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Abstract The increasing use of wireless Internet and smartphone has accelerated the
need for pervasive and ubiquitous computing (PUC). Smartphones stimulate growth
of location-based service and mobile cloud computing. However, smartphone mobile
computing poses challenges because of the limited battery capacity, constraints of
wireless networks and the limitations of device. A fundamental challenge arises as
a result of power-inefficiency of location awareness. The location awareness is one
of smartphone’s killer applications; it runs steadily and consumes a large amount of
power. Another fundamental challenge stems from the fact that smartphone mobile
devices are generally less powerful than other devices. Therefore, it is necessary to
offload the computation-intensive part by careful partitioning of application functions
across a cloud. In this paper, we propose an energy-efficient location-based service
(LBS) and mobile cloud convergence. This framework reduces the power dissipation
of LBSs by substituting power-intensive sensors with the use of less-power-intensive
sensors, when the smartphone is in a static state, for example, when lying idle on
a table in an office. The substitution is controlled by a finite state machine with a
user-movement detection strategy. We also propose a seamless connection handover
mechanism between different access networks. For convenient on-site establishment,
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our approach is based on the end-to-end architecture between server and a smart-
phone that is independent of the internal architecture of current 3G cellular networks.

Keywords Low-power location awareness · Location-based service · Mobile cloud
offloading · Connection handover · Pervasive and ubiquitous computing · Cloud
computing

1 Introduction

The explosive growth in the use of the Internet has led to the development of mobile
Internet. Nowadays, Mobile WiMAX and Wi-Fi facilitate convenient use of the Inter-
net. Actually, the number of 802.16e (Mobile WiMAX) users is projected to increase
to 80 million by 2013 [1]. The rising popularity of wireless Internet has triggered
the spread of smartphones. Worldwide smartphone sales to end users totaled 1.6 bil-
lion units in 2010, a 31.8% increase from the figures in 2009 [2]. This rise in the
use of wireless Internet and smartphones has accelerated the need for pervasive and
ubiquitous computing.

Pervasive and ubiquitous computing (PUC) is the growing trend towards embed-
ding microprocessors in everyday objects so that they can exchange information. The
words “pervasive” and “ubiquitous” mean “existing everywhere.” PUC devices are
fully connected and constantly available. PUC relies on the convergence of wireless
technologies, advanced electronics and the Internet. Today’s mobile electronics are
not just mobile communication devices; they also change people’s lifestyles and cre-
ate new cultures. Wherever users are located, the data can be found. In fact, things
that people have not ever imagined before can be realized by pervasive and ubiq-
uitous computing. In this paper, we introduce a mobile application framework for
PUC. To realize PUC, the mobile application framework should involve a low-power
location-based service and mobile cloud convergence.

• Energy-efficient location-based service: In PUC, mobility is the basis for every-
thing. Therefore, we focus on conserving energy when we are using LBSs in mo-
bile devices. This is because our mobile application framework is intended for
PUC, which can involve frequent movements of mobile devices. This framework
helps reducing power dissipation by substituting power-intensive sensors with less-
power-intensive sensors when the smartphone is in a static state, for example, when
lying idle on a table in an office.

Cloud computing [4] has emerged as a new computing paradigm that targets reli-
able and customizable services. It is a result of decades of research in virtual machine,
distributed and parallel computing, utility computing, and more recently, networking,
web service, and software as a service. In this study, we provide a seamless connec-
tion handover on mobile-cloud converged applications. This is useful for cloud com-
puting environment in which many clients have mobility. With the wireless Internet
facility, mobile users can move during Internet communication.

• Mobile cloud [5] convergence: As mentioned above, data distribution is the key
issue for mobility. For mobile cloud convergence, task distribution is important,
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because the computing power of mobile devices is not powerful enough for the
devices to be the main computing platform. Mobile cloud convergence provides a
solution to the computation power problem. The parts that need more computation
run on the cloud, while the parts associated with the user interface run on the mo-
bile device. IPC (inter-process communication) is one of the ways to realize this
convergence. In this paper, we exploit this concept for PI value calculation. We im-
prove the PI calculation algorithm by optimization for mobile cloud convergence.

• Seamless connection handover: There are certain problems in achieving a seam-
less connection handover, namely, communication failure and connection re-
establishment. Communication channel flushing by zero window notification helps
to resolve the communication failure problems. TCP port inheritance prevents con-
nection re-establishment errors during socket reconstruction. Thus, our seamless
connection handover technique is now able to preserve open network connections,
and even for server sockets. This is a highly transparent approach, which neither
introduces additional messages for channel flushing nor makes any modification
to the TCP protocol stack. Experimental results show that the overhead due to the
connection handover is almost negligible when compared with the time required
by the conventional approach.

We implement the three design principles on a Samsung Galaxy S [6] Android
smartphone as a middleware and evaluate the implementation extensively via mea-
surements. While the proposed design principles are general enough to be applied
to any software stack, the middleware implementation allows for better application
transparency in the sense that applications can be kept as-is. We choose Android-
based smartphones for prototyping because of the openness of the Android plat-
form [3]. Our evaluation results with the implementation show that the proposed
framework significantly saves energy in location sensing. The development frame-
work of could convergence mobile applications allows these constructs to cooperate
implicitly so that they create a synergy effect at the smartphone system level and suc-
cessfully provide a framework at PUC environment. To summarize, the contributions
of this work are as follows:

• We address and explore energy efficiency of GPS sensing for resource-constrained
smartphones that often run location-based services (LBS).

• We propose three design principles tailored for LBS to reduce energy consump-
tion in GPS sensing on smartphones and show that the integration of the proposed
design principles leads to significant energy savings.

• We prototype the proposed design in Android-based smartphones, which are open
to both practice and research, and demonstrate the effectiveness through real-life
measurements.

