
Measuring and Improving Single-User NAS Performance 
Tony Bock, Mason Cabot, Frank Hady, Matthew Shopsin 

 
Storage Technologies Group 

Intel Corporation 
Hillsboro, OR 97124 

{tony.bock, mason.b.cabot, frank.hady, matthew.f.shopsin} @ intel.com 
 

 
Abstract  
NAS devices are increasingly entering the home and 
small business as centralized storage resources for 
large collections of documents, pictures, music and 
videos.  Increasingly these devices are used for more 
than background tasks like backup.  Newer 
interactive usages, like media access/creation, expose 
the performance of the NAS directly to the user.  
Unlike the enterprise NAS, the home and small 
business NAS will be judged primarily by single user 
performance as seen in user wait time. 
We introduce a new tool, the NAS Performance 
Toolkit (NASPT), uniquely built to measure the 
single user NAS Performance seen by a user of a 
mainstream personal computer.  NASPT includes a 
wide range of workloads identified by our analysis of 
media, productivity and bulk data operations likely to 
drive single user NAS performance.   
We’ve made NASPT very easy to use and freely 
available.  We’ve also used the NASPT trace/replay 
tool extensively across many commercially available 
NAS devices and share the resulting performance 
lessons.  Most notably we share simple modifications 
to Samba that fix an unfortunate Windows* client to 
Linux* NAS interaction significantly improving 
performance.  

1. Introduction  
Users accessing data stored on a Network Attached 
Storage (NAS) device see the performance of that 
NAS as time spent waiting for the data to return.  For 
accesses across fast local area networks, the time 
observed would ideally be close to the wait time 
observed when accessing a local drive.  Experience 
with copying files from a NAS tells us all that this 
ideal is not often reached, we find ourselves waiting 
for the file to transfer or for the video to start.  Such 
experience is hard to quantify and without a 
repeatable, relevant quantification it is difficult to 
improve.   

                                                 
* Other names and brands may be claimed as the property 
of others 

In some settings, particularly the home, NAS devices 
are increasingly being used as the media storage 
device.  This trend is accelerated by the desire to 
access music, pictures and video from all the 
computers in the home and from advanced set top 
boxes that may include no hard drive at all.  Often the 
NAS will be accessed by a single user interested in 
rapid response to their requests.    
The correct definition of NAS performance is domain 
dependent.   An enterprise NAS may hold files for 
thousands of users or serve as the backend for 
multiple web servers.  For Enterprise NASes multi-
client, throughput-with-fairness is a top measure of 
performance.  In our work we focus on single user 
NAS performance.  We could call this “NAS 
responsiveness” or “NAS wait time”.  It’s the time 
that a user must wait to receive the requested data. 
We start by collecting and analyzing a trace set 
covering real single user file accesses driven by the 
creation or consumption of  media, interacting with a 
dataset using productivity applications, or copying of 
files and directories.  Our analysis of these consumer-
oriented traces reveals the characteristics necessary 
for an accurate measure of single user NAS 
performance.  To our disappointment, we find no 
existing tool for measuring NAS performance that 
encompasses this set of characteristics.   
This paper introduces the NAS Performance Toolkit 
(NASPT), designed specifically to measure the NAS 
performance as seen by a single user on a mainstream 
personal computer for a broad set of media and 
productivity workloads.  We’ve found that the 
precise manner in which the workloads are replayed 
is important.  As we show here, NAS test 
preparation, flags used in opening files, test client 
operating system, and disk layout materially impact 
performance.  For this reason we designed NASPT to 
model a regular user-level application as closely as 
practical.  Using NASPT we found wide variations in 
the performance of commercially available consumer 
NAS devices, we share these measurements. 
The realism of the NASPT workloads has enabled us 
to identify and then to quantify an important 
performance incompatibility between Windows and 
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Linux.  We describe that incompatibility, its 
performance impact and provide Linux code changes 
to fix the issue.  An average NASPT score increase of 
38% results from these changes; a significant 
increase in single user NAS performance.  We’re 
convinced that the realistic single user performance 
measurements enabled by NASPT will expose 
additional NAS performance improvements.   
Our contribution with this work is practical as well as 
unique.   We deliver a tool that we show includes a 
set of traces covering main stream, single user 
personal computer NAS usage.  Furthermore we 
deliver a tool that replays traces in a manner 
consistent with real usage, shown to avoid many 
potential pitfalls, while still able to isolate NAS 
performance.   We’ve made NASPT easy for others 
to use and made it freely available at 
www.intel.com/software/NASPT.  We aren’t aware 
of any similar tools and in fact NASPT is already 
gaining significant use within the industry.    

2. Application storage trace 
characteristics 
Our goal is to measure single user NAS performance.  
We start by tracing and analyzing a set of 
representative user workloads.  In all cases we traced 
accesses generated by a Windows XP* client since 
this is the most common personal computer operating 
system.  The workloads include both media (video) 
playback and record, standard file and directory 
copies, and interactive applications.  We found the 
NAS accesses generated by these applications to be 
surprisingly complex and varied as described here. 

