
Memories in C-Language

Handling Memory

• Hardware memory

– Volatile memory

• DRAM (dynamic RAM)

– SDRAM (synchronous DRAM)

• SRAM (static RAM)

DRAM SRAM
Slow FastSpeed
Low HighCost

Required -Refresh

Handling Memory

• One bit memory

Transistor

Capacitor

<DRAM CELL>
<SRAM CELL>

6 transistors are
used

Handling Memory

Handling Memory

• Hardware memory

– Non-volatile memory

• ROM

• PROM (Programmable ROM)

• EPROM (Erasable PROM)

• EEPROM (Electrical EPROM)

• Flash (Flash EEPROM)

– NAND flash

– NOR flash

• Optical (CD/DVD)

Handling Memory

• Memory in software

ROM area
(Flash)

RAM area
(SDRAM)

0 1 2 3 4 5 6 7 8 9 …

OS Stack HeapProgram
(EBC)

Handling Memory

• Memory in software

0 1 2 3 4 5 6 7 8 9 …

OS Stack HeapProgram
(EBC)

Users can use this area

Stack Heap
char, int, float, etc malloc(), etcHow to create

automatic UserWho allocates
automatic UserWho frees

Handling Memory

• Parameters for memory in software

– Starting position (Address, Pointer)

– Length

– Type

• Integer – unsigned or signed

• Real – double, float

Position (Address, Pointer)

Length

Handling Memory

Address = &my

Length = 4

main()
{

unsigned int my = 5;
}

Name = my

Handling Memory

• Memory Management

– Creation

– Initialize

– Read/Write

– Free

main()
{

unsigned int my = 5;
unsigned int you;

my = 20;
you = my;

}

Create a memory in stack area

Name=my, length=4, type=integer,
Address ?

Write “20” to the memory “my”

Read from “my” and write it to “you”

All memories in this block are free

Initialize “my” with “5”

Handling Memory

• How to create mass memories

main()
{

unsigned int y;
unsigned int x[4];

x[0] = 1;
x[3] = 2;

}

Address = x
Array name = Address = x

Length = 4*4 =16

Name ? X[0]

X[1] X[2] X[3]y

Create a memory in stack area,
and its size is limited.

All memories in this block are free

Handling Memory

• How to create mass memories in the stack

main()
{

unsigned short *p;
unsigned int x[4];

p = (short*)x;
p[2]=1;

}

X[1] X[2] X[3]p X[0]

p = x
Name ? p[0]

p[2] p[3] p[4] p[5]p[6] p[7]p[1]

The memory type
of left and right

should be same in
the operator “=“.

If not, you need the
cast operation.

Handling Memory

• How to create mass memories in the global

area

unsigned char buf[1024];
main()
{

unsigned short *p;

p = (short*)buf;
p[2]=1;

}

• Declare a global memory
� Allocate it when program starts
� De-allocate it when program ends

• Large memories can be allocated.

• buf[0] ~ buf[1023]
• p[0] ~ p[??]

Handling Memory

• How to create mass memories in the heap

main()
{

unsigned char *buf;
unsigned short *p;

buf = (unsigned char *)malloc(1024);
memset(buf, 0, 1024);

p = (short*)buf;
p[2]=1;
…

free(buf);
}

• Prepare a pointer (address variable)

• Allocate a memory in the heap

• De-allocate the memory in the heap

• Initialize the memory

Summary

• Key parameters for
memory Address

Length

• Handling memory

Prepare pointers (address)

Allocate

Initialize

Read/Write

De-allocate

