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Abstract

In the implementation of subdivision scheme, three of the most important issues are smoothness, size of support, and
approximation order. Our objective is to introduce an improved ternary 4-point approximating subdivision scheme derived
from cubic polynomial interpolation, which has smaller support and higher smoothness, comparing to binary 4-point and
6-point schemes, ternary 3-point and 4-point schemes (see Table 2). The method is easily generalized to ternary (2n + 2)-
point approximating subdivision schemes. We choose a ternary scheme because a way to get smaller support is to raise
arity. And we use polynomial reproduction to get higher approximation order easily.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

A subdivision scheme is useful for generating smooth curves or surfaces as the limits of sequences of suc-
cessive refinements.

An n-ary linear subdivision scheme consists of linear combinations of control points in R2 from level k to
generate level k + 1, i.e., for all k and i, there exist sets of real number (called subdivision masks)
ak ¼ fak

i ; i 2 Z; k ¼ 0; 1; . . .g with Z the set of all integers such that
0096-3

doi:10.

* Co
E-m
F kþ1
i ¼

X
j2Z

ak
i�njF

k
j :
In the relation, the quantity nðP 2Þ is termed the arity of the scheme. The constant indicates the number of
new points at level k + 1 inserted between two consecutive points from level k. In the case when n = 2 and 3,
the subdivision schemes are called binary and ternary, respectively. For more details on general n-ary schemes,
we may refer to the thesis of Aspert [1]. Let rðakÞ ¼ fi 2 Zjak

i 6¼ 0g be the support of the mask ak. When
rðakÞ � K for some compact set K, the subdivision scheme is said to have a finite support. If the mask ak does
not depend on k, i.e., ak ¼ a, the scheme is called stationary. Otherwise, it is called non-stationary. Similarly, if
the mask is independent of i, the scheme is termed uniform.
003/$ - see front matter � 2007 Elsevier Inc. All rights reserved.
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Starting with given control points F 0 ¼ fF 0
i ¼ ði; f 0

i Þ 2 R2 : i 2 Zg, the stationary ternary subdivision
scheme is a process which recursively defines a sequence of control points F kþ1 ¼ fF kþ1

i ¼ ðxkþ1
i ; f kþ1

i Þ 2
R2 : i 2 Zg by a finite linear combination of control points F k with mask a ¼ fai 2 R : i 2 Zg;
Table
Mask

i

ai
F kþ1
i ¼

X
j2Z

ai�3jF k
j ; k ¼ 0; 1; 2; . . . :
which is formally denoted by F kþ1 ¼ SF k ¼ SkF 0. A point of F kþ1 is defined by a finite linear combination of
points in Fk with three different rules. If a subdivision scheme retains the point of level k as a subset of point of
level k + 1, it is called an interpolating scheme. Otherwise, it is termed approximating.

A ternary subdivision scheme is said to be uniformly convergent if for every initial data F 0 ¼ fF 0
i ¼

ði; f 0
i Þ 2 R2 : i 2 Zg, there is a continuous function f 2 CðRÞ such that
lim
k!1

sup
i2Z
jf k

i � f ðxk
i Þj ¼ 0;
and such that f 6� 0 for some initial data. We denote the function f by S1F 0 or S1f 0 for the sequence
f 0 ¼ ff 0

i gi2Z, and call it a limit function of the subdivision scheme S. For the initial data f 0 ¼ ff 0
i : f 0

i ¼
di;0; i 2 Zg, the limit function, denoted by /, is called the basic limit function. The scheme is said to be Cp

if the basic limit function / is Cp.
Three of the most important issues in the implementation of subdivision scheme are smoothness, size of

support, and approximation order. The support size of a scheme influences the locality, and the approxima-
tion order is related to how closely the original function is reconstructed if an initial data is sampled from an
underlying function. The approximation order is measured by the polynomial reproducing property and the
smoothness of a subdivision scheme. It is well-known that a higher approximation order does not guarantee a
higher regularity. For mathematical theory, approximation order is a more important property than the sup-
port size. But for Computer Aided Geometric Design (CAGD), the latter is the more important concept.
However, the creation of highly smooth curves or surfaces via a subdivision scheme and the shortness of
the support size of its mask are two mutually conflicting requirements. That is, the increase of the smoothness
of a subdivision scheme results in that of the support size, which leads to an increase in computational effort.
Our objective is to find an improved scheme derived from cubic polynomial interpolation, which has smaller
support and a higher smoothness, comparing to binary 4-point and 6-point, ternary 3-point and 4-point
schemes (see Table 2). The three subdivision rules of the proposed ternary 4-point approximating subdivision
scheme are given by
F kþ1
3i ¼ �

55

1296
F k

i�1 þ
385

432
F k

i þ
77

432
F k

iþ1 �
35

1296
F k

iþ2;

F kþ1
3iþ1 ¼ �

1

16
F k

i�1 þ
9

16
F k

i þ
9

16
F k

iþ1 �
1

16
F k

iþ2;

F kþ1
3iþ2 ¼ �

35

1296
F k

i�1 þ
77

432
F k

i þ
385

432
F k

iþ1 �
55

1296
F k

iþ2:
This ternary 4-point scheme generates C2 curve and its approximation order is 4. And the support of the basic
limit function is � 11

4
; 11

4

� �
. The mask comes from the derive of cubic polynomial interpolation property: First,

interpolating the initial data ðiþ j; f 0
iþjÞ; j ¼ �1; 0; 1; 2, by a cubic polynomial and then evaluating it at

iþ 2jþ1
6
; j ¼ 0; 1; 2; for the values f 1

3iþj; j ¼ 0; 1; 2. We choose a ternary scheme because a way to get a smaller
support is to raise arity. And we use polynomial reproduction property to get higher approximation order.
The method is easily generalized to ternary ð2nþ 2Þ-point approximation subdivision schemes, using
Lagrange interpolation polynomials.
1
of the proposed ternary 4-point approximating scheme

� � � �6 � 5 � 4 � 3 �2 �1 0 1 2 3 4 5 � � �
0 � 35

1296 � 1
16 � 55

1296
77

432
9

16
385
432

385
432

9
16

77
432 � 55

1296 � 1
16 � 35

1296 0



Table 2
Comparison of the proposed scheme to binary 4-point and 6-point, and ternary 3-point and 4-point schemes

Scheme Type Approximation order Support (size) Cn

Binary 4-point Interpolating 4 6 1
Binary 6-point Interpolating 6 10 2
Binary 4-point Approximating 4 7 2
Ternary 3-point Interpolating 2 4 1
Ternary 4-point Interpolating 3 5 2
Our scheme Approximating 4 5.5 2
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2. Construction of scheme

Our primary concern in the work is to construct a uniform subdivision scheme with higher approximation
order and smaller support. To this end, first, we choose a ternary scheme instead of a binary scheme in order
to construct a scheme with smaller support size. Secondly, the approximation order can be guaranteed by the
polynomial reproducing property (see Theorem 4.2 below). To obtain a uniform subdivision scheme, we derive
the mask of this scheme by evaluation at 1/6,1/2 and 5/6 on local cubic interpolation.

In our argument, the Lagrange polynomials play a crucial role. Let fLiðxÞg2
i¼�1 be the fundamental

Lagrange polynomials to the node points {�1,0,1,2} given by
L�1ðxÞ ¼ �
xðx� 1Þðx� 2Þ

6
; L0ðxÞ ¼

ðxþ 1Þðx� 1Þðx� 2Þ
2

and
L1ðxÞ ¼ �
xðxþ 1Þðx� 2Þ

2
; L2ðxÞ ¼

xðxþ 1Þðx� 1Þ
6

:

The Lagrange polynomials reproduce any cubic polynomial p3 in the way that
p3ðxÞ ¼
X2

a¼�1

p3ðaÞLaðxÞ: ð1Þ
Now we construct the desired ternary 4-point (approximating) subdivision scheme. We sample the data
ðj; fjÞ; j ¼ i� 1; i; iþ 1; iþ 2 from an arbitrarily given cubic polynomial p3;
p3ðjÞ ¼ fj; j ¼ i� 1; i; iþ 1; iþ 2;
and request
f 1
3i ¼ p3 iþ 1

6

� �
; f 1

1þ3i ¼ p3 iþ 1

2

� �
; f 1

2þ3i ¼ p3 iþ 5

6

� �
:

Since our scheme is stationary, uniform and the space of polynomials up to a fixed degree are shift invariant, it
is sufficient to consider the case k ¼ 0 and i ¼ 0, that is, the cubic polynomial such that p3ðjÞ ¼ fj for
j ¼ �1; 0; 1; 2. Using the Lagrange interpolation property, we have
p3ð1=6Þ ¼ L�1ð1=6Þf�1 þ L0ð1=6Þf0 þ L1ð1=6Þf1 þ L2ð1=6Þf2;

p3ð1=2Þ ¼ L�1ð1=2Þf�1 þ L0ð1=2Þf0 þ L1ð1=2Þf1 þ L2ð1=2Þf2;

p3ð5=6Þ ¼ L�1ð5=6Þf�1 þ L0ð5=6Þf0 þ L1ð5=6Þf1 þ L2ð5=6Þf2:
For the initial values x0
i ¼ i; i 2 Z; we can see that the values xkþ1

3iþj given by
xkþ1
3iþj :¼ 1

4
1� 1

3kþ1

� �
þ 3iþ j

3kþ1
; j ¼ 0; 1; 2; ð2Þ
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are obtained recursively from the subdivision rule,
X2

a¼�1

La
1þ 2j

6

� �
1

4
1� 1

3k

� �
þ aþ i

3k

� �
¼ 1

4
1� 1

3kþ1

� �
þ 3iþ j

3kþ1
¼ xkþ1

3iþj:
Now, as an affine combination of 4 points f k
i�1; f

k
i ; f

k
iþ1; f

k
iþ2, we suppose the (k + 1)st level points f kþ1

3iþj to be
attached to the values xkþ1

3iþj instead of being attached to the points 3iþj
3kþ1 :

Using the Lagrange polynomials, we propose a ternary 4-point approximating subdivision scheme as
f kþ1
3iþj ¼

X2

a¼�1

La
1þ 2j

6

� �
f k

iþa; j ¼ 0; 1; 2: ð3Þ
Here, we present the desired ternary 4-point approximating subdivision scheme:
f kþ1
3i ¼ � 55

1296
f k

i�1 þ
385

432
f k

i þ
77

432
f k

iþ1 �
35

1296
f k

iþ2;

f kþ1
3iþ1 ¼ �

1

16
f k

i�1 þ
9

16
f k

i þ
9

16
f k

iþ1 �
1

16
f k

iþ2;

f kþ1
3iþ2 ¼ �

35

1296
f k

i�1 þ
77

432
f k

i þ
385

432
f k

iþ1 �
55

1296
f k

iþ2:
To obtain the scheme, we borrowed the idea of the derive of the corner-cutting subdivision scheme. And as
preparing this work, we became aware that using the similar idea, Dyn et al. [4] obtained the binary 4-point
scheme reproducing all the cubic polynomials.

Now, we need to check if the proposed scheme reproduces all the cubic polynomials, indeed.

Lemma 2.1. The subdivision scheme reproduces all the cubic polynomials.

Proof. Let p3 be a polynomials of degree 63. Assume that the data f k
‘ are sampled from p3ðxk

‘Þ for the given
values xk

‘ as in (2). Using the Lagrange interpolation property (1), we obtain
f kþ1
3iþj ¼

X2

a¼�1

La
1þ 2j

6

� �
f k

iþa ¼
X2

a¼�1

La
1þ 2j

6

� �
p3

1

4
1� 1

3k

� �
þ iþ a

3k

� �

¼ p3

1

4
1� 1

3k

� �
þ i

3k þ
1

3k

1þ 2j
6

� �
¼ p3ðxkþ1

3iþjÞ;
which shows the lemma. h

With the same way, we can obtain the mask of a ternary ð2nþ 2Þ-point approximation schemes by local inter-
polating polynomial p2nþ1 using Lagrange interpolation polynomials fLkðxÞgnþ1

k¼�n defined by
LkðxÞ ¼
Ynþ1

j 6¼k;j¼�n

x� j
k � j

; k ¼ �n; . . . ; nþ 1; ð4Þ
for which
LkðjÞ ¼ dk;j; k; j ¼ �n; . . . ; nþ 1; ð5Þ

and
Xnþ1

k¼�n

pðkÞLkðxÞ ¼ pðxÞ; p 2 P 2nþ1: ð6Þ
Here, P 2nþ1 denotes the space of all polynomials of degree 6 2nþ 1 for a nonnegative integer n.
We can generalize the problem of finding a mask a ¼ faig reproducing polynomials of degree 62n + 1, that

is, we can find a ð2nþ 2Þ-point ternary scheme reproducing all polynomials p of degree 62n + 1 by solving the
linear equations,
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X
k

a3kpðkÞ ¼ p
1

6

� �
; k 2 Z;

X
k

a1þ3kpðkÞ ¼ p
1

2

� �
; k 2 Z;