2.1 Tracing Methodology
Consistent with mainstream personal computer 
usage, we assume that operating system files and 
executables will be kept locally on the client.  Heavy 
NAS users will store their personally generated data 
and media on the NAS to capitalize on the big, 
centrally available, redundant storage available from 
the NAS.  Therefore our traces include only those 
transactions targeting data/media files and initiated 
by the application being traced.  System generated 
accesses and accesses to executable program files are 
excluded.   
In the Windows XP operating system, we developed 
a file system mini-filter driver to observe application 
generated transactions as they transited from user 
space to the NTFS file system driver.  In this respect, 
our tracing approach was very similar to Roselli’s[1] 
although our target workloads are very different.  Our 
driver records transaction initiation time, operation, 
data size, data offset, and file name.  The driver also 

registers for a callback notification and records finish 
time. 
We captured accesses to an otherwise empty local 
hard drive.  Capturing local disk traces, rather than 
NAS accesses, allowed us to observe each 
application’s “natural” behavior before it was 
modified by the network storage client driver.  In 
each case, the system was rebooted before capture so 
that the file system cache would begin from a 
completely cold state.  In addition we deleted the 
Windows XP prefetch file before each reboot to 
ensure no disk accesses were hidden. 
By attaching our filter driver to an otherwise idle 
disk, we were able to isolate our traces from much of 
the non-target traffic on the system, but not all.  
Window XP includes a secondary I/O path, the FAST 
I/O path, wherein the OS assumes a particular 
transaction will be fulfilled by the cache.  We 
excluded kernel generated I/O, like fast I/O and cache 
manager accesses, because by design these requests 
are redundant with already completed file I/O and so 
won’t make it through the file system cache.  
Additionally, memory mapped file accesses do not 
appear as regular I/O request packet (IRP) operations 
and so will not be counted by the file system mini-
filter.  We avoided applications that were known to 
memory map their data files as in the Windows-
supplied notepad.exe and wordpad.exe utilities.  Most 
other memory mapping appears to target shared 
libraries, which aren’t going to be included in our 
traces anyway. 
Table 1 shows a list of workloads traced.  For video 
workloads we required an external device for realism.  
Here we traced accesses while a Media Player 
sourced a 720p HD stream to a network connected 
display device.   Video record traced local drive 
accesses as a 720P video on the air broadcast was 
recorded.  Those same video files provided a large 
data file for our file read and write tests.  We used a 
photo organizing and display program to interactively 
browse through 110 digital pictures to obtain the 
Photo Album trace.  For Content Creation and Office 
Productivity we traced accesses to data files within a 
video creation and productivity applications.  Finally 
for our directory tests we copied a complex office 
generated directory set.   
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Test # files % seq. Bytes Rd/Wr Ave. 
Throughput 

Description 

HD Video Play 1 99.5% 2.0GB Rd 2.0 MB/s 256kB reads 
HD Video Record 1 99.9% 2.0 GB Wr 1.8 MB/s 256kB writes 
Directory Copy From NAS 2833 52.5% 0.20 GB Rd 13 MB/s 64kB reads 
Directory Copy To NAS 2833 52.5% 70B Rd 

0.25GB Wr 
15 MB/s Predominantly 64kB writes, wide 

scattering under 16kB 
File Copy From NAS 1 100% 4.3GB Rd 51MB/s 64kB reads 
File Copy To NAS 1 100% 4.3GB Wr 55 MB/s 64kB writes 
Photo Album 169 80% 0.81GB 1.2 MB/s All reads – wide distribution of sizes 
Office Productivity 607 81.3% 1.4GB Rd 

1.4GB Wr 
0.77MB/s Reads & writes; small, 1kB & 4kB 

reads; Mostly 1kB writes 
Content Creation 98 38.6% 12MB Rd 

14MB Wr 
0.054MB/s 95% writes; 1k, 4k & little reads; 

Writes up to 64kB 
Table 1:  Single user workload characteristics 

  
2.2 Trace Analysis 
By analyzing the traits of the single user traces, we 
identify the required characteristics for accurate 
measurement of single user NAS performance.  It’s 
easy to see from Table 1 that the NAS must be 
exercised for different numbers of files, from one to 
thousands.   Some workloads include a wide variety 
of access sizes and addressing patterns.  Three of our 
nine workloads include both reads and writes and in 
two cases in almost equal proportions – contrary to 
the bimodal (almost all read or write) behavior found 
by Roselli. 
We can also see that some workloads are highly 
sequential, while others are mostly random.   Deeper 
analysis reveals that even the highly random 
workloads exhibit specific periods of sequential 
accesses.  Here “sequential” is defined at the file 
level - current access is to the same file as the 
previous access and starts at an offset equal to offset 
plus size of the last access.  This does not necessarily 
mean the access is physically sequential on the disk 
as the network file system abstraction hides the file to 
disk block (LBA) mapping.  However, it is an 
indicator of the likelihood of actual disk sequentially.   
Average throughputs vary from a high of 55MB/s to 
a low of 54 KB/s.  Analysis of traces for the 
workloads exhibiting the lowest throughputs reveals 
long periods of low or no disk activity during wait-
on-compute or wait-on-the-user periods.  To focus on 
the performance characteristics of the NAS device, 
NASPT removes these non-disk idle times.   
As a part of the tool, we constructed a visualizer to 
aid the user in more fully understanding the workload 
traces and test results.  A particularly useful 
visualization is the conceptual map of file accesses 
over time.  Figure 1 shows this view for the Video 
Play trace, which is predictably homogenous, 

sequential, 256KB reads walking the address space of 
a single file.  This trace is 10 minutes long (x-axis) 
and walks across all 2GB of access offsets within the 
file (y-axis).  If the file is truly laid out in sequential 
blocks by the NAS, Video Play should efficiently 
read from a hard disk drive with few disk seeks.     
The same analysis of the Photo Album workload in 
Figure 2 presents a more visually interesting chart.  
Each long vertical line represents a complete read of 
an individual file.  Each color represents a unique file 
(although in this case there are more files than 
colors).  This application begins by reading metadata 
as seen on the left side of 

 
Figure 1. Video Play file offset over time 

 

 
Figure 2 Photo album file offset over time 
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the chart, creating a series of 2 byte to 700 byte 
mostly non-sequential reads from two different offset 
regions within each picture file.  Interspersed with 
metadata reads are sequential 568 bytes likely for 
thumbnail construction.  Individual photo browsing 
(further right) results in many multi-Kbyte sequential 
reads of varying length interspersed with additional, 
small, random metadata reads.  The process starts 
over again in the middle of the trace as new pictures 
come into view on screen.  This complex behavior, 
periods of small random reads interspersed with 
periods of short sequential reads and periods of long 
varying length sequential reads, is an interesting 
compound read workload we would not have 
anticipated. 
A portion of the Content Creation workload, a period 
of heavy relatively random writes, is displayed in 
Figure 3.  The Content Creation trace shows many 
periods of relatively low read/write activity 
punctuated by busy periods, like the one shown in 
Figure 3.  The 1kB and 512-byte writes to a single 
file shown represent a difficult workload indeed, 
relatively random offset writes to a very large file.  
The long horizontal lines represent long delays 
(completion latencies) for some of these writes.  The 
longest of these is three seconds!  These long delays 
are the result of delays within the storage subsystem, 
not the length of the writes themselves. We 
investigate and explain this behavior in Section 5 of 
this paper.   Content Creation represents another 
workload with unanticipated characteristics. 
  