The remainder of this paper is organized as follows. Section 2 discusses related
work. Section 3 presents the key design principles of low-power location awareness.
Section 4 describes our design and implementation of mobile cloud convergence.
Section 5 shows the seamless connection handover mechanism in mobile cloud. We
conclude by summarizing our results in Sect. 6.
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2 Related work

A few prior pieces of work have attempted the location determination. Many applica-
tions using GPS for navigational purposes, particularly handheld applications, require
low power in order to preserve battery life. The primary components that dissipate
large amounts of power are the GPS. Moreover, the use of smartphones becomes per-
vasive. These smartphones are equipped with location sensing capability to enable
LBS. Existing module platforms including Android do not employ techniques similar
to our designs to improve power dissipation of LBS, although application developers
partially adopt similar concepts. As users are increasingly adopting a wide variety
of LBS on smartphones [7–9], since typical smartphones are equipped with multi-
ple types of sensors, applications that take advantage of these sensors are booming,
and many existing works attempt to detect an extract users’ states and context based
on the readings from these sensors [10–13]. Many approaches have been proposed
to combine the information obtained from sensors including accelerometer, audio,
GPS, camera, and so on [14–17]. Several pieces of work have attempted to learn mo-
bility patterns. BreadCrumbs [20] uses the space history of a user to train a mobility
model for each specific user and uses it to schedule network usage with the connec-
tivity forecasts. Zheng et al. [21] use supervised learning to infer motion modes (e.g.,
walking, bus, driving) from their GPS logs. Sohn et al. [22] also recognize mobility.

According to the latest study from Juniper Research [23], the market for cloud-
based mobile applications will grow 88% from 2009 to 2014. The market was just
over $400 million this past year, says Juniper, but by 2014 it will reach $9.5 billion.
Driving this growth will be the adoption of the new web standard HTML5, increased
mobile broadband coverage and the need for always-on collaborative services for the
enterprise. Several systems have been developed to support connection handoff at the
user-level and can be run on unmodified commercial operating systems. These sys-
tems include Condor [24], CoCheck [25]. Since there is no kernel support for process
migration, these systems require the processes not to use some common operating
system services such as not allowing processes to fork or exec. Moreover, migration
of networked applications is inherently impossible without kernel support. Kernel-
level approaches for process migration include CRAK [26]. Solaris MC [27] provides
connection migration with socket support. However, CRAK is only able to migrate
the process which operates on client socket, not server socket. MOSIX, OpenSSI
and Solaris MC provide migration by redirecting location-dependent operations such
as system calls or socket connections. This approach degrades performance, fault-
resilience and adversely affects reliability, because a migrated foreign process will
still depend on its home node.

3 Power-saving strategy for smartphones

There have been concentrated efforts to reduce power dissipation in handheld de-
vices, because these devices are battery-powered. Smartphone users are particularly
conscious of battery exhaustion and the need for battery-saving techniques. To gather
basic information for an energy-efficient strategy with regard to smartphone resource
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management, this paper analyzes the power dissipation behavior of smartphone with
regard to applications and functionalities [18]. From this analysis, we propose a low-
power algorithm for a longer-lasting lifetime of smartphone location-based service
(LBS) applications. The reason we focus on location awareness is that the LBS is
being increasingly used by smartphone users and it is one of the killer applications
of a smartphone [28]. Some examples of currently popular LBSs include social net-
working services (SNS), ubiquitous healthcare services, local traffic, and augmented
reality. That is why the LBS is the application we are targeting to conduct our research
on reducing power consumption in smartphones.

3.1 Analysis of power dissipation on smartphones

Unwanted power leakage occurs when it is not supposed to. Due to the inherent
nature of a smartphone in which an operating system is working, power consumption
continues even when the device is not being actively used. Smartphones play various
roles that require many foreground and background jobs, whereas traditional feature
phones only perform call processing. This results in severe power dissipation. The
unwanted power leakage in smartphones is summarized as follows:

• Applications run as background jobs or services: user can install applications to
run as background jobs periodically, such as with an Android service. For instance,
once we set up Google mail sync, Android Google mail client will try to synchro-
nize the content from Google mail and scheduler.

• Keeping Wi-Fi, Bluetooth and GPS enabled when we are not using the device:
even though the applications that use those sensors are not working, just turning
the sensors on consumes power. For example, the Wi-Fi protocol periodically com-
municates with access point (AP) from the beacon signals. This results in power
consumption even on upper layer of Wi-Fi falling into the idle stage.

• Display lightness/contrast: the main concern with regard to power dissipation is
due to the LCD brightness. The backlight power minimization can effectively ex-
tend battery life for mobile handheld devices.

To analyze the power dissipation behavior of the three classifications above, pre-
liminary experiments consist of two types of workloads: synthesized workload and
real workload. The synthesized workload is done to check the power consumption of
each device (or sensor). Real workloads are done to check the power dissipation when
popular applications are running. We start measuring with a fully charged battery af-
ter charging during the same amount of time. The screens of the smartphones are
configured to always remain on. The GPS invocation interval is set to 5 seconds. To
measure instantaneous battery levels of the phone over several hours, we make use of
our battery-level monitoring application while running the two types of workloads.
The battery-status monitoring application is based on Android service that runs in
the background of other current activities. All tests and evaluations were performed
with our battery status monitoring application [19] on Samsung Galaxy S [6]. Note
that we ran the experiment multiple times, and we always observed the same trends
in battery-level drops across all runs. The following figures display the preliminary
experimental result with synthesized workload.
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Fig. 1 Battery level logging when brightness is high and low

Fig. 2 Battery level logging when GPS and Bluetooth are enabled

We first assess the impact of using power-intensive LCD brightness on smart-
phones. Figure 1 shows the battery level of the phone during the run. When the
brightness of LCD backlight is high, the battery level drops to 65% within two hours,
whereas the battery level at low brightness drops only up to 90%. The battery lifetime
of low brightness is almost twice as long as the lifetime of high brightness. Next, we
check the impact of using a GPS (Global Positioning System) with smartphones. Fig-
ure 2 shows the battery consumption with using a GPS navigation application. When
a GPS is enabled and used, the battery level drops to 63% within one hour. That
means the smartphone battery level stays around 90% in an hour without a GPS, but
the battery is exhausted up to 60% within an hour with the GPS enabled. This is be-
cause a GPS is one of the most power-consuming sensors or devices in a smartphone.
For Bluetooth, the energy consumption is considerably less than that of a GPS. The
right side of Fig. 2 plots the battery level logging on smartphones.

