
Measuring and Improving Single-User NAS Performance
Tony Bock, Mason Cabot, Frank Hady, Matthew Shopsin

Storage Technologies Group

Intel Corporation
Hillsboro, OR 97124

{tony.bock, mason.b.cabot, frank.hady, matthew.f.shopsin} @ intel.com

Abstract
NAS devices are increasingly entering the home and
small business as centralized storage resources for
large collections of documents, pictures, music and
videos. Increasingly these devices are used for more
than background tasks like backup. Newer
interactive usages, like media access/creation, expose
the performance of the NAS directly to the user.
Unlike the enterprise NAS, the home and small
business NAS will be judged primarily by single user
performance as seen in user wait time.
We introduce a new tool, the NAS Performance
Toolkit (NASPT), uniquely built to measure the
single user NAS Performance seen by a user of a
mainstream personal computer. NASPT includes a
wide range of workloads identified by our analysis of
media, productivity and bulk data operations likely to
drive single user NAS performance.
We’ve made NASPT very easy to use and freely
available. We’ve also used the NASPT trace/replay
tool extensively across many commercially available
NAS devices and share the resulting performance
lessons. Most notably we share simple modifications
to Samba that fix an unfortunate Windows* client to
Linux* NAS interaction significantly improving
performance.

1. Introduction
Users accessing data stored on a Network Attached
Storage (NAS) device see the performance of that
NAS as time spent waiting for the data to return. For
accesses across fast local area networks, the time
observed would ideally be close to the wait time
observed when accessing a local drive. Experience
with copying files from a NAS tells us all that this
ideal is not often reached, we find ourselves waiting
for the file to transfer or for the video to start. Such
experience is hard to quantify and without a
repeatable, relevant quantification it is difficult to
improve.

* Other names and brands may be claimed as the property
of others

In some settings, particularly the home, NAS devices
are increasingly being used as the media storage
device. This trend is accelerated by the desire to
access music, pictures and video from all the
computers in the home and from advanced set top
boxes that may include no hard drive at all. Often the
NAS will be accessed by a single user interested in
rapid response to their requests.
The correct definition of NAS performance is domain
dependent. An enterprise NAS may hold files for
thousands of users or serve as the backend for
multiple web servers. For Enterprise NASes multi-
client, throughput-with-fairness is a top measure of
performance. In our work we focus on single user
NAS performance. We could call this “NAS
responsiveness” or “NAS wait time”. It’s the time
that a user must wait to receive the requested data.
We start by collecting and analyzing a trace set
covering real single user file accesses driven by the
creation or consumption of media, interacting with a
dataset using productivity applications, or copying of
files and directories. Our analysis of these consumer-
oriented traces reveals the characteristics necessary
for an accurate measure of single user NAS
performance. To our disappointment, we find no
existing tool for measuring NAS performance that
encompasses this set of characteristics.
This paper introduces the NAS Performance Toolkit
(NASPT), designed specifically to measure the NAS
performance as seen by a single user on a mainstream
personal computer for a broad set of media and
productivity workloads. We’ve found that the
precise manner in which the workloads are replayed
is important. As we show here, NAS test
preparation, flags used in opening files, test client
operating system, and disk layout materially impact
performance. For this reason we designed NASPT to
model a regular user-level application as closely as
practical. Using NASPT we found wide variations in
the performance of commercially available consumer
NAS devices, we share these measurements.
The realism of the NASPT workloads has enabled us
to identify and then to quantify an important
performance incompatibility between Windows and

1

Linux. We describe that incompatibility, its
performance impact and provide Linux code changes
to fix the issue. An average NASPT score increase of
38% results from these changes; a significant
increase in single user NAS performance. We’re
convinced that the realistic single user performance
measurements enabled by NASPT will expose
additional NAS performance improvements.
Our contribution with this work is practical as well as
unique. We deliver a tool that we show includes a
set of traces covering main stream, single user
personal computer NAS usage. Furthermore we
deliver a tool that replays traces in a manner
consistent with real usage, shown to avoid many
potential pitfalls, while still able to isolate NAS
performance. We’ve made NASPT easy for others
to use and made it freely available at
www.intel.com/software/NASPT. We aren’t aware
of any similar tools and in fact NASPT is already
gaining significant use within the industry.

