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A NEW PROOF OF THE SMOOTHNESS OF 4-POINT
DESLAURIERS-DUBUC SCHEME

YOUCHUN TANG, KWAN PYO KO* AND BYUNG-GOOK LEE

Abstract. It is well-known that the smoothness of 4-point interpolatory
Deslauriers-Dubuc(DD) subdivision scheme is C1. N. Dyn[3] proved that
4-point interpolatory subdivision scheme is C1 by means of eigenanalysis.
In this paper we take advantage of Laurent polynomial method to get
the same result, and give new way of strict proof on Laurent polynomial
method.
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1. Introduction

The stationary binary subdivision scheme is a process which recursively de-
fines a sequence of control points P k = {pk

i : i ∈ Z} by a rule of the form with
a mask a = {ai : i ∈ Z}

pk+1
i =

∑

j∈Z

ai−2jp
k
j , k ∈ Z+,

which is denoted formally by P k+1 = SP k. A point of P k+1 is defined by a
finite linear combination of points in P k with two different rules.

Since each component of vector valued functions in R3 is a scalar function
generated by the same subdivision scheme, the analysis of a binary subdivision
scheme can be reduced to the scalar case to initial sets of control points. There-
fore, starting with given control points f0 = {fi : i ∈ Z}, we consider scalar sets
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of control points fk = {fk
i : i ∈ Z} generated by the relation

fk+1
i =

∑

j∈Z

ai−2jf
k
j , k ∈ Z+.

We denote the function f by S∞f0, and call it a limit function of S or a
function generated by S. Interpolatory subdivision scheme retains the point of
stage k as a subset of point of stage k + 1, that is a2i = δ0,i, i ∈ Z. Thus the
general form of an interpolatory subdivision scheme is

fk+1
2i = fk

i ,

fk+1
2i+1 =

∑

j∈Z

a1+2jf
k
i−j .

Such schemes were introduced and analyzed in [1], [2] and [4]. The 4-point
interpolatory subdivision scheme was introduced in [3] and is defined as follows:

fk+1
2i = fk

i ,

fk+1
2i+1 =

(1
2

+ w
)(

fk
i + fk

i+1

)
− w

(
fk

i−1 + fk
i+2

)
,

where {f0
i } is a set of initial control points. The parameter w serves as a tension

parameter in the sense that decreasing its value to zero is equivalent to tight-
ening the limit curve toward piecewise linear curve between the initial control
points. It is well-known that this N.Dyn 4-point scheme generates continuous
limit functions for |w| < 1

4 , and C1 limit functions for 0 < w < 1
8 . Deslau-

riers and Dubuc in [1] suggested an interpolatory binary subdivision scheme
using polynomial reproducing property. The idea behind Deslauriers and Dubuc
scheme(DD scheme) is that if the original control points fall on a polynomial
of degree 2n + 1, then the next level’s control points must also lie on the same
polynomial. With the special choice w = 1

16 , this 4-point DD scheme is exact
for cubic polynomial.

N. Dyn[7] stated we can construct N. Dyn 4-point and Weissman 6-point
schemes by taking a convex combination of the two DD schemes. And B. G. Lee,
et. al[5] introduced the mask of interpolatory symmetric subdivision schemes(4-
point and 6-point interpolatory schemes, ternary 4-point interpolatory scheme,
butterfly scheme and modified butterfly scheme) using symmetry and necessary
condition for smoothness. It is well-known that the smoothness of 4-point in-
terpolatory DD subdivision scheme is C1 but not C2. N. Dyn[3] proved that
4-point interpolatory subdivision scheme is C1 by means of eigenanalysis. In
this paper we take advantage of Laurent polynomial method to get the same
result.

2. Preliminaries
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A binary univariate subdivision scheme is defined in terms of a mask consisting
of a finite set of non-zero coefficients a = {ai : i ∈ Z}. The scheme is given by

fk+1
i =

∑

j∈Z

ai−2jf
k
j , i ∈ Z.

Interpolatory subdivision schemes retain the points of stage k as a subset of the
points of stage k + 1. Thus the general form of an interpolatory subdivision
scheme is

fk+1
2i = fk

i ,

fk+1
2i+1 =

∑

j∈Z

a1+2jf
k
i−j .

We can now state, in a formal definition, the notion of convergence of subdi-
vision scheme.