Figure 3 shows our experimental configuration: (a) power supply, (b) digital multi-
meter (True RMS Multimeter), (c) smartphone (Samsung Galaxy S), (d) laptop com-
puter. The rated input voltage/current range of the Samsung Galaxy S is 1500 mA
at 3.7 V. Assuming that the voltage difference is stably supplied with 3.7 V without
a drop of electric pressure, measuring only current change with digital multimeter
is the same as checking power dissipation. After connecting test leads in serial with
the smartphone being measured, we log the change of current flow with the laptop
computer (d) that is connected by USB with digital multimeter. Table 1 shows the
average power dissipation for various workloads of synthesized and real cases.
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Fig. 3 Experimental configuration

Table 1 Workloads and
average power dissipation Synthesized workload Test cases Average

LCD backlight brightness max/min 0.14∼0.51 mA

GPS on/off 0.35 mA

Bluetooth on/off 0.35 mA

Wi-Fi on/off 0.47 mA

Real workload

T-map (smartphone navigation application) 0.40 mA

Melon (music player streaming/local 0.30∼0.51 mA

application)

3G WCDMA call processing 0.25 mA

3.2 Energy-efficient location-based services

Typical smartphones are equipped with multiple types of sensors including Blue-
tooth, accelerometer, audio, camera, and GPS [26, 27]. The growth of sensors in
smartphones drives applications in variety of fields, such as gaming, location aware-
ness and augmented reality. However, due to the increase in this growing feature-sets
and sensing capabilities, smartphones continue to suffer from battery life limitation.
As was shown in Sect. 3.1, the aggressive use of LBS applications results in an ex-
hausted battery within a few hours. Even though a power-intensive GPS hinders ac-
tive utilization of location-based service, the GPS is still the core enabler of this type
of service. In this research, we propose an energy-efficient framework for location-
based service. The framework detects the smartphones’ mobility state by using less-
power-intensive sensors and eliminates unnecessary invocation of location sensing.
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Fig. 4 Energy-efficient mobile-cloud computing framework architecture for PUC

This is because continuous location sensing may not be needed when the smartphone
is in static state, such as being put on a table in the office. It is desirable to substitute
the sensing operation with a more energy-efficient method. Actually, this framework
reduces the power dissipation of a smartphone’s location service by substituting less-
power-intensive sensors for a long-lasting lifetime. When an accelerometer is com-
bined with a GPS, we can save power in LBS applications. The accelerometer is
mainly used to measure acceleration in perpendicular axes. It can sense tilt, motion
and shock vibration.

Figure 4 shows energy-efficient mobile-cloud computing framework for pervasive
and ubiquitous computing. Even though the framework is based on Android platform,
the concept of proposed architecture will be applicable to other mobile platforms. In
general, the location manager of Android framework gets data from the accelerom-
eter sensor. If there are changes of values from accelerometer, the location manager
notifies Android applications by calling OnLocationChanged(). From the continuous
sequence of accelerometer input values, it is possible to detect whether a user is mov-
ing or not. The mobility monitor intercepts the values of latitude and longitude from
the Location Manager. Then, the mobility monitor recognizes movement by compar-
ing the acceleration value with thresholds (refer to Sect. 3.2.1).

Our design principle is to detect the movement of a smartphone with more energy-
efficient sensors, allowing GPS hardware to sleep between successive location-
updates. It depends on user movement which is detected by an accelerometer. When
we move, gravitational acceleration changes because acceleration is an increase in
speed or velocity. The accelerometer leverages power reduction techniques by telling
a device to go into its low-power mode when that device is determined to be inactive
based on the absence of movement or vibration. However, simply forcing applications
to request GPS update less frequently is not the solution.
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Table 2 Threshold settings in this experiment

Threshold Explanation

TH_ACTIVITY A threshold value for movement checking whether user is active or inactive. We
assume user movement when acceleration is greater than the value TH_ACTIVITY.
For this purpose, we set the threshold value to 0.5g in this experiment.
Accelerometer provides value by three axes: x, y, and z. We make use of the sum of
the three values of each axis. We assume the device is inactive when the sum of
accelerations of less than the value TH_INACTIVITY is experienced for longer than
the time specified by TH_SIGDUR.

TH_SIGDUR The activity duration between two acceleration events that are greater than the value
of TH_ACTIVITY and at the same time shorter than the time specified in the
TH_SIGDUR value. We set this threshold as 1.5 seconds in this experiment.

TH_DIFF The threshold for checking the acceleration difference between stable status and
initial status. The TH_DIFF is set to 0.7g in this experiment.

To realize the design principles, we provide two components: a movement recogni-
tion strategy and a power management finite state machine (FSM). Movement recog-
nition is to check whether a user moves. Many threshold values are necessary to im-
plement movement recognition. Power management is a resource scheduling policy
based on the FSM in which two state transition triggers exist. One is user movement
and the other is timer expiration. When a user moves or a timer expires, our frame-
work goes back to normal state or starts low-power mode, respectively. To this end,
we provide a power (LP) timer that provides a method for the device to automatically
enter the low-power mode from either the Active or the Idle state following a pro-
grammed period of inactivity. We make use of two timers, namely the LP1 timer and
the LP2 timer.

