
Ubiquitous Computing and Android

Zohaib Sibte Hassan

National University of Computer & Emerging Sciences, Lahore, Pakistan

zohaib.hassan@nu.edu.pk

Abstract

This paper discusses the properties of ubiquitous

systems and brings to light the software

requirements for such systems. Our study has shown

that the primary principle behind all ubiquitous

applications is to provide the users with intelligent

learning systems that supplement their everyday

activities. This is the primary consideration on which

a ubiquitous application can be evaluated. This

paper also discusses various features of Android

operating system in the light of the ubiquitous system

requirements. It also highlights how Android fulfills

the subject requirements and considerations.

1. Introduction

Consider a world where desktop computers are

replaced by embedded computers in typical physical

objects, without interfering with the current

functionality of those objects. That is what Weiser’s

vision was, and he termed it ubiquitous computing.

The computers would be small enough to be

embedded within the object and will provide

enhancement to the functionality of object [3].

In this area, Xerox PARC was among the initial

workers. They constructed computer prototypes in

three different sizes .i.e. whiteboard, a pad of paper,

and a post-it note size. The primary focus in this case

was communication and context [1].

The goals for the PARC Tabs project were:

i. Design a mobile hardware device that

enables personal communication.

ii. Design an architecture that enables mobile

computing.

iii. Construct context sensitive application to

exploit this architecture.

iv. Test this system in a community of people.

In ubiquitous, initially, the focus was on the small

special-purpose devices, network protocols, etc.

However, later new directions were identified in this

context. The subsequent sections describe one of the

efforts currently being carried out by Google in order

to deliver a ubiquitous system on mobile phones. It is

called Android.

In the present time, mobile phones are becoming an

important tool with everyday utility, so much so that

for some people it is the only mode of

communication with other people. Mobile phones

have the property of being a digital device equipped

with reasonably good computing power. Such

equipment, therefore, can be selected to serve as

ubiquitous devices.

Following sections will discuss the specific

requirements for ubiquitous devices, particularly for

mobile phones. After that, the discussion on how

Android is fitting those requirements, by providing a

ubiquitous environment to programmers as well as

users, will be undertaken.

2. Requirements

The requirements of a ubiquitous system have been

classified in three categories: system, software,

business and organization. System refers to the

platform i.e. the hardware of the system, or the

system running the subject software on top of it. The

term software represents the services and the

components of system that have been derived from

the ubiquitous system. Business refers to the actors

who are providing the components and services for

the development of the system. Organization

includes development methods and the processes

needed for the development and integration of the

system services [2]. This paper will only focus on the

software requirements in the subsequent sections.

2.1. Interoperability

The ability of software to understand the information

that it exchanges with other software or devices, and

to provide something new based on the sent or

received information is called interoperability [2].

This will enable the physical objects to operate in an

intelligent and friendly manner.

In interoperability, there can be many hardware and

software related issues and, therefore, limitations.

e.g., what medium of communications are to be used

and how to resolve two different set of protocols

being used. The same problem can be mapped to

978-1-4244-2917-2/08/$25.00 ©2008 IEEE 166

various components when coming to software point

of view.

2.2. Heterogeneity

For ubiquitous computing, the system is introduced

to a wide range of devices belonging to different

backgrounds and having different system and

software configurations and requirements.

The diverse kinds of devices in the whole

environment have varying interaction set-up, screen

resolution, radio and memory capabilities, etc. Each

of the devices can have its own style of interaction

.e.g. via voice, touch screen, hand moment, buttons,

etc. Therefore, to cater to such a diverse

environment, a novel solution in the form of

embedded sensor is required.

2.3. Mobility

An important characteristic of ubiquitous computing

is mobility. However, the term mobility in its own

has two kinds: actual mobility, and virtual and

physical mobility. Since the devices are going to be

interconnected via network, hence, mobility is a very

important consideration.

Actual mobility is an extension to the capability of

an autonomous software agent that can dynamically

transfer itself to the node where the required

resources are located.

When agents are aware of the distributed nature of

the target, and explicitly locate and access the

internet resources in the environment, this allows

virtual mobility of agents across different execution

environments.

Physical mobility means the connection of mobile

and wireless computing devices to the internet from

dynamically changing access point.

2.4. Survivability and Security

Survivability is ability of a system to fulfill its

mission timely, and in the presence of attacks and

failures. It requires a self-healing or repairing kind of

infrastructure with qualities like security,

performance, reliability, etc.

Security in an application may be implemented by

various mechanisms. For example, login (but still be

fragile by failing when the server or network dies).

However, a surviving system must be able to survive

malicious attacks by providing enhanced security

mechanisms. [2] The survival can be of two types:

i. Survival by Protection [2]. In this type of

survival the system protects itself from

restricting the undesirable changes in the

environment that can cause harm to the

system.

ii. Survival by Adoption [2]. In this type of

survival the system configures itself in such

a way that adjusts with the respective

environment having varying situations.