X
k

a2þ3kpðkÞ ¼ p
5

6

� �
; k 2 Z:
3. Analysis of the subdivision scheme

In this section, we analyze the smoothness of the proposed 4-point scheme S with the mask a given in Table
1. As mentioned in the introduction, our refinement rule is defined for an initial data f 0 ¼ ff 0

i : i 2 Zg by
xk
i

f k
i

 !
¼
X
j2Z

ai�3j

xk�1
j

f k�1
j

 !
; i 2 Z ðx0

i ¼ iÞ ð7Þ
and the control points f k
i are attached to the parameter values xk

i ((a) of Fig. 1), not to the values i
3k, as an usual

rule ((a) of Fig. 1).
In general schemes, unlike our scheme, the control points f k

i ¼ ðSkf 0Þi are attached to the parameter values
i

3k. And the analysis of convergence and smoothness for a subdivision scheme has been developed in this set-
ting. However, the following theorem shows that the convergence of any of the rules induces that of the other.

Theorem 3.1. Let S be the proposed ternary 4-point subdivision scheme with the mask a ¼ fai : i 2 Zg given in

Table 1. For each k P 0, let fðSkdÞi : i 2 Zg be the kth level points given by
ðSkdÞi ¼
X
j2Z

ai�3jðSk�1dÞj
for the initial control points d ¼ fdi;0 : i 2 Zg and let fxk
i : i 2 Zg be the parameter values given by
xk
i ¼

X
j2Z

ai�3jxk�1
j ¼ 1

4
1� 1

3k

� �
þ i

3k ; i 2 Z ðx0
i ¼ iÞ:
Fig. 1. (a) and (b) indicate the stencils of our scheme and a general ternary scheme.
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Then the two statements are equivalent:

(i) There is a continuous function / on R such that
lim
k!1

sup
i2Z
jðSkdÞi � /ðxk

i Þj ¼ 0; ð8Þ
(ii) There is a continuous function w on R such that
lim
k!1

sup
i2Z
ðSkdÞi � w

i

3k

� �����
���� ¼ 0:
In this case, w ¼ / � þ 1
4

	 

and / has a compact support set.

Proof. The equivalence is straightforward and we show only the implement of (i) to (ii). We assume that the
subdivision scheme S converges uniformly. Then there is a continuous function / satisfying (8). From Theo-
rem 4.3 in Section 4, / has a compact support. Let w ¼ / � þ 1

4

	 

. Then for an arbitrarily given � > 0, the

assumption implies the existence of an integer N � > 0 such that for any k P N �,
sup
i2Z
ðSkdÞi � w

i

3k �
1

4 � 3k

� �����
���� 6 �:
On the other hand, we can see that w is uniformly continuous on R for w has a compact support. Thus, there is
an integer Nw > 0 such that for any k P Nw;
sup
x2R

wðxÞ � w x� 1

4 � 3k

� �����
���� 6 �:
Combining these two estimates, we have that for any k P N :¼ maxðN �;NwÞ;
sup
i2Z
ðSkdÞi � w

i

3k

� �����
���� 6 2�;
which shows the statement (ii). The rest argument follows directly from the uniqueness of the limit of a con-
vergent sequence. h

Due to Theorem 3.1, we may use well-known sufficient conditions to analyze the convergence and smooth-
ness of our scheme. For each scheme S with a mask a, we define the Laurent polynomial as the symbol of a
mask a
aðzÞ :¼
X
i2Z

aizi:
From the refinement rule of S (3 refinement rules),
f kþ1
i ¼

X
j2Z

ai�3jf k
j ; i 2 Z;
we may regard S as a operator of ‘1ðZÞ into itself and we have an estimate
kf kþ1
i k1 6

X
j

jai�3jj
 !

max
j
kf k

j k:
Then we can calculate the norm of S:
kSk1 ¼ max
X

j

ja3jj;
X

j

ja1þ3jj;
X

j

ja2þ3jj
( )

:

We define the generating functions of control points f k as
F kðzÞ ¼
X

i

f k
i zi:
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Since the coefficient of zi in F kþ1ðzÞ is f kþ1
i and the coefficient of zi in aðzÞF kðz3Þ is

P
jai�3jf k

j , we have
F kþ1ðzÞ ¼ aðzÞF kðz3Þ:
Let a½L�ðzÞ ¼
QL�1

j¼0 aðz3jÞ ¼
P

ia
½L�
i zi. From the relation F kþLðzÞ ¼ a½L�ðzÞF kðz3LÞ, we have the 3L refinement rules

and the norm of SL:
F kþL
i ¼

X
j

a½L�
i�3Lj

F k
j ;
and the norm of SL is given by
kSLk1 ¼ max
X

j

ja½L�
i�3Lj
j; i ¼ 0; 1; . . . ; 3L � 1

( )
:

From Theorem 3.1, we have the following theorems which play essential roles to analyze the convergence
and smoothness of a subdivision scheme.