3.2.1 Movement recognition strategy

Movement recognition takes into account the changes in acceleration that occur when
a smartphone is moved. It is based on the principle of detecting changes in motion and
position of the smartphone. However, it is quite challenging because it has to track
acceleration changes and perform continuously algorithmic analysis to detect move-
ment. The core element of movement recognition is an effective, reliable detection
principle and an algorithm to determine the existence of user movement.

While the vector sum of accelerometer input is generally around 1g under normal
conditions, the user movement causes vector sum to fluctuate over 1g. For this ac-
tivity detection, the acceleration value at the beginning of activity detection is taken
as a reference value. At the start of LBS applications, the reference value is used
for compensation of our movement recognition strategy. Then, we need to predict
whether an application will be using the GPS or not. In case of Android applications,
all applications have a configuration file, known as AndroidManifest.xml. The XML
file is used to represent which devices and sensors are required for the application. In
Table 3 we see the following statements in the XML when the application requires
the GPS, 3G cell tower triangulation, Internet access, and camera device.
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Table 3 A part of AndroidManifest.xml

<uses-permission android:name=“android.permission.ACCESS_FINE_LOCATION” />

<uses-permission android:name=“android.permission.ACCESS_COARSE_LOCATION” />

<uses-permission android:name=“android.permission.INTERNET”/>

<uses-permission android:name=“android.permission.CAMERA”/>

<uses-permission android:name=“android.permission.LOCATION”/>

Fig. 5 Acceleration patterns on the event of movement

New samples of acceleration are then compared to the reference value. If the mag-
nitude of the difference exceeds TH_ACTIVITY, the device will indicate that user
movement has taken place.

Additional information for movement detection in our framework is the difference
between acceleration and orientation. After movement, the device will be in a differ-
ent orientation than before, so the static acceleration in three axes will be different
from the initial status before the movement. Therefore, if the acceleration difference
between stable status and initial status exceeds the TH_DIFF threshold, a valid move-
ment is detected.

The accelerations during movement are different in terms of patterns or behaviors
in the event. Figure 5 shows the acceleration changes during the movement of a car
or a pedestrian. By comparing with normal states, we can see three critical different
characteristics of the movement that can serve as the criteria for the event detection.
They are indicated by the dashed boxes in Fig. 5 and explained in detail as follows:
(a) INITIAL_STATE, (b) EVENT, (c) STEADY_STATE. Since INITIAL_STATE is
the unstable and unreliable state that is not properly initialized, we ignore this state.
At the first period of STEADY_STATE, we take acceleration inputs as the reference
values. We use this reference value to recognize user movement with the thresholds
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in Table 2. At the period of EVENT, the smartphone body will impact from move-
ment: the acceleration curve shows this as a large shock. This shock is detected by the
following condition checking: the activity duration between two acceleration events
that are greater than the value of TH_ACTIVITY and at the same time shorter than
the time specified in the THRESH_SIGDUR value. STEADY_STATE always occurs
when movement is not significant. Mobility manager in Fig. 4 classifies this state as
movement. It becomes more significant on movement, and the vector sum of accel-
erations satisfies the following condition when the vector sum is the total summation
of the accelerations of x, y, and z.

|vector sum| < 0.5g

The reason why we are using the sum of vectors x, y, and z is that the movement
is not in one direction. Surely when this strategy runs on navigation, the movement
will not usually be only back and forth. However, the movement direction targeted for
pedestrians is not one way. Therefore, we need to use the summation, rather than only
one element. This technique can reliably detect the start and duration of significant
user activity.

Moreover, there is another problem which is that the accelerometer readings are
not stable. Typically, there are fluctuations of about 2–5% even when the device is
resting on a table. When we look at raw data from the accelerometer sensor, it is
surely going to fluctuate. To resolve this problem, we make use of a filter, the trailing
weighted average of current and past rates that can be used to determine movement.
In our experiment, the currently up-to-date value is weighted at 95% in computing
the average, and the past data are weighted at 5%. When movement is detected by a
larger change than the threshold, a signaling event is presented to the FSM as one of
the inputs for power management.

3.2.2 Power management finite state machine (FSM)

The high accuracy of location awareness may increase with increasing power man-
agement levels. This means that device’s power consumption may increase with in-
creasing accuracy levels of location-based services due to the power-accuracy trade-
off. Today’s smartphones achieve high accuracy at an acceptable level of power dis-
sipation. In terms of power accuracy trade-off, the GPS is particularly important be-
cause it is the core enabler of location-based services, but aggressive use of the GPS
can severely increase power consumption. In this research, we propose an efficient
power management policy for location-based services. The policy is implemented by
the FSM as shown in Fig. 6. The FSM controls the state transition depending on its
input and current state. The states in our power management FSM include the GPS
sensor activity status (Active, Idle, LP1, LP2). The FSM state transition is triggered
by movement detection or timer expiration.

A device may implement one power management method for two or more con-
tiguous power management levels. Actually, we provide three step power reduction
states as in Table 4, in addition to the “ACTIVE” and “IDLE” states. These states
are “LP1,” “LP2” and “LP2 with System Power Management (PM)” which differ
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Fig. 6 Power management
FSM

with regard to the level of power reduction and the return latency. LP1 has maxi-
mum return latency of 10 microseconds, while “LP2” has a maximum return latency
of 10 milliseconds. Therefore, we can realize greater power savings in “LP2” and
“LP2 with System PM” with its longer specified return latency. “LP1,” therefore, is
designed to use a relatively simple power reduction technique with minimal impact
on performance. “LP2” is designed to be used only when the device is expected to
be idle for an extended period of time. Transition of the device power mode directly
from “ACTIVE” to “LP2” without passing “LP1” is not possible.