2. Application storage trace
characteristics
Our goal is to measure single user NAS performance.
We start by tracing and analyzing a set of
representative user workloads. In all cases we traced
accesses generated by a Windows XP* client since
this is the most common personal computer operating
system. The workloads include both media (video)
playback and record, standard file and directory
copies, and interactive applications. We found the
NAS accesses generated by these applications to be
surprisingly complex and varied as described here.

2.1 Tracing Methodology
Consistent with mainstream personal computer
usage, we assume that operating system files and
executables will be kept locally on the client. Heavy
NAS users will store their personally generated data
and media on the NAS to capitalize on the big,
centrally available, redundant storage available from
the NAS. Therefore our traces include only those
transactions targeting data/media files and initiated
by the application being traced. System generated
accesses and accesses to executable program files are
excluded.
In the Windows XP operating system, we developed
a file system mini-filter driver to observe application
generated transactions as they transited from user
space to the NTFS file system driver. In this respect,
our tracing approach was very similar to Roselli’s[1]
although our target workloads are very different. Our
driver records transaction initiation time, operation,
data size, data offset, and file name. The driver also

registers for a callback notification and records finish
time.
We captured accesses to an otherwise empty local
hard drive. Capturing local disk traces, rather than
NAS accesses, allowed us to observe each
application’s “natural” behavior before it was
modified by the network storage client driver. In
each case, the system was rebooted before capture so
that the file system cache would begin from a
completely cold state. In addition we deleted the
Windows XP prefetch file before each reboot to
ensure no disk accesses were hidden.
By attaching our filter driver to an otherwise idle
disk, we were able to isolate our traces from much of
the non-target traffic on the system, but not all.
Window XP includes a secondary I/O path, the FAST
I/O path, wherein the OS assumes a particular
transaction will be fulfilled by the cache. We
excluded kernel generated I/O, like fast I/O and cache
manager accesses, because by design these requests
are redundant with already completed file I/O and so
won’t make it through the file system cache.
Additionally, memory mapped file accesses do not
appear as regular I/O request packet (IRP) operations
and so will not be counted by the file system mini-
filter. We avoided applications that were known to
memory map their data files as in the Windows-
supplied notepad.exe and wordpad.exe utilities. Most
other memory mapping appears to target shared
libraries, which aren’t going to be included in our
traces anyway.
Table 1 shows a list of workloads traced. For video
workloads we required an external device for realism.
Here we traced accesses while a Media Player
sourced a 720p HD stream to a network connected
display device. Video record traced local drive
accesses as a 720P video on the air broadcast was
recorded. Those same video files provided a large
data file for our file read and write tests. We used a
photo organizing and display program to interactively
browse through 110 digital pictures to obtain the
Photo Album trace. For Content Creation and Office
Productivity we traced accesses to data files within a
video creation and productivity applications. Finally
for our directory tests we copied a complex office
generated directory set.

2

http://www.intel.com/software/NASPT

Test # files % seq. Bytes Rd/Wr Ave.
Throughput

Description

HD Video Play 1 99.5% 2.0GB Rd 2.0 MB/s 256kB reads
HD Video Record 1 99.9% 2.0 GB Wr 1.8 MB/s 256kB writes
Directory Copy From NAS 2833 52.5% 0.20 GB Rd 13 MB/s 64kB reads
Directory Copy To NAS 2833 52.5% 70B Rd

0.25GB Wr
15 MB/s Predominantly 64kB writes, wide

scattering under 16kB
File Copy From NAS 1 100% 4.3GB Rd 51MB/s 64kB reads
File Copy To NAS 1 100% 4.3GB Wr 55 MB/s 64kB writes
Photo Album 169 80% 0.81GB 1.2 MB/s All reads – wide distribution of sizes
Office Productivity 607 81.3% 1.4GB Rd

1.4GB Wr
0.77MB/s Reads & writes; small, 1kB & 4kB

reads; Mostly 1kB writes
Content Creation 98 38.6% 12MB Rd

14MB Wr
0.054MB/s 95% writes; 1k, 4k & little reads;