 
Figure 3 Content Creation file offset over time during 

a period of heavy writes 
 
While the video play workload would be easy to 
generate synthetically, the same is not true of the 
behavior observed in Photo Album and Content 
Creation workloads.  In fact five (Directory Copy 
from and to NAS, Office Productivity, Photo Album, 
Content Creation) of the nine workloads we traced 
appeared difficult to generate, and even more 
difficult to prove correct, with a synthetic workload 

generator.  For this reason we turned to trace 
playback to measure single use NAS performance.  
The next section describes the approaches others 
have taken, followed by a description of our 
approach, NASPT. 

3. Related Work and Motivation 
A wide variety of trace based measurement tools 
exist.  Traeger, Zadok, Joukov, and Wright[2] 
exhaustively describe file and storage benchmarking, 
including 415 benchmarks and tools.  This section 
describes the most relevant subset, plus a few others 
starting with trace/replay based tools, moving to 
synthetic application generators, synthetic simple 
workload generators, and finally to relevant PC 
application benchmarks. 
A variety of trace/replay tools exist, all with 
significant differences from NASPT in workload and 
playback methodology.  TraceFS[3] is a versatile and 
complete file system trace tool for Linux, more full 
featured than our purpose built Windows tracer.   
ReplayFS[4] plays back TraceFS files at the VFS 
layer for accurate replay of all accesses including 
memory mapped accesses.  Beyond the difference in 
operating systems, we require an easily installed 
replay tool that includes all the prefetching and 
buffering afforded the user level application by the 
Windows operating system.  The importance of this 
is show in Section 5.  Therefore NASPT runs at user 
level, unlike ReplayFS.   
Joukov[5] created a set of latency profilers at user, 
file system, and driver levels for Windows, BSD and 
Linux and used these profiles to analyze local file 
systems and network file systems for two traces, a 
“grep” workload and a random read-write workload.   
We also build a file level tracer, but in contrast to 
Joukov focused on workloads representing average 
users, not code developers.  Also unlike Joukov 
NASPT replays from the user level for reasons 
already mentioned above.  
With DFSTrace[6] Mummert built an extensive long 
term, distributed file system trace collection, analysis 
and replay facility designed to enable study and 
improvement of distributed file systems, especially 
Coda.  This facility was used for a wide variety of 
performance studies and tuning efforts including 
general Unix I/O tuning.  Our single task traces are 
short in duration when compared the DFStrace’s long 
term, multi-application traces.  Our target usage is 
different.  DFSTrace also includes a facility 
“untrace” for replaying traces.  This is similar to the 
NASPT trace replay facility, although as noted earlier 
NASPT replays from user level on the Windows 
clients.    
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TBBT[7] implements a trace/replay facility for NFS 
traces.  Like NASPT, TBBT prepares the file server 
directory and file structure based on the contents of 
the trace.  Unlike NASPT, TBBT is NFS specific. To 
reduce dependence on the client, TBBT generates its 
own NFS messages, bypassing the client driver stack.   
//Trace[8] enables parallel application trace playback 
that respects data dependencies.   Buttress[9] 
provides highly time accurate replay of traces (within 
100usecs) to avoid thread scheduling impact on trace 
playback when measuring high end storage systems.  
Both tools deliver higher accuracy playback for high-
end and parallel storage systems, but we’ve found 
excellent repeatability with our simpler approach, 
likely due to our simpler testing domain (single 
storage volume, single outstanding, file-level 
request). 
The Storage Networking Industry Association has 
collected and hosts a set of traces[10] including long 
term server NFS/CIFS traces contributed by 
university IT departments.  A useful resource, but not 
for the single user performance measurements we 
target.  NASPT traces are also distributed with the 
tool in a human and machine readable format. 
Roselli[1] collected traces across a range of client 
and server systems including both HP-UX* and 
Windows NT* systems.  In agreement with our 
observations, Roselli finds that very different 
workloads result from different applications 
(machines used for different purposes in Roselli’s 
case) and that file accesses are bimodal, either mostly 
read or mostly write.  Our survey reveals no easy to 
use tools capable of replaying workloads 
representative of a single personal computer user. 
Another common approach to measuring NAS 
performance is the generation of relatively complex 
synthetic workloads which seek to model real 
applications.  One such too, SPECsfs, was updated in 
2008 and is squarely targeted at Enterprise NAS 
measuring “mixed workloads that simulate a typical 
server environment.[11]”   SPECsfs uses one or more 
NFS or CIFS clients to load the server, and reports 
number of operations per second as well as overall 
latency of operations for the server.    
Fstress[12] uses a similar parameterized, multi-client 
synthetic approach as SPECsfs but includes broader 
set tuning parameters.  Like SPECsfs, Fstress is 
enterprise NAS focused.  Postmark[13] simulates 
heavy small-file system workloads as generated by 
mail, net news and web-commerce servers.  It 
measures transaction rates to a large pool of 
randomly sized files for reads, creates, deletes and 
appends.   SPECsfs, Fstress and Postmark have been 
built to measure server performance resulting from 
many simultaneous clients.  Based on our analysis of 