Even though our solution can potentially be applied to any mobile platform that
deploys location-based services, we present the architecture specifically on an An-
droid OS for ease of presentation and concrete implementation. Such a selection is
also justified because of the Android’s open nature and increasing popularity. Note
that the architecture and design principles can also be implemented on other plat-
forms, including Symbian and Windows Mobile. Our framework is realized as a
middleware solution, residing between applications and underlying Linux kernels.
Specifically, the Android platform includes an application framework that packages
many useful classes in Java. The solution is implemented inside the Android applica-
tion framework by modifying existing classes as well as creating new classes.

We prototype the proposed solution on a Samsung Galaxy S Android phone
equipped with OS version 2.1 (Eclair). All four design principles are implemented in
Java inside the Android framework. The prototype contains a graphic user interface
(GUI) that allows a user to enable, disable and finely configure the prototype. With
current Android APIs, the GPS is invoked through a major function call, requestLo-
cationUpdates(), which takes at least four input parameters: LocationProvider, which
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Table 4 Each state and explanation in power management FSM

State Explanation

ACTIVE This state is entered when acceleration greater than the threshold value
THRESH_MOVEMENT is experienced. At this state, the device is fully
powered-up and all sensors are actively running. This state shall be entered when
the device detects movement while in Idle or Standby mode. This state shall also
be entered when the device is powered-up.

IDLE “IDLE” is the state when acceleration of less than the value stored in the
THRESH_INACT register is experienced for longer than the time specified in the
TIME_INACT register. The device is able to response instantly to external input
in the “IDLE” state. No movement is detected at this time. The device stays in the
“IDLE” state all the time except when actively working. “IDLE” state also sets
the “LP1” and “LP2” timer count.

LP1 “LP1” saves about half as much power as LP2, but with significantly less impact
on performance. LP1 has a maximum return latency of 10 microseconds.

LP2 “LP2” is used if device will be idle for a significant amount of time, but you are
willing to sacrifice some performance for power savings. It takes time to respond
to your movement. “LP2” has a maximum return latency of 10 milliseconds.

LP2 with System PM “LP2 with System Power Management (PM)” state is still the “LP2” state in our
framework, but it is the lowest-power state because, at this state, the system
power management goes to minimum power state such as sleep, which is standby
in Linux Operating Systems. Thus, it is the low-power state of both our
framework and a Linux OS at the same time.

reports frequencies in terms of time and distance, and PendingIntent or LocationLis-
tener. Our prototype mainly captures this function call and embeds intelligence inside
the function as well as other relevant functions.

In addition, our architecture provides an optional feature, known as Power-up in
LP2 (PUILP2). The PUILP2 prevents the smartphone from automatically enabled on
device boots up. Therefore, activity for accessing of GPS sensors starts only when
the location-based service launched, to conserve electric power.

4 Mobile cloud convergence

Mobile cloud convergence is a paradigm shift in field of mobile and parallel com-
puting. In the next few years, we can expect a major shift from traditional mobile
application technology to mobile cloud computing. It improves application perfor-
mance and efficiency by offloading complex and time-consuming tasks onto power-
ful computing platforms. By running only simple tasks on mobile devices, we can
achieve a longer battery lifetime and a greater processing efficiency. This offloading
with the use of parallelism is not only faster, but it can also be used to solve problems
related to large data sets of non-local resources. With a set of computers connected
on a network, there is a vast pool of CPUs and resources, and you have the ability to
access files on a cloud. In this paper, we propose a novel approach that realizes the
mobile cloud convergence in transparent and platform-independent way. Users need
not know how their jobs are actually executed in distributed environment and users
need not take into account whether their mobile platforms are iPhone or Android.
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Fig. 7 Smartphone application development environment

This is because the core technology of our framework is based on web service and
SOAP protocol through HTTP 80 port. We are targeting on OS-independent smart-
phone application development platform. The OS-independent platform means that
the structure is not depending on smartphone platform. It consists of web service
and mobile web (HTML5 like) device API standard. By running complex task on
cloud as a web service it is possible to reduce computation time and battery power.
Likewise, complex business logics and computations will be offloaded by cloud com-
puting platforms.

The left side of Fig. 7 shows current smartphone application development platform
including Android, iPhone, and Windows Mobile. Each platform has its own appli-
cations development environment and they are not compatible to others. If you want
to use an iPhone application, you must have iPhone. Similarly, if you want to enjoy
some Blackberry applications you have to have Blackberry. On the other hand, the
right side of Fig. 7 represents platform-independent smartphone application develop-
ment environment. With this mobile cloud computing framework you will be able to
enjoy all such applications only if you can access web through your cell phone. This
framework provides a commonly accessible layer which is platform independent, for
example W3C mobile web standard. Likewise, our proposed approach makes use of
web service architecture through the W3C mobile web standard layer.

However, only providing facilities such as vast pool of servers is not sufficient
for mobile cloud convergence. For offloading mobile computation by cloud service,
framework support is necessary. Especially, the support has to be of a service-oriented
type. A simple remote procedure call (RPC) or an inter-process communication (IPC)
in cloud side is dependent on a certain platform or target, such as Android or iPhone.
So, this is not the proper solution of general purpose offloading framework.

In terms of platform independence, Android IPC is better than the RPC or IPC
since it utilizes a platform-independent interface definition language (IDL). Actually,
Android IPC runs as an Android service which runs at background while other ac-
tivities (applications) are running at foreground. The service can be utilized between
multiple activities. Once an Android activity is bound to currently executing service,
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Fig. 8 Mobile cloud convergence framework with web service

it will communicate with the service using a predefined interface by a stub/proxy
pair. The service interfaces are defined in an interface definition language, known
as AIDL. But, the Android IPC still has a drawback in that it is only able to com-
municate within a local node. The Android IPC still has a limitation because the
communication technique is localized within the local platform. The Android IPC
is not applicable when we are trying to communicate with other computers or de-
vices. Thus, if we want to communicate with other sides, it is better to use network
socket instead of Android IPC. Therefore, our smartphone application development
environment does not depend on any native platform. This is to provide environment
of platform-independent smartphone application development without concern of the
OS.

