrate that our method runs

nature of imaging sensors that accumulate incoming lights for an
amount of time to produce an image. During exposure, if the cam-
era sensor moves, a motion blurred image will be obtained.

If a motion blur is shift-invariant, it can be modeled as the con-
volution of a latent image with a motion blur kernel, where the ker-
nel describes the trace of a sensor. Then, removing a motion blur
from an image becomes a deconvolution operation. In non-blind
deconvolution, the motion blur kernel is given and the problem is
to recover the latent image from a blurry version using the kernel.
In blind deconvolution, the kernel is unknown and the recovery of
the latent image becomes more challenging. In this paper, we solve
the blind deconvolution problem of a single image, where both blur
kernel and latent image are estimated from an input blurred image.

Single-image blind deconvolution is an ill-posed problem be-
cause the number of unknowns exceeds the number of observed
data. Early approaches imposed constraints on motion blur kernels
and used parameterized forms for the kernels [Chen et al. 1996;
Chan and Wong 1998; Yitzhaky et al. 1998; Rav-Acha and Peleg



YOUTECH | “Defense of East Sea for Coast & Coastline” in Korea
4 Years Experienced (120-Guard soldiers take off by one Robot PTZ system: 40x3times=120)

“Builtin special software program for intruder moving
image detection/tracking & recording/alarm each
preset zones by motion image analyzer automatically”
- 20 Preset zone x3 Group (Total 60 Preset Zones)

- Operation by 8-Army group for “Defense of East Sea”




YOUTECH

di-Years Experienced

IntelliVIX-FarSight U/l

(Intelligent Robot PTZ Camera System)

» 360° Endless high speed heavy duty Pan/Tilt driver with Day-20km, 15km,6km, 3km, 2km

® Motorized Zoom true color/Night-10M~10KM(30,000Ft) image pick-up by 56-strong
“IR"luminator with collimator & Laser *IR” illuminator at night (IPE6, 20kg) (Patent Pending)

® Integrated with advanced video analytics algorithm (Patent Pending)

® Intelligent use of PTZ Cameras: Preset Touring, Auto PTZ Tracking (Patent Pending)

Robot camera move to intruder detecting area with recording/alarm to use Defense of
Borderline, Coast & Coastline, airport, DAM, Weapon area, Qil pumping area, Military
zone with intruders detecting sensor (N.C or N.O)

® Built-in 1/2° sony EX-View or 1/2” EM-CCD
extreme sensitivizzty color camera with DM filter
& Sens-up to take 0.00001 or 0_.000005 lux ultra
sensitivity at night

PVX-180T-50DN

® 1/3" Sony Ex-View Color CCD, Motorized
Day & Night Changing Filter, 4-Day-Night Camera
with IR illuminator
® 1/4" Sony Super-HAD CCD Auto Zoom Camera,
1.0 Lux{Day). 0.00 Lux{Night) by 49-Hybrid IR
Modules of Panorama Cameras,
F 1.6 3.5~21mm(26x), AutoDayNight{IR Cut Filter)
©® Human detecting distance: S0m(165 Ft)(Day/Night)

® Built-in Menu display & adjust of privacy mask,
WDR, motion detector, flickerless, sens-up, to
take 0.00001 lux ultra sensitivity at night
(0.000005 lux by 4000WAMTFH Model)

#® |tis long range a Robot PTZ Camera system

1) Super long range VS Robot system; Day-20km true colorMight-10km human detection
= YFZ-5000WS-4000WAMTFH-1010002020000 (+) Y1O-200-1P (+) {+) 2-YIL-5000FH-2855
[#) Z-YLI4EM (+) MOT-5000WWS / Intellivix—FarSight | software

2} Long Range V5 Robot system; Day-13km true color/Might-8km human detection
» YPZ-5000WS-4000WAMTFH- 127507251500 {+) Y10-200-IP {+) 2-¥IL-50D0FH-ZE55 (+) 2-YLI-4KM (+)
MOT- S000WS / Intellivix — FarSight | software

3} Medium range IV5S Robot system to use defense of borderline, military zone, ete; Day-3km true colornight

3km human detection

= YFZ-5000WS-3000WAMTFH- 10330 {+) YI0-200-IF (+) 2-¥IL-5000FH-283535 (+) YLI-4KM (+) MDT-
S0D0WS [ Intellivix — FarSight | software

® We have 2 special software program to make IVS, Robot PTZ camera system

1} IntelliVIX-FarSight |: Softeare program to use one Robot PTZ
Carnera System

= More than 20-Intruders motion detectionTrackingRecording
[Alarm each preset zones by intruder motion video analyzing
within one sec. each presset zones or stop of 360deg. PT
diriver positions.