2.5. Adaptability

Software services have to handle dynamically

emerging and evolving contexts and user preferences

over different kinds of networks and terminals. Due

to dynamically changing conditions, the adaptability

gets into the bigger picture. Therefore, in a

ubiquitous system it is also one of the main concerns.

The adaptability approaches are delineated

hereunder:

i. Laissez-Faire approach states that the

responsibility of adaptation is completely

left to the individual applications without

any system support. It is more difficult to

implement, as application size is large and it

may not be possible in some cases for

application to fit according to the system

needs. Thus, may be problematic. But still

being standalone, the application will

possess all the power within it [2].

ii. Application Transparent Approach says that

system should provide all the necessary

support libraries etc. for making an

application adaptable. This makes system

responsible to handle everything. This will

result in much smaller applications since the

shared components are present in system

[2].

iii. Application-aware: It is middle way

approach in which application as well as the

system contains the functionality [2].

2.6. Ability of Self-Organization

A system that has the ability of self organization will

be able to increase its organization in context of the

situation at hand. Such a system has the ability to

create its own organization. A ubiquitous system

should have the ability of self organization.

2.7. Augmented Reality and Scalable Content

In the present times, the study of augmented reality

with nouvelle perspective is paving its way. It is one

of the hottest issues in the context aware system;

which is the core of a ubiquitous system. Data

consistency and high availability of data is an

important part of a ubiquitous system.

167

3. Challenges for Ubiquity in Mobile

Phones

As already mentioned above, ubiquity can be applied

in mobile phones, since they are a tool of daily

usage.

This very characteristic enhances their importance.

We can look at the mobile phones as wearable

computers that one can carry around without hassle.

This enables free movement and hence, more utility.

There are various functionalities that a mobile phone

offers, which includes the provision of accessing the

internet, checking email, and downloading content

from various sources, without the limitation of

presence of a particular environment to perform all

these tasks.

One might consider that a Personal Computer (PC)

has the ability of performing all of the above tasks,

so why not carry a PC along? This is because the

actual problem exists in the way a human being has

to interact with a PC. In order to perform a particular

task on the computer the human being will have to

learn the language that the computer understands. On

the contrary, the actual goal should be to enable the

computer to understand what the user desires.

So the core purpose behind it is that we do not want

computing at all. We want information, and our

system to be context aware so that it can deliver the

information to us in timely manner automatically.

Putting it in simpler words, we want information to

be aware of itself, aware of the user’s situation and

deliver itself in a timely manner.

A simple example could be of a user x who uses the

Global Positioning System (GPS). He has the

information about another person y, and if y comes

across, x becomes aware of it with the help of the

GPS information he has. In this scenario, it is

extremely important that x is informed immediately

and accurately about the presence and location of y,

so that he can act accordingly. A ubiquitous mobile

device is expected to display such intelligence. There

are two other important properties that a ubiquitous

device should have, they are discussed below.

3.1. Implicit Interaction

Implicit interaction takes place when a system is

aware of the functionalities that a user is performing,

but it doesn’t, however, take decisions. The system

actually follows the movements and choices of the

user and presents the respective options. It is the

responsibility of the user to select one of the listed

options and then act accordingly.

This is an important and crucial part of a ubiquitous

device, because the choice of the user can change

dynamically and the system should act in a reactive

manner for presenting the options.

In this scenario, several improvements can be made.

A system can analyze the relative information that is

likely to be useful to the user in a particular situation,

and inform the user about that information. [1]

This will enable the user to make better choices for

future decisions.

3.2. Task Based Interaction

Task based interaction means that the system should

be aware of the environment that it is facing, and

should be able to update its status accordingly.

Normally a user has to specify what computing

requirements he desires, and use certain hardware

and software utilities accordingly. In such a situation,

the system is not aware of where it actually exists

and therefore, cannot update its status according to

the status of the user.

In a ubiquitous environment, it is extremely

cumbersome for a user to manually update the status

of a system with respect to the scenario it is facing.

[1] Therefore, an important feature for a ubiquitous

device to be able to revise its status according to

different situations.

4. Android as a Ubiquitous System

In the following sections, we will be analyzing

Android in the light of the ubiquitous computing

features and characteristics discussed above.

At this point, it is important to take a look at the

architecture of Android, as released officially by

Google.

Figure 1: Android Operating System Architecture

Keeping the above architecture in mind, the

following sections will analyze several features of

Android.

4.1. Core of Android

168

The core of Android operating system is built on top

of LINUX kernel, since the kernel has a proven

driver model as well as security model with a lot of

available drivers. So LINUX is serving as the

hardware abstraction system in Android [5].