Writes up to 64kB
Table 1: Single user workload characteristics

2.2 Trace Analysis
By analyzing the traits of the single user traces, we
identify the required characteristics for accurate
measurement of single user NAS performance. It’s
easy to see from Table 1 that the NAS must be
exercised for different numbers of files, from one to
thousands. Some workloads include a wide variety
of access sizes and addressing patterns. Three of our
nine workloads include both reads and writes and in
two cases in almost equal proportions – contrary to
the bimodal (almost all read or write) behavior found
by Roselli.
We can also see that some workloads are highly
sequential, while others are mostly random. Deeper
analysis reveals that even the highly random
workloads exhibit specific periods of sequential
accesses. Here “sequential” is defined at the file
level - current access is to the same file as the
previous access and starts at an offset equal to offset
plus size of the last access. This does not necessarily
mean the access is physically sequential on the disk
as the network file system abstraction hides the file to
disk block (LBA) mapping. However, it is an
indicator of the likelihood of actual disk sequentially.
Average throughputs vary from a high of 55MB/s to
a low of 54 KB/s. Analysis of traces for the
workloads exhibiting the lowest throughputs reveals
long periods of low or no disk activity during wait-
on-compute or wait-on-the-user periods. To focus on
the performance characteristics of the NAS device,
NASPT removes these non-disk idle times.
As a part of the tool, we constructed a visualizer to
aid the user in more fully understanding the workload
traces and test results. A particularly useful
visualization is the conceptual map of file accesses
over time. Figure 1 shows this view for the Video
Play trace, which is predictably homogenous,

sequential, 256KB reads walking the address space of
a single file. This trace is 10 minutes long (x-axis)
and walks across all 2GB of access offsets within the
file (y-axis). If the file is truly laid out in sequential
blocks by the NAS, Video Play should efficiently
read from a hard disk drive with few disk seeks.
The same analysis of the Photo Album workload in
Figure 2 presents a more visually interesting chart.
Each long vertical line represents a complete read of
an individual file. Each color represents a unique file
(although in this case there are more files than
colors). This application begins by reading metadata
as seen on the left side of

Figure 1. Video Play file offset over time

Figure 2 Photo album file offset over time

3

the chart, creating a series of 2 byte to 700 byte
mostly non-sequential reads from two different offset
regions within each picture file. Interspersed with
metadata reads are sequential 568 bytes likely for
thumbnail construction. Individual photo browsing
(further right) results in many multi-Kbyte sequential
reads of varying length interspersed with additional,
small, random metadata reads. The process starts
over again in the middle of the trace as new pictures
come into view on screen. This complex behavior,
periods of small random reads interspersed with
periods of short sequential reads and periods of long
varying length sequential reads, is an interesting
compound read workload we would not have
anticipated.
A portion of the Content Creation workload, a period
of heavy relatively random writes, is displayed in
Figure 3. The Content Creation trace shows many
periods of relatively low read/write activity
punctuated by busy periods, like the one shown in
Figure 3. The 1kB and 512-byte writes to a single
file shown represent a difficult workload indeed,
relatively random offset writes to a very large file.
The long horizontal lines represent long delays
(completion latencies) for some of these writes. The
longest of these is three seconds! These long delays
are the result of delays within the storage subsystem,
not the length of the writes themselves. We
investigate and explain this behavior in Section 5 of
this paper. Content Creation represents another
workload with unanticipated characteristics.

Figure 3 Content Creation file offset over time during

a period of heavy writes

While the video play workload would be easy to
generate synthetically, the same is not true of the
behavior observed in Photo Album and Content
Creation workloads. In fact five (Directory Copy
from and to NAS, Office Productivity, Photo Album,
Content Creation) of the nine workloads we traced
appeared difficult to generate, and even more
difficult to prove correct, with a synthetic workload

generator. For this reason we turned to trace
playback to measure single use NAS performance.
The next section describes the approaches others
have taken, followed by a description of our
approach, NASPT.