Definition 1. A subdivision scheme S is uniformly convergent if for any initial
data f0 = {f0

i : i ∈ Z}, there exist a continuous function f , such that for any
closed interval I ⊂ R, satisfies

lim
k→∞

sup
i∈2kI

∣∣∣fk
i − f

(
2−ki

)∣∣∣ = 0.

Obviously f = S∞f0. For each scheme S with mask a, we define the symbol

a(z) =
∑

i∈Z

aiz
i.

Since the schemes we consider have masks of finite support, the corresponding
symbols are Laurent polynomials, namely polynomials in positive and negative
powers of the variables.

Theorem 1 ([Dyn]). Let S be a convergent subdivision scheme with a mask a.
Then ∑

j∈Z

a2j =
∑

j∈Z

a2j+1 = 1. (1)

It follows from Theorem 1 that the symbol of a convergent subdivision scheme
satisfies

a(−1) = 0 and a(1) = 2.

This condition guarantees the existence of a related subdivision scheme for the
divided differences of the original control points and the existence of Laurent
polynomial

a1(z) =
2z

(1 + z)
a(z).

The subdivision S1 with symbol a1(z) is related to S with symbol a(z) by the
following theorem.
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Theorem 2 ([Dyn]). Let S denote a subdivision scheme with symbol a(z) sat-
isfying (1). Then there exist a subdivision scheme S1 with the property

dfk = S1df
k−1,

where fk = Skf0 and dfk =
{(

dfk
)

i
= 2k

(
fk

i+1 − fk
i

)
: i ∈ Z

}
.

We can now determine the convergence of S by analyzing the subdivision
scheme 1

2S1.

Theorem 3 ([Dyn]). S is a uniformly convergent subdivision scheme if and only
if 1

2S1 converges uniformly to the zero function for all initial data f0, that is

lim
k−>∞

(
1
2
S1

)k

f0 = 0. (2)

A scheme S1 satisfying (2) for all initial data f0 is termed ‘contractive’. By
Theorem 3, the check of the convergence of S is equivalent to checking whether
S1 is contractive, which is equivalent to checking whether ||( 1

2S1)L||∞ < 1, for
some L ∈ Z+.

Since there are two rules for computing the values at the next refinement
level, one with the even coefficients of the mask and one with odd coefficients of
the mask, we define the norm

‖S‖∞ = max
{ ∑

i

|a2i|,
∑

i

|a2i+1|
}

,

and ∥∥∥
(1

2
S

)L∥∥∥
∞

= max
{ ∑

β

∣∣∣aL
γ+2Lβ

∣∣∣ : γ = 0, 1, . . . , 2L − 1
}

,

where

aL(z) =
L−1∏

j=0

a
(
z2j

)
.

Theorem 4 ([Dyn]). Let a(z) = (1+z)m

2m b(z). If Sb is convergent, then S∞
a f0 ∈

Cm(R) for any initial data f0.

3. The smoothness of Deslauriers-Dubuc scheme
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The 4-point Deslauriers-Dubuc(DD) scheme is:

fk+1
2i = fk

i ,

fk+1
2i+1 =

9
16

(
fk

i + fk
i+1

)
− 1

16

(
fk

i−1 + fk
i+2

)
.

From the mask of this scheme, we get the Laurent polynomial a(z)

a(z) = − 1
16

z−3 +
9
16

z−1 + 1 +
9
16

z − 1
16

z3.

We can easily prove that the smoothness of this scheme is C1 by Laurent poly-
nomial method.

We set
b[m,L](z) =

1
2L

a[L]
m (z), m = 1, 2, . . . , L

where

am(z) =
2z

1 + z
am−1(z) =

(
2z

1 + z

)m

a(z),

and

a[L]
m (z) =

L−1∏

j=0

am(z2j

).

From the Laurent polynomial, we have

b[1,1](z) =
1
2
a1(z) =

z

1 + z
a(z) = − 1

16
z−2 +

1
16

z−1 +
1
2

+
1
2
z +

1
16

z2 − 1
16

z3.

And we measure the norm of subdivision 1
2S1.

∥∥∥1
2
S1

∥∥∥
∞

= max
{ ∑

β

∣∣∣b[1,1]
γ+2β

∣∣∣ : γ = 0, 1
}

= max{5/8, 5/8} =
5
8

< 1.