In addition to the platform independence, one of the important things in area of
smartphone application development is the fast implementation or fast delivery (rapid
application development: RAD).

If an idea is realized as a smartphone application by a developer, the first de-
velopment is being the standard in the area. For this fast development and quick
deployment, development method by building up with commodity components is
more recommendable than implementing from scratch. Through reusable and com-
posable elementary components, we can easily make new services and applications
very quickly. In this paper, our mobile cloud architecture is based on web service
and we provide common service and composable elements as a sort of web service.
Figure 8 shows job distribution strategy of PI value computation on our mobile cloud
convergence framework with web service. By this offloading framework, computa-
tion oriented parts run on a remote cloud node as a web service and the rest of the
parts run on mobile devices. As a result, mobile cloud convergence framework leads
to performance improvement and longer battery lifetime of mobile devices.

Figure 9 depicts the concept of the service oriented smartphone application de-
velopment framework. The web service oriented infrastructure is realized by SOAP
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Fig. 9 The conceptual view of web service oriented smartphone application development framework

with Attachments API for JAVA (SAAJ). This framework provides 6 key administra-
tion policies and services: resource management, load balancing, certification, access
control, security, and charging. As shown in the stage 2 of Fig. 9, we can establish
a service repository consisting of elementary/commodity services. All these com-
modity/elementary services are implemented and deployed by a type of web service.
Thus, this is totally platform-independent and fast deliverable for smartphone ap-
plication development. For the convenience of smartphone application development,
we expect that the following common/elementary services are necessary: augmented
reality, HPC, voice/image processing, ubiquitous computing, E-learning, and so on.
However, due to the limit of time and budget, we currently provide only PI value
computation web service as a prototype. In Fig. 9, applications on mobile devices
need to locate their wanted service. For this purpose, web service architecture comes
with Universal Description, Discovery and Integration (UDDI). UDDI is a platform-
independent XML based registry worldwide to list themselves on the Internet and a
mechanism to register and locate web service application. Our framework also makes
use of UDDI to locate the proper user wanted web service.

4.1 Task parallelization of π calculation

In this section, we show a development procedure of the cloud-based applications on
a mobile platform, especially π calculation. The first step in building the mobile cloud
converged application is to identify sets of tasks that can run concurrently and/or
partitions of data that can be processed concurrently. The second step is to eliminate
dependency, if any exists, between every computational phases in the algorithm. The
dependency limit of the degree of parallelism results in performance degradation.
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π is a mathematical constant whose value is the ratio of any Euclidean plane cir-
cle’s circumference to its diameter; it is the same value as the ratio of a circle’s area to
the square of its radius. Many formulas from mathematics, science, and engineering
involve π , which makes it one of the most important mathematical constants. The
simplest method to calculate π is circumference divided by diameter. However, it is
difficult to get the exact circumference using this simple method. As a result, there
are other formulas to calculate π . These include series, products, geometric construc-
tions, limits, special values, and π iterations. To calculate π through mobile-cloud
convergence, we first need to convert the algorithm into a parallelized version. We
present a π calculation with infinite series that puts forth a parallelization method for
ease of application on the mobile cloud convergence. First, our π calculation involves
the following Maclaurin series of the inverse tangent function (1):

tan−1(x) =
∞∑

n=0

(−1)n
x2n+1

2n + 1
= x − x3

3
+ x5

5
− x7

7
+ x9

9
− x11

11
· · · (1)

The case of the Taylor series for c = 0 is the Maclaurin series. Therefore, (3) is found
by taking (2) and evaluating for the special case c = 0. To calculate π , we compute
the Maclaurin series generated by f (x) = tan−1(x) as shown above.

tan−1(x) = x − x3

3
+ x5

5
− x7

7
+ · · · + (−1)n

x2n+1

2n + 1
+ · · ·

A function to compute this based on the above form cannot be parallelized because
each computed value is dependent on previously computed values. For example, to

calculate tan−1 = π
4 , we need to compute tan(1) = 1 − 13

3 + 15

5 − 17

7 + · · · . We have

to compute the partial result of 1 − 13

3 to add 15

5 to the partial sum. To offload the
computation-bound part to the cloud, an independent form of this equation should be
provided.

To this end, we convert the equation into an integral form that is suitable for mobile
cloud convergence. Take the derivative of the above equation with respect to x, and
change the variable x to t , for the sake of convenience.

d

dt
tan−1(t) = 1 − t2 + t4 − xt6 + · · · + (−1)nt2n + · · ·

Substituting 1
1+t2 = 1 − t2 + t4 − xt6 +· · ·+ (−1)nt2n +· · · into this formula we get

the following:

d

dt
tan−1(t) − 1

1 + t2

Integrating this equation for the interval a to b yields the integral form of tan−1(t):

tan−1(t) =
∫ b

a

1

1 + t2
(∀a, b ∈ R)
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Fig. 10 Mobile cloud
performance as # of cloud nodes

By substituting π
4 = tan−1(t) into this formula we get parallelized form that is exe-

cutable on cloud computing platform:

π = 4 tan−1(t) =
∫ b

a

4

1 + t2
(∀a, b ∈ R)

We approximately get the π value by integrating this equation for the interval − 1
2

to 1
2 . Unlike an infinite series representation, the integral form is fully parallelizable

and it is easy to divide the problem into chunks/parts of work. We distribute and map
these tasks onto multiple clouding nodes. However, this equation cannot be executed
on cloud computing which is highly parallelized and distributed in a computing en-
vironment. This is an example of task parallelization and partitioning, and it can be
run on a mobile cloud convergence platform.

We constructed our system with 8 nodes from cloud service, of Core2 Duo 2 GHz
machines each with 2 GB RAM. The machines are connected by 1 Gbps Ethernet.
Figure 10 shows an overview of our mobile cloud convergence framework, designed
in 3 stages: the first one is web service oriented infrastructure, the second one is
commodity/elementary web services, and the third one is operating environment.