3. Related Work and Motivation
A wide variety of trace based measurement tools
exist. Traeger, Zadok, Joukov, and Wright[2]
exhaustively describe file and storage benchmarking,
including 415 benchmarks and tools. This section
describes the most relevant subset, plus a few others
starting with trace/replay based tools, moving to
synthetic application generators, synthetic simple
workload generators, and finally to relevant PC
application benchmarks.
A variety of trace/replay tools exist, all with
significant differences from NASPT in workload and
playback methodology. TraceFS[3] is a versatile and
complete file system trace tool for Linux, more full
featured than our purpose built Windows tracer.
ReplayFS[4] plays back TraceFS files at the VFS
layer for accurate replay of all accesses including
memory mapped accesses. Beyond the difference in
operating systems, we require an easily installed
replay tool that includes all the prefetching and
buffering afforded the user level application by the
Windows operating system. The importance of this
is show in Section 5. Therefore NASPT runs at user
level, unlike ReplayFS.
Joukov[5] created a set of latency profilers at user,
file system, and driver levels for Windows, BSD and
Linux and used these profiles to analyze local file
systems and network file systems for two traces, a
“grep” workload and a random read-write workload.
We also build a file level tracer, but in contrast to
Joukov focused on workloads representing average
users, not code developers. Also unlike Joukov
NASPT replays from the user level for reasons
already mentioned above.
With DFSTrace[6] Mummert built an extensive long
term, distributed file system trace collection, analysis
and replay facility designed to enable study and
improvement of distributed file systems, especially
Coda. This facility was used for a wide variety of
performance studies and tuning efforts including
general Unix I/O tuning. Our single task traces are
short in duration when compared the DFStrace’s long
term, multi-application traces. Our target usage is
different. DFSTrace also includes a facility
“untrace” for replaying traces. This is similar to the
NASPT trace replay facility, although as noted earlier
NASPT replays from user level on the Windows
clients.

4

TBBT[7] implements a trace/replay facility for NFS
traces. Like NASPT, TBBT prepares the file server
directory and file structure based on the contents of
the trace. Unlike NASPT, TBBT is NFS specific. To
reduce dependence on the client, TBBT generates its
own NFS messages, bypassing the client driver stack.
//Trace[8] enables parallel application trace playback
that respects data dependencies. Buttress[9]
provides highly time accurate replay of traces (within
100usecs) to avoid thread scheduling impact on trace
playback when measuring high end storage systems.
Both tools deliver higher accuracy playback for high-
end and parallel storage systems, but we’ve found
excellent repeatability with our simpler approach,
likely due to our simpler testing domain (single
storage volume, single outstanding, file-level
request).
The Storage Networking Industry Association has
collected and hosts a set of traces[10] including long
term server NFS/CIFS traces contributed by
university IT departments. A useful resource, but not
for the single user performance measurements we
target. NASPT traces are also distributed with the
tool in a human and machine readable format.
Roselli[1] collected traces across a range of client
and server systems including both HP-UX* and
Windows NT* systems. In agreement with our
observations, Roselli finds that very different
workloads result from different applications
(machines used for different purposes in Roselli’s
case) and that file accesses are bimodal, either mostly
read or mostly write. Our survey reveals no easy to
use tools capable of replaying workloads
representative of a single personal computer user.
Another common approach to measuring NAS
performance is the generation of relatively complex
synthetic workloads which seek to model real
applications. One such too, SPECsfs, was updated in
2008 and is squarely targeted at Enterprise NAS
measuring “mixed workloads that simulate a typical
server environment.[11]” SPECsfs uses one or more
NFS or CIFS clients to load the server, and reports
number of operations per second as well as overall
latency of operations for the server.
Fstress[12] uses a similar parameterized, multi-client
synthetic approach as SPECsfs but includes broader
set tuning parameters. Like SPECsfs, Fstress is
enterprise NAS focused. Postmark[13] simulates
heavy small-file system workloads as generated by
mail, net news and web-commerce servers. It
measures transaction rates to a large pool of
randomly sized files for reads, creates, deletes and
appends. SPECsfs, Fstress and Postmark have been
built to measure server performance resulting from
many simultaneous clients. Based on our analysis of