single user workloads, we are skeptical that these 
tools accurately predict our single user’s performance 
experience.   
The Andrew Benchmark[14] does measure single 
user performance for a specific workload.  This 
benchmark includes phases that created directories, 
create files, examine large directory structures and 
examine file contents - emulating a software 
development workload.  Andrew is useful for file 
system tuning.  Since a small portion of consumer 
NAS users are software developers we find this 
workload too narrowly focused.   
FileBench[15] generates synthetic traffic according to 
profiles designed to emulate a wide variety of 
workloads including SPECsfs, Postmark 
(multithreaded), oltp, dss, web server and web proxy.  
FileBench also includes microbenchmarks similar to 
some of the NASPT workloads including directory 
copies and multistream reads.  Of the synthetic 
workload tools, FileBench best matches the 
workloads provided by NASPT, although it generates 
synthetic workloads which are currently server 
focused rather than replaying single user traces.   
There are also a large number of storage benchmarks 
based on synthetic mixes of reads and writes, either 
random or sequential that make little attempt to 
match true application workloads.  IOMeter[16] is 
widely used to measure storage performance.  
IOMeter generates a specified mix of reads and 
writes of a specified size and offset and controls the 
file layout on the local drive to generate truly 
sequential or random disk I/Os. By testing multiple 
mixes, IOMeter yields a surface of disk throughputs 
and I/Os per second indicating the overall 
performance characteristics of the I/O subsystem 
under test.  Unfortunately the random and sequential 
accesses can only be guaranteed for local drives, 
where Logical Block (LBA) level control is allowed, 
not for NAS tests.  IOMeter also creates/opens tests 
files with caching and prefetching flags turned off, 
something we’ve never seen in applications and 
which causes significant performance differences 
(see next section).   
IOMeter and other similar benchmarks such as 
Bonnie++[17], IOBENCH[18], Sandra[19], 
Xbench[20], and IOzone[21] generally return I/Os 
per second for a single file, which incompletely 
model the single user workloads we have traced.  
While these types of synthetic tests are historically 
most often used to measure home and small business 
NAS performance, in Section 6 we show that 
synthetic workloads don’t provide the same 
performance information as the single user trace 
replay of NASPT 
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Perhaps the best measure of our NAS system 
performance would be a true application benchmark 
run on a Client with data held on the NAS.  
Sysmark[22] is such a benchmark clearly relevant to 
single PC user performance.  This benchmark 
executes consumer relevant applications on a sample 
set of data files driving a realistic workload that 
includes all necessary storage accesses.  
Unfortunately, Sysmark requires low level (local) 
access to run.  Try as we might, we could not run the 
benchmark from a NAS, much less split the Sysmark 
files to put executables on the client and data on the 
NAS.  
As Traeger[2] points out “no single benchmark is 
always suitable.”  We find that for our target - single 
user NAS performance accurate to the workloads we 
have already described and including full Windows 
client caching and prefetching -  the best path 
forward is to develop and use our own user level 
trace playback utility and provide a set of 
representative traces.  Developing our own also 
allows us to make it very easy to use and to freely 
distribute.  This utility, the NAS Performance 
Toolkit, is described in the next section.  

4. NAS Performance Toolkit 
The NAS Performance Toolkit (NASPT) is a trace 
replay based file system exerciser and post-analysis 
tool designed specifically for measurement and 
investigation of single use performance of consumer 
and small business NAS devices.  The toolkit is 
freely available.    
NASPT is made up of two components - exerciser 
and visualizer.  To make the exerciser very easy to 
use, it is distributed with a full installer and 
controlled with the GUI shown in Figure 4.  The tool 
is both easy to use and faithful to its goal of replaying 
workloads in a way that measures single user NAS 
performance from a common personal computer. 
Trace playback occurs in two phases: disk 
preparation and the actual playback.  During 
preparation, the required file set is built on the target 
NAS device so that all file accesses issued during the 
test will succeed.  This is a common feature of most 
trace playback performance tools but especially 
reminiscent of TBBT[7].  Even though preparation is 
not counted directly in the resulting measurements, 
care is taken to approximate real application 
behavior.  Some tools[18,21,22] attempt to idealize 
disk layout by either specifying non-buffered (ie. 
DIRECT_IO) operation.  Because real applications 
interact with an abstraction of the disk provided by 
the NAS and have no control over the physical disk 
itself, the NASPT preparation phase allows the NAS 
device to layout the files according to its typical 

mechanisms.   Allowing the NAS device to arrange 
the files without interference improves accuracy at 
some expense to repeatability.  NASPT’s “batch 
mode” feature, detailed below, accounts for this 
inherent variability. 
We have found that disk image creation must be done 
with care to get accurate measurements.  For example 
allocating space for new writes has significantly 
different performance characteristics than 
overwriting existing locations (see Section 5 for 
impact quantification).  To expose this behavior, 
NASPT leaves write-only files to be created and 
written fresh during testing.  Similarly, our 
experiments show that the manner in which the file 
arrives on the NAS device is important.  A file which 
is copied will be laid out differently than one 
streamed (with size unknown at create time), 
resulting in significantly different performance.  
Section 6 details this difference for a Linux based 
NAS device with a Windows client.  With NASPT 
small files are copied from the local drive.  Large 
files, above 1 GB, are assumed to be media files and 
so are written directly to the NAS device.   
After disk preparation, NASPT replays the traced 
workloads recording operations, offset, size, type, 
initiation time, latency, and file name of each 
transaction in a XML file.  This test output format is 
identical to the trace input format to enable timing 
identical replay if desired.  Notes entered by the user 
in the GUI text boxes remain with the trace records 
and the tool automatically organizes results by 
manufacturer, model name, and time of execution. 
Timing precision depends on the capabilities of the 
client PC running NASPT, but is typically within a 
few microseconds on most architectures.  The tool 
processes workload traces into access lists stored in 
memory prior to generating any traffic.  The bulk of 
the performance calculations are done after playback 
concludes.  This approach minimizes the 
performance impact of the client PC itself on the test 
results.  Some tools[7,9,16] seek more accurate trace 
replay and so directly generating network traffic 
thereby bypassing much of the kernel stack on the 
client PC.  We did not take this approach in favor of 
faithfully emulating the behavior of real applications 
that would certainly use the underlying driver stack 
provided by the OS. 
The NASPT exerciser can reproduce the traced 
workload using the same timings as the original 
observed application, generate the storage accesses as 
quickly as possible, or insert a deterministic delay 
between subsequent accesses.  These three options 
allow the user a great deal of flexibility over the pace 
of the traffic generated. 
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Finally the exerciser offers a “batch mode” which 
runs five iterations of each workload, each exercising 
a separate disk image.  The final result of the batch 
mode run is the median throughput across all five 
trials for each test.  This approach exposes the impact 
of disk layout decisions by the NAS to the tester and 
accounts for outliers.  The GUI displays the median 
at the end of the batch run.  Throughputs from all five 
runs are recorded in a separate text file.  Further, 
NASPT records traces for every test completed. 
 