Theorem 3.2. Let S be a convergent ternary subdivision scheme, with a mask a. Then
X
j

a3j ¼
X

j

a3jþ1 ¼
X

j

a3jþ2 ¼ 1: ð9Þ
Proof. Combining Theorem 1 in [7] and Theorem 3.1, we have the theorem. h

Applying the polynomial reproduction property (1) to the subdivision rule (3), the mask of the proposed
scheme satisfies the condition (9). The symbol of a convergent ternary subdivision scheme satisfies,
aðe2ip=3Þ ¼ aðe4ip=3Þ ¼ 0 and að1Þ ¼ 3;
and there exists the Laurent polynomial a1ðzÞ such that
a1ðzÞ ¼
3z2

ð1þ zþ z2Þ aðzÞ:
Then the subdivision S1 with symbol a1ðzÞ is related to S with symbol a(z) by the following theorem.

Theorem 3.3 [6]. Let S denote a ternary subdivision scheme with symbol a(z) satisfying (9). Then there exists a
subdivision scheme S1 with the property
df k ¼ S1df k�1;
where f k ¼ Skf 0 ¼ ff k
i : i 2 Zg and df k ¼ fðdf kÞi ¼ 3kðf k

iþ1 � f k
i Þ : i 2 Zg.

Using the subdivision scheme S1, we can check the convergence of S as follows:

Theorem 3.4. S is a uniformly convergent ternary subdivision scheme if and only if 1
3 S1 converges uniformly to the

zero function for all initial data f 0.
lim
k!1

1

3
S1

� �k

f 0 ¼ 0: ð10Þ
Proof. It follows from Theorem 4.2 in [6] and Theorem 3.1. h

A scheme S1 satisfying (10) for all initial data f 0 is termed contractive. Theorem 3.4 indicates that checking
of the convergence of S is equivalent to checking whether S1 is contractive, which is equivalent to checking

whether 1
3
S1

	 
L
��� ���

1
< 1, for some integer L > 0. After the convergence of S is determined, we need to check

the smoothness of the limit functions generated by S. An condition of Cm continuity is expressed in the fol-
lowing theorem.
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Theorem 3.5. Let us consider a scheme S with Laurent polynomial aðzÞ. If there exists a polynomial bðzÞ such

that
aðzÞ ¼ 1þ zþ z2

3z2

� �m

bðzÞ;
and such that the associated scheme 1
3
Sb is contractive, then the limit function is Cm for any initial data.

Proof. It follows from Theorem 4.4 in [6] and Theorem 3.1. h

Now, we are ready to analyze the smoothness of the proposed scheme. For the given ternary mask:
a ¼ 1

1296
½�35;�81;�55; 231; 729; 1155; 1155; 729; 231;�55;�81;�35�;
we have the mask of scheme S1:
a1 ¼
3

1296
½�35;�46; 26; 251; 452; 452; 251; 26;�46;�35�;
where a1ðzÞ ¼ 3z2aðzÞ
1þzþz2. It is easy to verify that aðzÞ and a1ðzÞ satisfy the necessary condition (9) for the conver-

gence S and S1. Since
1

3
S1

����
����
1
¼ max

524

1296
;

572

1296

� 

< 1;
this scheme converges uniformly. We have the mask of S2
a2 ¼
9

1296
½�35;�11; 72; 190; 190; 72;�11;�35�;
and
1

3
S2

����
����
1
¼ max

708

1296
;

432

1296

� 

< 1:
Hence this scheme has C1ðRÞ. We can verify that a2ðzÞ satisfies the necessary condition for C2ðRÞ. And the
mask of S3 is
a3 ¼
27

1296
½�35; 24; 83; 83; 24;�35�;
and we get
1

3
S3

����
����
1
¼ max

1062

1296
;

432

1296

� 

< 1:
Hence this scheme is C2ðRÞ. The mask of S4 is
a4 ¼
81

1296
½�35; 59; 59;�35�;
and we have
1

3
S4

����
����
1
¼ max

1890

1296
;
1593

1296

� 

> 1:
Actually, there exists no integer L > 0 such that
1

3
S4

� �L
�����

�����
1

< 1;
therefore this scheme can not generate C3ðRÞ functions.
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4. Approximation order and support

While the regularity of the limit function for the subdivision scheme is important, another an important
issue of subdivision scheme is how to attain the original function as close as possible if a given initial data
f0 is sampled from an underlying function.