» MAX, 20-Preset zones day time stll image display on the
bottom of the monitor screen after fived preset zones &
If Robot PTZ move to any preset zone, A matching mage

IntelliVIX-FarSight Ill

(Intelligent Panoramic Video Surveillance System)

PVX-180T-50/100DN mmnimize a blind spot of a camera to observe the surrounding wide area by one shot acquired with
180’ video pictures. IntelliVIX-FarSight lll makes a seamless live panorama video pictures from the video pictures of
PVX-180T-50/100DN/1000DN and obtains enlarged pictures of the objects tracking with close-up image to identfications of the
face, bcense plate manually/automatically by an integrated PTZ camera that auto-sense the motions of people or cars, ete.

# PVX-1807-10000N: Human detecting distance 1km{2,000f) (Day-Night)

Auto PTZ Tracking »

B e

P S ETITET A

YOUTECH

40-Years Expenenced

PVX-180T-1000N

® 1/3” Sony Ex-View Color CCD, Motorized
Day & Night Changing Filter, 4-Day-Night Camera
with IR illuminator{+)3-Strong IR illuminator
® 1/4” Sony Super-HAD CCD Auto Zoom Camera,
1.0 Lux(Day), 0.00 Lux{Night) by 48-Hybnd IR
Modules of Panorama Cameras,
F 1.6 3.5~81mm(26x), Auto/Day/Night(IR Cut Fiter)
©® Human detecting distance: 100m({328 Ft){Day/Night)

P YL el
180" Panorama video motions
detection & Tracking

* 4Ch/1Ch Video Server
« Power Supply
« Cooling Fan & Heater

= Image Stitching
* Motion Cetection Tracking
* Auto PTZ Tracking

* Event Dataction

pop-up by RED color marking around still image to easy
check of all intruders at Day time or MNight time

IVE. Imeligent Video Burvcillance




illisis

IntelliVIX: Powerful Video Analytics Solution

An Introduction to

IntelliVIN-SDK

for Windows

illisis Inc.
(www.illisis.com)

2007-03-26 08:51:21

1
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LYYN

@LYVYN Want to see
we give you a clearer vision What We See?

LYYN Realime Video Enhancement

Live lyynified camera
Applications
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LYW & an RED company working with image
entancement for improving visbiy in differert
ndustnies. Behind the company’s technology fies
many years of research n e human vison system
nd image technologies. YN offers producs
and sohtions besed on 2 techncd plaform,
VET, Vebdey Erhancement Technobgy. The
works with digeal =4l images and video
common color cameras, i read ime, but
s in post processng of stored matenal VET.
improves veibility @ for nstance fog, hare, snow,
ran, drd, doriovess, etc. as wel as in sub sea
and medical applications. For examples please
vest www.yyn com.

@ LYYN

LYYN T38" LAY

FOR ANALOG VI

A sty moming on the road
not 50 misty anymore

\

The mirky waters of the Balfc Sea am sud-
deny more agrseable

Easy 1o use and connect

ac: |
Fnd the New Yorkers in e blemard.

yideo formats

£0 camera, elc

—.o¢ some soldiers in 2 sand storm is kg

condific

I large and in small, even 2= szl &
croscape, what ever your seed &, LYYN
prowides 2 better view

CONTACT INFCRMATION

LYYN AB

lgeon Sclence Park
SE-223 70 Lund, Sweden
Phone: +46 46 286 57 90

Infoiyyn.com
Www.lyyn.com
(C) LYYN AR
PROOUCT F LYYN T28™
PRODUCT BRIEF LYYN T38™ LYYNAB

LYYN AB



faceAPI

» http://www.seeingmachines.com/product/faceapi/

Investors | Sitemap

& seeingmachines Home About Products Support NewsandEvents Contact

Overview
Licensing
Downloads
General FAQ
Specifications

faceAPI Videos

Technical Support FAQ

Contact Us
Track and understand faces like never before with
faceAPI from Seeing Machines — now available for
license.