 
Figure 4: NAS Performance Toolkit exerciser GUI  

  

 
Figure 5: NAS Performance Toolkit analyzer output 

showing a latency histogram over all file requests  
 
The second part of the NAS Performance Toolkit, the 
analyzer, consists of a set of data visualizations 
designed to assist the user in obtaining a deeper 
understanding of the exerciser driven tests.  The tool 
exposes both summary statistics as well as individual 
files statistics.  Charts show throughput over time, 
transfer size histograms, latency histograms, and the 
“map” of file system accesses over time shown in 
Section 2.  A sortable, filterable, output trace lists 
every transaction, including start, finish, and response 

times measured in microseconds.  Figure 5 shows a 
sample latency histogram.  Many of the charts 
include simple statistics, like mean and standard 
deviation, and allow the user to modify the period of 
the calculation and the chart axes to suit their needs.   
The file access maps even allow the user to zoom in 
on certain sections of the chart and select files to 
include. 
The NAS Performance Toolkit was designed 
specifically to test consumer and small business NAS 
devices.  We believe the tool is uniquely suited to 
these devices because of two key features: 
Single user application trace driven – The NAS 
Performance Toolkit measures end user visible 
performance for a library of real world workload 
traces introduced in Section 2 and described in 
greater detail below.  The traces are carefully selected 
to include scenarios home users will understand and 
will want their NAS devices to perform well.  
NASPT uses a collection of traces to achieve 
coverage of single home user workloads.  
Additionally, users may add their own traces to the 
mix, allowing the tool to grow to accommodate 
future interesting usage models. 
Mainstream personal computer client inclusive - 
Workloads are generated from user level, so the full 
impact of the client platform, NAS platform, and the 
interaction between the two platforms is measured.  
During the creation of the toolkit we found client 
software had a first order impact on performance.  In 
particular, caching and prefetching performed by the 
client OS can significantly impact results 
(quantification in Section 5).  We validated the NAS 
Performance Toolkit against results from IOMeter 
and found that we had to turn off both client caching 
and prefetching to match IOMeter’s kernel level 
workload generator.  Turning off these client features 
changed measured throughputs by up to 50%, 
indicating the importance of including the full client 
software stack when measuring end user 
performance.  
The NAS Performance Toolkit runs best on a modern 
Windows XP PC.  To eliminate network bottlenecks, 
we encourage users to connect the test client directly 
to the NAS under test without an intervening network 
switch.  

4.1 Workload Traces 
The NAS performance toolkit includes a set of traces 
shipped with the tool in a documented XML format 
to ensure workload transparency and repeatability.  
Below is a listing of the included traces. 
HD Video Playback:  Traced from a commonly 
available video playback application, this trace 
represents about ten minutes of 720p high definition 
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MPEG-2 video playback.  A single 1.3GB file is 
accessed sequentially with 256kB user level reads.  
As is true in many of the workloads the NAS itself 
sees smaller reads since the SMB client and file 
system break these 256kB requests into smaller 
requests. 
HD Video Record:  This trace represents recording 
roughly fifteen minutes of a broadcast 720p MPEG-
2.  A single 1.6GB file is written sequentially with 
256kB access.  The bit rate is somewhat lower than 
the playback test, they contain different video. 
HD Video Play & Record:  This test was 
algorithmically constructed from the above video 
playback and record traces.  To combine we 
introduced a 50ms offset into the record stream then 
merged the two streams.  The 1GB file represents 
four minutes twenty seconds of application run time.  
Because the two streams have differing bit rates and 
because of variation in original trace periodicity, 
there is not a strict alternation of accesses. About 
20% of the transactions are sequential. 
Two HD Video Playback Streams:  Constructed 
from two copies of the above HD Video Playback 
test, this trace transfers 1.4GB of data representing 
two video streams played back for about six minutes.  
Again, sometimes one stream will issue two 
transactions in rapid succession so about 18% of the 
transactions are sequential. 
Four HD Video Playback Streams:  This workload 
is constructed from four copies of the video playback 
test.  The 1.3GB trace represents about three minutes 
forty-five seconds of video playback for each stream.  
About 11% of the accesses are sequential. 
Content Creation:  This is a trace of commercially 
available video and photo editing software products 
executing a scripted set of operations to produce a 
video from a collection of different source materials.  
It contains a single very large file, apparently 
containing the video output, which is written in bits 
and pieces.  About 11% of accesses within this file 
are sequential. There are many smaller files that are 
read and written more or less sequentially.  Overall, 
about 40% of the accesses are issued sequentially.  
The test transfers 155MBs, 90% of transactions are 
writes.  The median read size is 1300 bytes.  The 
median write is 12kB.  Transfers include a wide 
range of different sized accesses. 
Office Productivity:  Scripted sequences of typical 
workday operations from a commonly available 
office productivity suite make up this trace.  This test 
is the largest of the collection, transferring 2.8GB of 
data evenly divided between reads and writes.  Eighty 
percent of these accesses are logically sequential, 
scattered across six hundred files ranging from 12 