4.2. Interoperability in Android

Android provides a unique and a very generic way to

support interoperability. From software point of

view, Android provides a content provider [6] that is

responsible of handling the published data. Each

application can use the content provider to publish its

data that it may want to share with other

applications. Other applications can then ask the

content provider to get this data. Thus, in component

integration portion, the content provider has lowered

the coupling of classes and application components.

A simple example for content provider can be a

phone book. As phone book numbers are required in

most of the applications, the phone book can publish

its contents by content provider making other

applications independent of exactly what version or

application is being used for phone book.

4.3. Heterogeneity in Android

Android operating system in itself, from middle-ware

and the software layers above it, provides a

heterogeneous interface to its users [5].

In middle-ware, libraries like OpenGL ES, SGL,

Surface Manager, and Free Type provide a cross-

platform layer that is only dependent on the LINUX

layer below it, and it provides the layers above it a

uniform interface.

For example, the Surface Manager that runs on top

of OpenGL ES and SGL makes the user independent

of what exactly are the VGA details of the device;

thus allowing the user to talk only in terms of the

surfaces. Similarly, the Free Type is meant for the

user to give support for various fonts in system.

Similarly, SQLITE which is an open-source and light

weight embedded SQL engine provides highly

optimized data storage support. Web Kit (as web

browser rendering engine), and LIBC provide the

upper layers a uniform interface regardless of what

particular hardware is working under these layers.

The most important component of the system

Android Runtime is just like Java Runtime; in fact, it

is an optimized version of java runtime for mobile

phones. The core of which lies in DALVIK virtual

machine, this component can run something called

DEX files. The DEX files are almost the same as

JAR file. So no matter on which hardware the DEX

file was compiled on, it can be executed on any

device as long as it has all the package or library

dependencies installed.

4.4. Mobility in Android

Since the operating system is designed for mobiles

hence, the physical mobility is present. From the

aspect of virtual or software mobility, since all the

applications are based on virtual machine, it means

that applications or agents can easily port themselves

on any machine or device with Android on it and

perform execution. Activity Manager is responsible

for saving the state of an activity or an application

state. Once this state has been saved by the system

[5], it can be streamed or sent to other devices where

it can be restored.

The important thing to be noticed is that DALVIK

VM lies in the core middle ware of Android. This

means that any application on upper layer won’t be

using the direct interfaces below. Which also means

that any software that is required to run on an

Android system; must be in DEX format. Hence, by

giving an independent executable format for services

or applications, the operating system in itself has

made sure that the execution is cross-platform. This

also implies that agent software can be designed to

transfer and execute itself on any Android system

where it has the required resources.

4.5. Survivability and Security in Android

Android has achieved the survivability by protection

mechanism in itself, since the architecture is based

on LINUX; which has over the time, proved itself to

be among the league of secure operating systems. So

at the bottom level SELINUX is taking care of

operating system level security. However, the

intercommunication security has been achieved by

building in the SSL component [5]. By using more

secure communication mechanisms the two devices

communicating via any device driver in kernel can

use the security mechanisms to ensure that there is

no intrusion in the system. By restricting invalid or

unknown intrusion from any entity the system has

made itself secure at operating system level and

communication level as well.

169

4.6. Adaptability in Android

The core architecture of Android has been designed

on the principle of re-usage of components. Hence

by replacing a component one can easily and

seamlessly provide adaptable behavior to user.

For example, picking a photo from the system for an

application like GMAIL mail client. In order to do

that, the application or the process must make a

request to system that it wants a picture as input from

user. From the list of the installed applications

Android selects the best available application to fill

up the request (according to the user’s preference),

so assumption can be taken that system album

viewer is available to full fill the request. Hence, its

execution is started and request is full filled. Now

take a scenario in which the mobile user does not

want the built in album application and replaces it

with some enhanced application for album

manipulation like PICASA. Now the next time when

the same request is made, Android will invoke

PICASA instead of systems default album viewer. So

according to user preference an application has

changed the way it works.

This approach of Android has made other

applications or components of the system less

cohesive to other applications. In addition to this

applications can carry their own specific components

along with them as well. Just like pluggable JAR

components the components for particular

applications can be provided. Hence, system is using

a hybrid approach to adaptability of application [5].

4.7. Self Organization and Augmented

Reality in Android

Android is already running some applications

demonstrating its ability to self organize and view

representation of augmented reality. For example of

Google Maps application, this application can

communicate with its neighboring devices in order to

get maps of a locality before trying to connect to

internet and download the maps.

Local communication can be achieved by XMPP

Service. With XMPP Service two or any number of

devices can communicate with each other; Thus

giving applications a very neat and clean

communication mechanism.

Sensor based applications have not appeared yet, but

the architecture seems to be more promising to in

compensate such features.