As the number of nodes increases, the total execution time for computing π value
decreases. The following Table 5 shows the execution time for each cloud node. Since
our π value calculation algorithm distributes the same amounts of data to all partici-
pants, the execution times in a row are almost the same. And the final execution time
contains more time such as communication overhead, fork-join overhead, processing
overhead on mobile devices. A row in Table 5 represents the computation partici-
pants; for example, line 4 means that our π value computation algorithm distributes
the same amount of data to all participants. The plotted graph value in Fig. 8 becomes
the sum of maximum value in Table 5 with TCP communication overhead.

5 Seamless connection handover on cloud computing

At present, dual-mode 3G and Wi-Fi smartphones are popular. The requirements of
data communication using cellular network are significantly growing. So, mobile op-
erators try to set up Wi-Fi APs on streets in order to offload traffic to Wi-Fi systems to
reduce cellular traffic congestion, as shown in Fig. 11. In this environment, we need
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Table 5 π value calculation
result (execution time) for each
cloud node

node 1 node 2 node 3 node 4 node 5 node 6 node 7 node 8

1 14.703

2 7.343 7.344

3 4.906 4.89 4.907

4 3.688 3.672 3.672 3.688

5 2.953 2.937 2.954 2.938 2.937

6 2.453 2.453 2.453 2.453 2.454 2.453

7 2.11 2.11 2.093 2.109 2.109 2.094 2.094

8 1.843 1.844 1.843 1.829 1.828 1.844 1.828 1.828

Fig. 11 Currently installed Wi-Fi hotspots in KangNam-gu, Seoul

to provide the seamless connection handover between different access networks. For
convenient establishment on site, our approach is based on the end-to-end architec-
ture between server and smartphone that is not depending on the internal architecture
of cellular networks.

With the increasing deployment of mobile computing, the interest for connection
handover is again on the rise. The connection handover is the act of transferring a
process between two machines during its execution. There are two most challenging
issues. Recently, the emergence of network-based distributed and mobile computing
environments has increased the necessity of connection handover technology, espe-
cially in the industrial and research field. The research and development for connec-
tion handover mechanism based on the Android operating system is very important
and inevitable. This study aims at development of seamless connection handover.
Nowadays, practical uses of connection handover for the improvement of working
environment have increased rapidly. It is applicable for seamless services of mobile
devices, work space preservation in PUC.
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Fig. 12 The necessity of connection handover

This research is focusing on development of seamless connection handover for Wi-
Fi/3G wireless Internet. These days, mobile devices do not support the seamless han-
dover between 3G and Wi-Fi. Therefore, when we move from an AP (access point)
of Wi-Fi to another AP, or when we move from Wi-Fi network to 3G-based cellular
network, currently executing applications are terminated and return errors as shown
in Fig. 12. In order to resolve the problems, we provide a novel method to support
seamless connection handover technique. Our approach does not affect the network
architecture that is already commercially established, since our technique is fully
end-to-end approach. This is fairly creative and challenging research topic that has
not been taken into account for any research groups in the world. So, we develop and
research on the following issues. Simultaneous horizontal/vertical handover: when
smartphones are moving among Wi-Fi hotspots, or moving between Wi-Fi and 3G,
connection termination occurs. We provide the following to avoid the termination in
these situations. (1) Architecture with no home agent: The reason why the Mobile IP
protocol is not broadly used these days is the “home agent.” It is a specialized router
that controls the movement of mobile nodes and provides tunneling service between
servers and the mobile devices. (2) End-to-end approach: our technique is fully end-
to-end approach. This is fairly creative and challenging research topic. This approach
does not affect the network architecture which is already commercially established.

5.1 Broken pipe problems

On connection handover, the major problem with a socket is the messages in transit.
Simply checkpointing the process state, regardless of the network state, results in
an inconsistent application state after restoration. Moreover, broken pipe problems
happen when the sender writes a packet, even though the receiver process had been
interrupted and the socket was closed, as shown in Fig. 13(a). In order to resolve this
problem without capturing network state, we make use of communication channel
clearing before handover.

Clearing communication channel is achieved by zero window advertisement. The
zero window advertisement (ZWA) interrupts the data transmission by adjusting the
window of sender process to 0 as in Fig. 13(b). Since the ZWA is a network level



Mobile cloud computing framework for a pervasive and ubiquitous

Fig. 13 Broken pipe problem and the solution approach

approach, the peer application can try to write data continuously without knowing that
the send window is closed. Thus, we suspend the application process right after the
ZWA. As a result, at the moment of connection handover, we can guarantee that there
are no transit data on the communication channel. Using this clearing communication
channel, the socket of the process is migrated as follows:

(1) The socket as sender
It is quite simple to move the socket of a migrated process when it acts as a
sender. The socket does not merely write data. That is, it just does the handover
without any special preprocessing such as zero window advertisement or appli-
cation process suspending.

(2) The socket as receiver
When the socket of a migrated process is the receiver, as in Fig. 13(b), the receiver
advertises a zero window to the sender. Even if advertising zero window during
the handover, there is no problem with receiving a packet in transit.

(3) The socket as both sender and receiver
This is the typical case on distributed systems in which processes communicate
by sending and receiving data. In this case, we take the approach of both 1 and
2 on each node. Thus, it interrupts data sending of corresponding nodes by zero
window advertisement.

The distributed system is composed of a collection of processes. A process can be
viewed as consisting of a sequence of events. In the process, we do not need to know
the elapsed time between two events. But, we have to know the order of two events.
Thus, we assume that the events of a process form a sequence, where A occurs before
B in this sequence if A happens before B. This is the definition of the “happened
before” relation. The relationship is given with an arrow: →. What happens before
relation is a transitive relation, so if a → b and b → c, then a → c. Figure 14 shows the
message exchange for the connection handover. In the message exchange procedure,
we put some constraints on the order of messages. The constraints must be fulfilled
to guarantee successful connection handover as follows:
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Fig. 14 Sequence of events during connection handover

(1) The event that node A advertises its window size as zero must happen before
the event that a corresponding process on node B suspends its execution with
SIGSTOP. This is because EA1 → EB1 and EB1 → EB3, from which, by tran-
sitivity property above, it also follows that EA1 → EB3.