bytes in length to over 200MB.  The median read size 
is 2.2kB whereas the median write size is 1.8kB. 
File Copy To NAS: This trace includes accesses 
executed when copying a 1.4GB file to a NAS.  Data 
is written in 64kB sequential transactions. 
File Copy From NAS:  Identical to File Copy To 
NAS, but in the opposite direction.  All transactions 
are sequential 64kB reads. 
Directory Copy To NAS:  This trace represents a 
bulk copy of a complex directory tree containing 
2833 files, a transfer a large collection of files to the 
NAS.  The directory used represented a typical 
installation of a commercially available office 
productivity suite.  247MBs is transferred with an 
average write size of 41.4kB.  Only 52% of the writes 
are logically sequential as many files are small. 
Directory Copy From NAS:  Identical to File Copy 
To NAS, but in the opposite direction creating many 
read accesses. 
The traces themselves are stored in a single directory 
after installing the toolkit.  Documentation on the 
XML format as well as suggestions as to how one 
might capture and format traces of new workloads 
using commonly available tracing tools is included 
with NASPT.  Once formatted correctly, a user 
simply copies their custom workload to the same 
directory as the included traces and the NASPT 
Exerciser will automatically add the new test in its 
GUI upon its next startup.  This feature will enable 
users to explore a wide variety of interesting 
workloads. 

5. NAS Performance Conclusions 
In this section we’ll share NASPT measurements to 
underscore important observations about NAS 
performance.  Although NASPT collects a number of 
statistics, herein we use average throughput over the 
duration of the test as the principle value of merit. 
We find this metric is both an important performance 
measure and a comparable and immediately intuitive 
indicator of single user wait time. 
Using the toolkit we measured a large number of 
commercially available home and small business 
NAS platforms.  The diversity in the results, shown 
in Figure 6 surprised us.  The difference between a 
slow NAS and a fast NAS is great, up to 12x.  Even 
within a single class of devices with similar feature  
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Figure 6.  NASPT performance of commercially 
available home and small business NASes 

 
sets and price points like the 4-5 drive small 
business/home NASes (the three rightmost bars in 
each group), the difference in throughput was greater 
than 3x for a number of workloads.    
All tests were conducted using direct gigabit Ethernet 
connection (no switch or hub) between the NAS and 
client.  The NAS was empty except for the toolkit 
generated directory/file tree.  Software that shipped 
with the NAS was left in place.  Our client featured 
an Intel® CoreTM 2 Duo Processor, Windows* XP, 
1GB of DRAM and a Gigabit NIC.  As shown in 
Figure 6, even users connected by 100Mb/s Ethernet 
or 802.11n will see a significant performance delta 
between many NAS devices, though clearly not the 
same magnitude of difference gigabit Ethernet users 
will see.    
Figure 7 contains measurements of a common NAS 
from both a Windows XP based PC client and a 
Windows Vista* client on identical hardware.  The 
performance differences are much larger than the 
typical run to run variance - up to 20% on some tests.  
NASPT users should always employ identical client 
PCs to generate comparable results.    
As noted in Section 4, NASPT creates media files 
written during the workload rather than creating a 
preexisting files to overwrite.  Figure 8 shows 
performance for a representative consumer NAS, 
illustrating our reason for carefully including create-
at-test-time for write-only media files.  Overwriting 
the file in place delivers significantly higher 
throughput.  Since a video record won’t write over an 
existing file (who would record a program they 
already have?) NASPT correctly measures file create 
performance.  Our literature search revealed no other 
trace playback tools making a similar consideration. 
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Figure 7.  NAS performance for varying client OS 

 

 
Figure 8.  File create vs. file overwrite 

 
For some of the higher performing NASes, where 
performance is essentially disk-bound, we notice a 
small but significant variance due to disk layout.  
Figure 9 shows different trials to the same NAS, each 
trial targeting a distinct disk image.  The results show 
up to 15% difference between trials, clearly 
indicating that disk layout has a noticeable effect in 
the performance of these faster devices.  As noted in 
section 4, above, NASPT’s batch mode feature runs 
multiple tests using separate disk images reporting 
the median of five trials as the result. 
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Figure 9.  Performance for different disk layouts 
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6. NAS measurement tool comparison 
A primary motivation for NASPT development was 
to provide a more realistic measure of single user 
NAS performance than already provided by other 
easy-to-run tools we saw in use.  In this section we 
compare NASPT measurements to those generated 
by IOMeter, a tool often used for measuring small 
business/home NAS performance, and representative 
of the type of synthetic workloads generation tools 
that in our judgment are most often used for these 
measurements.    
To compare the results from the two tools we 
collected three similarly targeted NAS devices.  Each 
is marketed to the home and small business and has 
room for four drives and a Gigabit Ethernet LAN 
interface.  From available specifications we know 
that their internal processors, amount of memory, and 
even operating system differ significantly. Measuring 
these NASes with both NASPT and IOMeter shows 
significant differences in comparative performance 
resulting from the tool used. 
Throughputs normalized to NAS1 for each NASPT 
and IOMeter workload are included in Table 2 as 
well as a calculated average across workloads.    
IOMeter tests correspond to those we’ve found to 
best characterize local hard drive performance: small 
(4kbyte) randomly addressed reads and writes, and 
large (128kbyte) sequentially addressed reads and 
writes.  We tested for a single outstanding transaction 
(QD=1) and many outstanding transactions (QD=32) 
as is commonly done. 
The average IOMeter measurement predicts very 
little difference in performance between the three 
systems.  This is a surprising prediction given both 
our anecdotal use of the systems, where we see 
noticeable performance differences, and given the 
significant differences in hardware and software 
between the NAS systems.   NASPT predicts 
significant performance differences with NAS2 1.3x 
the performance of NAS1, and NAS3 2.6x the 
performance.  Limiting IOMeter to a single 
outstanding transaction provides better correlation, 
although significant differences remain.  For example 
IOMeter predicts NAS2 as 80% faster than NAS1 
while NASPT shows only a 30% difference. 
Averages depend on the mix of workloads they  
include.  Individual workload comparisons don’t 
suffer the same issue.  As expected, since the 
workloads are similar, IOMeter 128kbyte read 
performance (sequential, QD=1) well predicts 
NASPT file read performance (FileCopyFromNAS) 
and Video Play (HDVideo_1Play) workloads.   
IOMeter 128k sequential reads with QD=32 well 
predicts Office Productivity – although given the 

underlying workloads this may be coincidence.  We 
are hard pressed to find any other strong IOMeter to 
NASPT single workload correlation.   
 