faceAPI allows you to incorporate Seeing Machines world class
face tracking technology into your own product or application
faceAPI provides a suite of image-processing modules created
specifically for tracking and understanding faces and facial
features. These powerful tracking modules are combined into a
complete API toolkit that delivers a rich stream of information that
you can incorporate into your own products or services. Seeing
Machines faceAPI is the only comprehensive, integrated solution
for developing products that leverage real-time face tracking. All
image-processing for face tracking is handled internally, removing
the need for any computer vision experience

seeingmachines

wwm.seeingmachines.com

Version 3.2.6 September 2010 Now Available
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Total Immersion - D’Fusion Pro

» http://www.t-immersion.com/products/dfusion-
suite/dfusion-pro

153

TOTAL IMMERSION A 7 < B = @0

| PROJECTS GALLERY | AUGMENTED REALITY [:WNIWES TRYLIVE | PARTNERS r—

jome - Products » D'Fusion Suite » D'Fusion Pro

D’Fusion Pro

D'Fusion Pro is designed for the deployment of professional
Augmented Reality applications that requires specific
features such as HD video, multiple cameras, Infra-Red
cameras, specific sensors etc.

For instance, D'Fusion Pro takes profit of fast hardware
such powerful graphic cards, HD cameras, multi core CFUs
etc. D'Fusion Pro is used for on-stage events, industrial
maintenance, ete.

BENEFITS TECHNICAL INFORMATION

Make it a Memorable Augmented Reality Fvent for your Audience

Great Flexibility Motion Detection
C HD Ready
| L,
— L — )
( ] |
T

Simultanecus multi-target The depth camera capability (eg.
tracking is achievable and only Microsoft Kinect) gives

Ibg@dongseo.ac.kr

FAbout us FDevelopers ¥ English

Chat with us

We'd love to hear from you.

\

Download and links

& Video Tuterial
D'Fusion Vides Channal on
Youtube

Latest Features

Mobile : Physics Engine

.rj-‘ E

Mobile : Lecal Image Recognition
Database

P CoNTACTUS

4/8/2014



D’Fusion Pro - Markless Tracking

|54 Ibg@dongseo.ac.kr 4/8/2014
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http://realhub.co.kr/index.html

Monitoring System
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Scenarios

» ClearVision - Denoising
» Motion Deblurring

» SuperResolution

» PanoramicView

» Background Modeling

Displaying Unregistered Images

b

Displaying Current Image

Show Mext Show Prev [ Save LR ] [ Clzar Image ] [ Save HR

— SR Estimation Type: ———————  — Super Resolution Parameters:
() Cubic Spline + Deblur Resalution Factor: 5
PSF Kernel Size: 3
() Robust SR (I-D) r5F S :
(3) Fast Robust SR (I-E) Alpha: o7
Beta: 1
— Registration Type: Lambda; 004
(%) LK Translation & 2
fterations: 20
LK Affine
[ Load Mavie l [ Register Movie | Compute SR |

Ibg@dongseo.ac.kr
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Around View Monitor

EREERRETREEERE (DK )
EERLTRERL) N—

Cameras

N
Display
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Projective Transformations
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Projective 2D Geometry

4/8/2014
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Projective transformations

Definition:

A projectivity is an invertible mapping h from P2 to itself
such that three points x,,x,,x; lie on the same line if and
only if h(x,),h(x,),h(x;) do.

Theorem:

A mapping h:P2—P? is a projectivity if and only if there
exist a non-singular 3x3 matrix H such that for any point
in P2 reprented by a vector x it is true that h(x)=Hx

Definition: Projective transformation

Xll _hll hlZ hlS_ Xl

Xy | = h21 h22 h23 X,

or X=HX
8DOF

X5 _h31 h32 h33_ X;

projectivity=collineation=projective transformation=homography
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Mapping between planes

central projection may be expressed by x'=Hx
(application of theorem)
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Removing projective distortion

e i [N

L e

ak Al i il
iuﬂliii |

select four points in a plane with know coordinates
X' = X'y _ h11X+h12y+hlB y'= X', _ h21X+h22y+h23
X'3 h31X + h32y + h33 XI3 h31X + h32y + h33

X (h31X +hy,y + hes) =h,X+h,y+h;,
y (h31X +hg,y + h33) =h, X+h,,y +hy,
(2 constraints/point, 8DOF = 4 points needed)

(linear in hy)

» 163 lbg@dongseo.ac.kr 4/8/2014