(2) The event that node A transfers the saved process image to node C happens before
the event which resumes the suspended process on node B. This is because EA4
→ EC1, EC1 → EC3, EC3 → EB5, and EB5 → EB6, therefore EA4 → EB6
by transitivity.

(3) It makes no difference which of the two nodes suspends the process first since
there are no packets in transmit between the processes of node A and node B by
zero window advertisement. Hence, the order is off and does not matter.
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Fig. 15 The difference between TCP port binding and TCP port inheritance

(4) The event which resumes the suspended process on node B has nothing to do
with the event which resumes the transferred process image on node C. This is
because any process does not send data by zero window advertisement. Hence,
the order is off and does not matter.

(5) There is also no relevance to the order of zero window advertisement. Though its
socket is frozen by zero window advertisement, node A can receive data from the
corresponding sender node B and vice versa. Therefore, the order is off and does
not matter.

5.2 Binding errors on socket reconstruction

If a process operating on a server has a listener socket and an incoming connection
request has been arrived from a client, the server creates a child socket and accepts
the request. Previous researches did not offer server socket handover because of a
serious bind error problem on socket reconstruction. The Linux kernel makes use of
a hashtable, as in Fig. 15, to facilitate maintenance and lookups of socket objects.
The information of source and destination of a socket object is used as the hash key.
For a binding and listening socket, the source port is used as the hash key. For a
connected socket, a tuple of saddr, sports, daddr, and dport is used to create the hash
key. When socket binding request comes to kernel, the hash function tcp bhashfn
transforms the hash key into a hashbucket address in the hashtable tcp bhash. If the
socket information is identical to an already binded socket (in this event the same
source port being used by both a listening and child socket), then a bind error occurs.

This is because they get the same hashbucket address from the hash function. In
order to resolve this problem, we make use of TCP port inheritance to reuse the same
source port from the parent socket. Thus, more than two socket objects are chained on
the same hashbucket and share the same port. In Fig. 15, both parent and child sockets
use the same source port of 8000. In order to reconstruct a socket during handover, the
parent socket must be created first and enter the TCP LISTEN state. Then the child
socket is created and inherits the parent’s port. The child socket gets the address of
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Fig. 16 Connection handover overhead

the tb → owner stored in prev of the parent socket. Then it saves the address of the
parent socket in the “bind next” field. Therefore, it is possible for an established child
socket object to put itself into the hashtable structure without binding operation.

An evaluation of the implementation of our proposed framework shows that it
saves a significant amount of energy in the process of location sensing. To measure
the cost of connection handover, we performed the process of checkpointing and
restarting, which exchanges “ping-pong” messages repetitively. Figure 16 displays
the connection handover overhead. In the figure, the “File” represents the overhead
to save the process’ file descriptors, and “Others” represents the remaining time con-
sumed by other tasks, such as initializing global variables or running a loop in con-
trol logic. According to the figure, the vast majority of time is spent doing a memory
dump. In Fig. 16, the y-axis does not start from 0 so that the reader can easily see the
difference.

The time to save and restore socket structure takes only 0.7% of the checkpoint
time and 1.1% of the restart time, respectively. This implies that the overhead due to
socket structure handover is almost negligible when compared with the time needed
for the basic process checkpointing and restarting. The zero window advertisement
stops transmission for a limited period of time, resulting in decreased TCP through-
put. Thus, we need to evaluate the effect of zero window advertising on TCP through-
put. Figure 17 displays the expected amount of blocked data as a function of window
size.

In Fig. 17, the blocked data size on the y-axis is obtained by multiplying the TCP
sending rate by the blocking time due to the handover (Tm). The send rate of a TCP
packet can be approximated by window size (in bytes) divided by round trip time
(RTT) [24]. The average blocking times are about 7, 8 and 9 ms, which are derived
from the experimental result of the handover overhead. Further, we assume that the
RTT is 100 ms and the window size changes from 1 to 64 KB. As observed in the
figure, when the window size is lower than 32 KB, the totally blocked data size is
lower than 3 KB. If the packet size is 1 KB, fewer than three packets are blocked.
Therefore, we can infer that the TCP throughput will not be seriously degraded if the
handover blocking time is reasonably small.
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Fig. 17 Connection handover
effect on TCP throughput

6 Concluding remarks

The results we have presented so far suggest that significant energy-efficiency, de-
velopment convenience, rapid development/deployment can be obtained with a col-
lection of techniques in this research. We consider the problem of power dissipation,
development/deployment convenient, and connection handoff. We first identify and
analyze the power dissipation in of variety configurations of smartphone usage. Af-
ter that, we propose energy-efficient location-based service (LBS) and mobile cloud
convergence. This framework reduces the power dissipation of LBSs by substituting
power-intensive sensors with less-power-intensive sensors, when the smartphone is in
a static state, for example, when lying idle on a table in the office. The core elements
of this framework are a movement-detection algorithm to determine user movement,
and a power reduction strategy controlled by an FSM. The FSM state transition is
triggered by movement detection or timer expiration. We also propose a solution for
the two major problems faced when attempting to realize seamless connection han-
dover. The broken-pipe problems are resolved by zero window advertisement. The
bind error during socket reconstruction is eliminated by TCP port inheritance. This
is a highly transparent approach, in that it does not introduce additional messages for
channel clearing and does not make any modification to the TCP protocol stack. For
convenient on-site establishment, our connection handover approach is based on the
end-to-end architecture between a server and a smartphone, which is independent of
the internal architecture of current 3G cellular networks.
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