NAS 3 NAS 2 NAS 1
NASPT
ContentCreation 0.8 0.7 1.0
DirectoryCopyFromNAS 2.5 1.6 1.0
DirectoryCopyToNAS 3.3 0.9 1.0
FileCopyFromNAS 3.3 1.9 1.0
FileCopyToNAS 5.5 1.1 1.0
HDVideo_1Play 2.8 2.1 1.0
HDVideo_1Play_1Record 3.0 1.3 1.0
HDVideo_1Record 4.0 0.8 1.0
HDVideo_2Play 2.1 1.8 1.0
HDVideo_4Play 1.5 2.0 1.0
OfficeProductivity 0.7 0.2 1.0
PhotoAlbum 2.0 1.0 1.0
NASPT Average 2.6 1.3 1.0
IOMeter
4k random rd, QD=1 1.1 1.1 1.0
128k seqential rd, QD=1 3.3 2.2 1.0
4k random wr, QD=1 0.7 1.0 1.0
128k sequential wr, QD=1 2.0 1.4 1.0
QD=1 Average 2.7 1.8 1.0
4k random rd, QD=32 0.1 1.5 1.0
128k seqential rd, QD=32 0.8 0.2 1.0
4k random wr, QD=32 0.0 0.1 1.0
128k sequential wr, QD=32 1.8 0.7 1.0
QD=32 Average 1.1 0.5 1.0
I/Ometer Average 1.2 1.0 1.0

Table 2. NAS measurements: NASPT & IOMeter 
   
Clearly homogenous synthetic measurements with 
tools like IOMeter paint a fundamentally different 
comparative NAS performance story than the 
application trace workloads of NASPT, even at the 
single workload level.  The workloads are simply 
different in terms of read/write mix, access size, file 
opens/creates/deletes.  Rather than trying to find the 
right synthetic mix, we prefer to use the real traced 
workloads available with NASPT. 

7.  Improving Linux NAS performance 
for Windows clients  
NASPT measurements identified a Windows client to 
Linux NAS performance issue.  The realistic creation 
of files, already underscored as important in this 
paper, enabled us to find this issue.  Had files been 
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opened during the preparation phase with caching 
and prefetching flags turned off (i.e.: direct_io), like 
many other tools but unlike any real application we 
have observed, the issue would have remained 
hidden.  The section presents the issue along with 
modifications we made and verified to samba[23] 
resulting in a significant performance improvement 
(38% average improvement in NASPT scores). 
Using NASPT we compared two high-end NAS 
platforms featuring identical PC hardware but with 
different operating systems: Linux 2.6 in the 
Openfiler[24] distribution and Windows XP.  NASPT 
measurements showed a significant performance 
disadvantage for the Linux NAS on most workloads.  
For example Video Playback returned 22MB/s for the 
Linux NAS and 36 MB/sec for the Windows NAS.  
Other results were similar.   
  

 
Figure 10: Histogram of latencies for Video Playback 

test on Windows based NAS 

 
Figure 11: Histogram of latencies for Video Playback 

test on Linux based NAS 
 
Using the NASPT visualization tool, we found 
identical file requests regardless of the server OS, as 
expected. However, further analysis using the 
visualizer showed significant differences in the 
access latencies as shown in Figure 10 and Figure 11.  
The mystery then is why for identical sequences of 
256kB reads do we see the long tail of latencies on 
the Linux based NAS? 