Therefore 1
2S1 is contractive, by Theorem 3, and so S is convergent.

To prove that this 4-point DD scheme is C1, from the Laurent polynomial we
have

b[2,1](z) =
1
2
a2(z) =

z

1 + z
a1(z) = −1

8
z−1 +

1
4

+
3
4
z +

1
4
z2 − 1

8
z3.

And we find the norm of subdivision 1
2S2.

∥∥∥1
2
S2

∥∥∥
∞

= max
{ ∑

β

∣∣∣b[2,1]
γ+2β

∣∣∣ : γ = 0, 1
}

= max{1/2, 1} = 1.

But for L = 2, we get

b[2,2](z) =
1
4
a
[2]
2 (z) =

(1
2
a2(z)

)(1
2
a2(z2)

)
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and

∥∥∥
(1

2
S2

)2∥∥∥
∞

= max
{ ∑

β

∣∣∣b[2,2]
γ+4β

∣∣∣ : γ = 0, 1, 2, 3
}

= max{5/16, 1/4, 5/16, 3/4}< 1.

Since subdivision scheme 1
2S2 is contractive, by Theorem 4, S1 is convergent and

S ∈ C1.
To prove that this 4-point DD scheme is not C2, we should show that there

exist L ∈ Z+ such that ‖( 1
2a3)L‖∞ < 1. From Laurent polynomial, we get

b[3,1](z)

b[3,1](z) =
1
2
a3(z) =

z

1 + z
a2(z) = −

1
4

+
3
4
z +

3
4
z2 −

1
4
z3.

We empirically calculate the norm of 1
2S3 for L = 1, 2, 3.

∥∥∥1
2
S3

∥∥∥
∞

= max{1, 1},
∥∥∥
(1

2
S3

)2∥∥∥
∞

= max
{ ∑

β

∣∣∣b[3,2]
γ+4β

∣∣∣ : γ = 0, 1, 2, 3
}

= max{5/8, 5/8, 1, 1},

∥∥∥
(1

2
S3

)3∥∥∥
∞

= max
{ ∑

β

∣∣∣b[3,3]
γ+8β

∣∣∣ : γ = 0, 1, . . . , 7
}

= max{5/8, 7/32, 7/16, 7/16, 7/32, 5/8, 1, 1}.

Here we have the following question: Can we find some L ∈ Z+ satisfying

∥∥∥
(1

2
S3

)L∥∥∥
∞

< 1.

In the following we will prove that there exist no L ∈ Z+ such that

∥∥∥
(1

2
S3

)L∥∥∥
∞

< 1.

This means that the smoothness of 4-point DD scheme is not C2.
If we denote Laurent polynomial b[3,1](z)

b[3,1](z) = −1
4

+
3
4
z +

3
4
z2 − 1

4
z3

= −α + βz + βz2 − αz3

= b
[3,1]
0 + b

[3,1]
1 z + b

[3,1]
2 z2 + b

[3,1]
3 z3,
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then we can get the following equations

b[3,2](z) = b[3,1](z)b[3,1](z2).

b[3,3](z) = b[3,1](z)b[3,1](z2)b[3,1](z4) = b[3,2](z)b[3,1](z4).
· · · · · · · · ·

b[3,L](z) = b[3,1](z)b[3,1](z2) · · · b[3,1](z2L−1
) = b[3,L−1](z)b[3,1](z2L−1)

= b
[3,L]
0 + · · · + b

[3,L]

3(2L−1)
z3(2L−1).

Lemma 1. For any L ∈ Z+, we have

B[3,L] :=
∑

β

∣∣∣b[3,L]

(2L−1)+2Lβ

∣∣∣ =
1∑

β=0

∣∣∣b[3,L]

(2L−1)+2Lβ

∣∣∣ =
∣∣∣b[3,L]

(2L−1)

∣∣∣ +
∣∣∣b[3,L]

2L+1−1

∣∣∣.

Namely, when β ≥ 2, we have b
[3,L]

(2L−1)+2Lβ
= 0.

Proof. The highest degree of Laurent polynomial b[3,L](z) is U := 3(2L−1) since

z3 × z3×2 × · · · × z3×(2L−1) = z3(2L−1).