Definition 4.1. Let us consider the initial grid X 0 ¼ hZ and initial data f 0
i ¼ gðihÞ sampled a enough smooth

function g. Let us denote by f1 the limit function obtained through subdivision. The subdivision scheme has
approximation order p if
jðg � f1ÞðxÞj 6 Chp; x 2 R;
where C is a real constant and independent of h.

As seen in Theorem 4.3 below, the approximation order of a subdivision scheme can be obtained from its
precision set.

Theorem 4.2 [3]. An convergent subdivision scheme that reproduces polynomial P n has an approximation order of
nþ 1.

From Lemma 2.1 and Theorem 4.2, the proposed scheme has approximation order 4.
Next, we consider the support of the proposed scheme. This is the support of the basic limit function

/ ¼ S1d generated by the given control point f 0
i ¼ di;0 as shown in Fig. 2.

Theorem 4.3. Let S be the proposed ternary 4-point subdivision scheme with a mask a given in Table 1. Then we

have
suppð/Þ ¼ suppðS1dÞ ¼ � 11

4
;
11

4

� �
:

Proof. Choose f 0 ¼ ff 0
a : f 0

a ¼ da;0; a 2 Zg, and let S1d ¼ /. From the subdivision rule
ðSkdÞi ¼
X
j2Z

ai�3jðSk�1dÞj;
we have that suppðSdÞ ¼ suppðaÞ ¼ ½�6; 5� and for each k ¼ 2; 3; . . . ;
suppðSkdÞ ¼ fi 2 Z : i� 3j 2 suppðaÞ; j 2 suppðSk�1dÞg ¼ fi 2 Z : i 2 suppðaÞ þ 3suppðSk�1dÞg:

Thus, suppðSkdÞ ¼ 3k�1

2
suppðaÞ. The values Skd are attached to the parameter values
1

4
1� 1

3k

� �
þ 1

3k suppðSkdÞ ¼ 1

4
1� 1

3k

� �
þ 1� 3�k

2
suppðSkdÞ:
Hence, the support of the limit function / is
suppð/Þ ¼ suppðS1dÞ ¼ � 11

4
;
11

4

� �
;

which completes the proof. h
0-3 -2 -1 321

1

Fig. 2. The basic limit function of the proposed scheme.
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The support of the proposed subdivision scheme is smaller than the support ½�3; 3� of the binary 4-point
DD subdivision scheme.

In Table 2, the mask of the classical binary 4-point [2] is given by
F

1

16
½�1; 0; 9; 16; 9; 0;�1�:
In his thesis, Weissman [8] generated the 6-point interpolating subdivision scheme of the form
f kþ1
2i ¼ f k

i ;

f kþ1
2iþ1 ¼

9

16
þ 2h

� �
ðf k

i þ f k
iþ1Þ �

1

16
þ 3h

� �
ðf k

i�1 þ f k
iþ2Þ þ hðf k

i�2 þ f k
iþ3Þ:
He proved that for 0 < h < 0:02, this scheme creates C2 limit functions. Dyn et al. [4] introduced the C2 binary
4-point approximating scheme whose mask is given by
1

128
½�5;�7; 35; 105; 105; 35;�7;�5�:
And the ternary 3-point [5] and 4-point [6] schemes are related to tension parameters a and l, respectively.
Here we choose the tension parameters to generate the highest smoothness (a ¼ � 1

15
and l ¼ 1

11
). In this case,

the masks of the ternary 3-point and 4-point schemes are given by
1

15
½�1; 0; 4; 12; 15; 12; 4; 0;�1�;
and
1

99
½�4;�7; 0; 34; 76; 99; 76; 34; 0;�7;�4�;
respectively.
We illustrate the proposed scheme by applying to the control points forming the cross polygon in Fig. 3. In

the figure, the curve interpolating the control points is generated by the 4-point DD scheme and the other is
created by the proposed subdivision scheme.
ig. 3. Comparison of the binary 4-point interpolating DD scheme and the proposed ternary 4-point approximating scheme.
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