The figures represent latencies as the file is read, as 
this particular workload contains only reads. 
However, file layout is determined as the file is 
written, during NASPT’s preparation phase.  
Observing network traffic during preparation we 
found a number of unexpected single byte writes 
mixed with the expected large writes to the video 
data file.  These one byte writes were each about 
128kB apart, addressed to offsets within the file well 
above the accesses concurrently generated by 
NASPT, and were apparently introduced by some 
portion of the Windows operating system or 
SMB/CIFS redirector. These small writes contained 
no real data and were eventually overwritten by large 
data writes of the actual HD video file.  
For an XP system using NTFS, these one byte writes 
appear to serve as hints to drive allocation of 
contiguous disk[25] blocks when the final size of the 
file is unknown at file creation.  NTFS assumes that 
all file bytes will be filled with data, so the small 
write to a high offset forces the file system to allocate 
a set of contiguous blocks up to that offset[26]. When 
valid data is written to the intervening addresses, the 
blocks are already allocated, resulting in a highly 
sequential disk layout and better performance when 
the file is eventually read.    
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Unlike NTFS, most Linux file systems assume that 
discontiguous files are sparsely populated with 
data[27]. The file system allocates blocks as they are 
written, abutting discontiguous writes.  In this case 
the one byte writes create numerous discontinuities as 
the file is written.  A conceptual diagram of the 
resulting file layout is shown in Figure 12.   In 
practice, we have observed pre-allocate writes to 
offsets up to 15 MB above current data write pointer. 
The fragmentation turns what should be a best-case 
workload for most modern hard disks (large, 
sequential reads) into a set of low performance disk 
seeks. We observed one 3.5GB video file fragmented 
into 49,986 separate disk extents. A simple copy to a 
new location defragmented this file to 28 extents (26 
extents being ideal).  Reads Writes
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Figure 12. 1-byte hints result in severe fragmentation 
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The behavior we observed is not limited to test cases 
driven by NASPT: using iTunes* to rip a CD to a 
NAS device shows the same behavior. We expect to 
see this behavior any time a Windows client is 
appending to a file and the ultimate length of the file 
is not currently known. Additionally, the Windows 
client behavior does not change in response to the 
Samba-advertised "fstype" parameter.  The client 
issues pre-allocate writes whether the server 
announces itself as "NTFS" or "Samba."  
We’ve also experimented with the “strict allocate” 
feature found in newer revisions of Samba (post 
3.0.20).  This flag appears to force the underlying file 
system to allocate files based on NTFS-like 
policies[28], resulting in performance improvements 
like those seen with XFS.  Setting this flag gave us 
performance gains described later in this section.   
Unfortunately, strict allocate forces sequential 
allocation by filling discontinuities with zeros, 
resulting in another performance issue: long latencies 
for random writes to big, new files.  NASPT’s 
Content Creation workload includes such writes as 
already shown in Figure 3.  As previously discussed 
in section 4, NASPT creates Content Creation’s big 
write-only file at test time to better model the 
behavior of the original application.  Therefore writes 
within this test are sometimes substantially above the 
previous end of file.  With strict allocate such writes 
result in many writes, enough to fill the file from the 
last written data to the point of the current data write 
with zeros.  While these fill writes take place the 
actual application write-stalls.  This is seen by 
applications, and by NASPT, as very long transaction 
latency.  Observed latencies can exceed tens of 
seconds, sometimes even leading the Windows client 
to disconnect and throw an exception; apparently 
concluding that the server has crashed. 
We fixed this issue, while keeping the advantages of 
strict allocate, by modifying the manner in which 
Samba implements strict allocate.  Our specific 
changes are shown in           Figure 13. 
The modification to smbd/vfs.c imposes a limit on the 
number of bytes to fill above the current end of file.  
If the current write exceeds that limit it is handled as 
a sparse file write, otherwise Samba follows the strict 
allocate behavior and fills with zeros.   We have 
experimentally determined 2MB effectively balances 
individual write latency with overall throughput.  
This allows streams of large sequential writes to 
remain sequential in the presence of those 1-byte 
hints while minimizing the impact on real 
discontiguous writes. 
The second change, to modules/vfs_default.c disables 
strict allocate for files whose size is known at 
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samba/source/smbd/vfs.c
vfs_fill_sparse(…) 
{ 
    … 
    if (len <= st.st_size)  
        return 0; 
     
    //Impose limit on how much to write ahead of current position 
    #define ALLOCATION_LIMIT 0x200000 
    if (len - st.st_size > ALLOCATION_LIMIT) 
        return 0; 
    … 
} 
 
samba/source/modules/vfs_default.c: 
vfswrap_ftruncate(…) 
{ 
    int result = -1; 
    SMB_STRUCT_STAT st; 
    char c = 0; 
    SMB_OFF_T currpos; 
 
    START_PROFILE(syscall_ftruncate); 
 
    /* ignore file fill when presented  with new file of known size. 
    if (lp_strict_allocate(SNUM(fsp->conn))) 
    { 
        result = strict_allocate_ftruncate(handle, fsp, fd, len); 
        END_PROFILE(syscall_ftruncate); 
        return result; 
    } 
    */ 
    … 
} 
         Figure 13. Linux Samba code changes 
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Figure 14. Changes to Samba improve performance 

reation, eliminating unnecessary zero fills when the 
iscontiguous 1-byte writes won’t occur anyway.  
ith the simple Samba code changes in place we 

gain measured performance over a number of 
ASPT workloads.  The results are displayed in 
igure 14 for a Linux based NAS.  Moving to strict 
llocate fixes the layout issue on disk resulting in an 
verage of 38% higher performance across all 
ASPT workloads with a much bigger impact for 

ome individual tests.   The long latencies already 
escribed drive a drop is Content Creation 
hroughput.  The Samba changes (SA Fix) 
ecommended here provide the highest throughput, 
mproving disk layout for the sequential files while 
inimizing the impact on the Content Creation test 
ith its real discontiguous writes. 



8.  Conclusions 
Future home and small business NAS devices will 
face increasingly intense, interactive workloads.  
Single user performance of these devices will become 
increasingly visible to the end user, as they wait for 
time sensitive accesses to complete.  We’ve 
developed the NAS Performance Toolkit, enabling 
easy measurement of home and small business NAS 
performance.  We’ve made NASPT freely available 
at www.intel.com/software/NASPT. 
NASPT’s unique contributions include a new trace 
set, focused on single user scenarios and covering 
media, productivity and file management workloads.  
NASPT replays these traces to measure resulting 
single user NAS performance and includes a 
visualizer for understanding measured NAS behavior.  
As we have shown, great care was taken to ensure 
workload replay representative of real single user 
accesses from mainstream personal computers 
including proper file open flags, disk layout, and 
client side caching/prefetching.  This is the second 
unique contribution of our work. These contributions, 
and NASPT ease-of–use, are increasingly recognized 
in the industry as home and small business review 
sites base more and more reviews on NASPT tests. 
We also show that homogeneous synthetic test tools, 
like IOMeter show a different NAS performance 
story, diverging from real trace driven NASPT 
measurements.  Our measurements using this new 
tool show that current NAS performance varies 
greatly, with the performance of some NAS devices 
falling into a range that will disappoint users even 
when connected over relatively slow 100Mb/s 
networks.   Users with faster networks will see up to 
3x performance difference even between NAS 
devices in the same market segment.    
NASPT measurements led us to identify and fix an 
interaction between the pre-allocate writes generated 
by Windows clients and the Linux ext3 based NAS.  
We share the code fixes that result in a 38% increase 
in performance - the third contribution of this work.  .   
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