And when β = 2, the degree is V := (2L − 1) + 2L2 = 3 · 2L − 1. So we get
U − V = −2 < 0. This means that the highest degree of b

[3,L]
(2L−1)+2Lβ is lower

than that of b
[3,L]
(2L−1)+2L2. Therefore for β ≥ 2, we have b

[3,L]
(2L−1)+2Lβ = 0. �

Comparing the coefficients of z2L−1 and z2L+1−1 in both hand sides, we obtain
the following lemma.

Lemma 2. For any L ∈ Z+, we have

b
[3,L]

(2L−1)
= b

[3,L−1]

(2L−1−1)
× β + b

[3,L−1]

(2L−1)
× (−α),

b
[3,L]

(2L+1−1)
= b

[3,L−1]

(2L−1−1)
× (−α) + b

[3,L−1]

(2L−1)
× β.

Corollary 1. For any L ∈ Z+, we have
∣∣∣b[3,L]

(2L−1)

∣∣∣ = b
[3,L−1]
(2L−1−1) × β +

∣∣∣b[3,L−1]
(2L−1)

∣∣∣ × α,
∣∣∣b[3,L]

(2L+1−1)

∣∣∣ = b
[3,L−1]

(2L−1−1)
× α +

∣∣∣b[3,L−1]

(2L−1)

∣∣∣ × β.
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Proof. For L = 1, we have

b
[3,1]
1 = β =

3
4

> 0,

b
[3,1]
3 = −α = −1

4
< 0.

And for L = 2, we have

b
[3,2]
3 = b

[3,1]
1 × β + b

[3,1]
3 × (−α) > 0,

b
[3,2]
7 = b

[3,1]
1 × (−α) + b

[3,1]
3 × β < 0.

We assume that for L − 1, it is true, that is

b
[3,L−1]

2L−1−1 = b
[3,L−2]

2L−2−1 × β + b
[3,L−2]

2L−1−1 × (−α) > 0,

b
[3,L−1]

2L−1
= b

[3,L−2]

2L−2−1
× (−α) + b

[3,L−2]

2L−1−1
× β < 0.

We can easily check the following inequality

b
[3,L]

2L−1
= b

[3,L−1]

2L−1−1
× β + b

[3,L−1]

2L−1
× (−α) > 0,

b
[3,L]

2L+1−1 = b
[3,L−1]

2L−1−1 × (−α) + b
[3,L−1]

2L−1 × β < 0.

So by mathematical induction, we prove
∣∣∣b[3,L]

2L−1

∣∣∣ = b
[3,L−1]

(2L−1−1)
× β +

∣∣∣b[3,L−1]

(2L−1)

∣∣∣ × α,
∣∣∣b[3,L]

2L+1−1

∣∣∣ = b
[3,L−1]

(2L−1−1)
× α +

∣∣∣b[3,L−1]

(2L−1)

∣∣∣ × β.

�

From Lemma 1 and Corollary 1, we have the following lemma.

Lemma 3. For any L ∈ Z+, we have

B[3,L] = B[3,L−1].

Proof. By Lemma 1 and Corollary 1 and the fact that α + β = 1, we get

B[3,L] =
∣∣∣b[3,L]

2L−1

∣∣∣ +
∣∣∣b[3,L]

2L+1−1

∣∣∣

=
(
b
[3,L−1]

2L−1−1
× β +

∣∣∣b[3,L−1]

2L−1

∣∣∣ × α
)

+
(
b
[3,L−1]

2L−1−1
× α +

∣∣∣b[3,L−1]

2L−1

∣∣∣ × β
)

= b
[3,L−1]

2L−1−1 +
∣∣∣b[3,L−1]

2L−1

∣∣∣ = B[3,L−1].

�
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Theorem 5. For any L ∈ Z+, we have
1∑

β=0

∣∣∣b[3,L]
(2L−1)+2Lβ

∣∣∣ = 1.

Proof. For L = 1, we have

B[3,1] =
∣∣∣b[3,1]

1 | + |b[3,1]
3

∣∣∣ = β + α = 1.

By Lemma 3, we get
1∑

β=0

∣∣∣b[3,L]

(2L−1)+2Lβ

∣∣∣ = B[3,L] = B[3,L−1] = · · · = B[3,1] = 1.

�

By theorem 5, S3 is not contractive and so S2 is not convergent and S is not
C2.
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