4.8. Implicit Interaction in Android

Android provides a very versatile method of implicit

interaction. Equipped with the LINUX kernel and

powerful device driver support it can use any device;

by simply installing its driver [5, 6]. Current

available example of implicit interaction is via GPS

and maps application. Since the user can observe the

change in his position on map when he is driving a

car or moving to someplace, the concept for implicit

interaction is present in Android.

4.9. Task Based Interaction in Android

Notification Manager and Activity Manager in

Android is responsible for providing user with task

based interaction; it not only maintains the state of an

activity, but also a common back stack to save the

order of activities. So if a user has just opened a

browser window from a mail application, Android

maintains the record of what applications were open

and in which order they were opened. This will give

the user a smooth transition in the story board and

give the same effect that work has been resumed

from where it was left.

 The notification manager is responsible for notifying

any external event to a running service or

application. So, it can take input from any of the

input device available in the system, and update the

asynchronously send notifications to multiple

services or applications.

5. Discussion

After the release of iphone which is based on the

information ubiquitous principle there are sudden

changes in trends to use mobiles just not as mobiles

but as devices that can provide you some information

in a more friendly and interactive manner.

Google has made a great effort by establishing Open

Handset Alliance (OHA) in which they are setting up

hardware standards for next generation cell phones.

In previous sections, the study of how the ubiquitous

features and challenges are being mapped on the

operating system architecture was undertaken.

Following is a brief summary table of the discussion.

Table 1: Feature-wise Analysis of Android

Feature Implementation In Android

Interoperability Content Provider handles it

Heterogeneity Core libraries and Android

Runtime handle it. It also

includes components like

window manager, view systems,

and telephony manager etc.

Mobility Activity Manager handles it

Survivability Survival by protection is

achieved by Linux at core and

SSL layer in middle-ware,

giving an excellent security

mechanism.

170

Adaptability Resource Manager and Package

Manager provide the system

with information to encourage

reusability of components.

Self-

Organization

Notification Manager, XMPP

Service and Location Manager

take up the responsibility to

make system self organized and

context aware.

Augmented

Reality and

Scalable content

OpenGL, Linux kernel and

proven driver model of Linux

makes it possible to implement

such applications

Implicit

Interaction

Location Manager, and Linux

driver model makes it possible

for system to interact implicitly

with user

Task-based

Interaction

Notification Manager, Activity

Manager makes task based

interaction possible.

With the above set of features of Android it is most

likely that architecture is going to be like benchmark

architecture for other upcoming technologies. Some

other frameworks like Qtopia and OpenMOKO also

appeared early in the market but they were not able

to catch as much attention as Android did. The basic

reason may be the flexibility of the design and the

usage of many powerful technologies. Each and

every component that can be seen in the middle ware

is a giant in its own, like OpenGL that’s running

industry wide and providing the ability to render 3D

graphics on phone, similarly Web Kit that has been

used as core of Safari a very well known browser,

SQLITE a proven embedded database technology

that is very light weight and powerful as well, Free

Type a library for fonts and bitmaps rendering, SSL

the standard on which today’s websites are relying

while any kind of secure transaction is being made,

and on top of it they have provided a virtual machine

that is almost same as that of java technology; in fact

totally java technology customized for mobiles.

These powerful bits and pieces have compiled

together to one big promising giant.

6. Conclusion

There are tradeoffs in information awareness of

computer; we definitely need to make some security

and privacy analysis. The “aware information” term

definitely makes computer more responsible for

configuring and monitoring themselves, and

determining when to deliver information. Thus,

before moving and handing over private information

to our devices we must have thorough analysis, work

out on performance as well as security issues, only

then one promising system can appear. As Weiser’s

article was concluded saying “ubicomp is likely to

provide a framework for interesting and productive

work for many more years or decades, but we have

much more to learn” still remains unmodification.

7. References

[1] J. Scholz, “Ubiquitous Computing Goes Mobile”,

Mobile Computing and Communications Review, ACM

Publications, Vol.5 Number 3.

[2] E. Niemela, J. Latvakoski, “Survey of Requirements

and Solutions for Ubiquitous Software”, Mobile

Ubiquitous Computing Conference, ACM Publications,

2004.

[3] M. Wieser, “The Computing for the Twenty-First

Century”, Scientific American, 1991, pp. 94-104.

[4] B. Agarwalla, G. Abowd, Umakishore, Ramachandran,

“Toward a Standard Ubiquitous Computing Framework”,

2nd Workshop on Middleware for Pervasive and Ad-Hoc

Computing, ACM Publications, Toronto, Canada.

[5] Official android website, Google Inc.,

http://code.google.com/android/, 2008.

[6] You tube, Mike baron’s videos on Androidology,

Google Inc,

http://www.youtube.com/user/androiddevelopers/, 2008.

171