single user workloads, we are skeptical that these
tools accurately predict our single user’s performance
experience.
The Andrew Benchmark[14] does measure single
user performance for a specific workload. This
benchmark includes phases that created directories,
create files, examine large directory structures and
examine file contents - emulating a software
development workload. Andrew is useful for file
system tuning. Since a small portion of consumer
NAS users are software developers we find this
workload too narrowly focused.
FileBench[15] generates synthetic traffic according to
profiles designed to emulate a wide variety of
workloads including SPECsfs, Postmark
(multithreaded), oltp, dss, web server and web proxy.
FileBench also includes microbenchmarks similar to
some of the NASPT workloads including directory
copies and multistream reads. Of the synthetic
workload tools, FileBench best matches the
workloads provided by NASPT, although it generates
synthetic workloads which are currently server
focused rather than replaying single user traces.
There are also a large number of storage benchmarks
based on synthetic mixes of reads and writes, either
random or sequential that make little attempt to
match true application workloads. IOMeter[16] is
widely used to measure storage performance.
IOMeter generates a specified mix of reads and
writes of a specified size and offset and controls the
file layout on the local drive to generate truly
sequential or random disk I/Os. By testing multiple
mixes, IOMeter yields a surface of disk throughputs
and I/Os per second indicating the overall
performance characteristics of the I/O subsystem
under test. Unfortunately the random and sequential
accesses can only be guaranteed for local drives,
where Logical Block (LBA) level control is allowed,
not for NAS tests. IOMeter also creates/opens tests
files with caching and prefetching flags turned off,
something we’ve never seen in applications and
which causes significant performance differences
(see next section).
IOMeter and other similar benchmarks such as
Bonnie++[17], IOBENCH[18], Sandra[19],
Xbench[20], and IOzone[21] generally return I/Os
per second for a single file, which incompletely
model the single user workloads we have traced.
While these types of synthetic tests are historically
most often used to measure home and small business
NAS performance, in Section 6 we show that
synthetic workloads don’t provide the same
performance information as the single user trace
replay of NASPT

5

Perhaps the best measure of our NAS system
performance would be a true application benchmark
run on a Client with data held on the NAS.
Sysmark[22] is such a benchmark clearly relevant to
single PC user performance. This benchmark
executes consumer relevant applications on a sample
set of data files driving a realistic workload that
includes all necessary storage accesses.
Unfortunately, Sysmark requires low level (local)
access to run. Try as we might, we could not run the
benchmark from a NAS, much less split the Sysmark
files to put executables on the client and data on the
NAS.
As Traeger[2] points out “no single benchmark is
always suitable.” We find that for our target - single
user NAS performance accurate to the workloads we
have already described and including full Windows
client caching and prefetching - the best path
forward is to develop and use our own user level
trace playback utility and provide a set of
representative traces. Developing our own also
allows us to make it very easy to use and to freely
distribute. This utility, the NAS Performance
Toolkit, is described in the next section.

4. NAS Performance Toolkit
The NAS Performance Toolkit (NASPT) is a trace
replay based file system exerciser and post-analysis
tool designed specifically for measurement and
investigation of single use performance of consumer
and small business NAS devices. The toolkit is
freely available.
NASPT is made up of two components - exerciser
and visualizer. To make the exerciser very easy to
use, it is distributed with a full installer and
controlled with the GUI shown in Figure 4. The tool
is both easy to use and faithful to its goal of replaying
workloads in a way that measures single user NAS
performance from a common personal computer.
Trace playback occurs in two phases: disk
preparation and the actual playback. During
preparation, the required file set is built on the target
NAS device so that all file accesses issued during the
test will succeed. This is a common feature of most
trace playback performance tools but especially
reminiscent of TBBT[7]. Even though preparation is
not counted directly in the resulting measurements,
care is taken to approximate real application
behavior. Some tools[18,21,22] attempt to idealize
disk layout by either specifying non-buffered (ie.
DIRECT_IO) operation. Because real applications
interact with an abstraction of the disk provided by
the NAS and have no control over the physical disk
itself, the NASPT preparation phase allows the NAS
device to layout the files according to its typical

mechanisms. Allowing the NAS device to arrange
the files without interference improves accuracy at
some expense to repeatability. NASPT’s “batch
mode” feature, detailed below, accounts for this
inherent variability.
We have found that disk image creation must be done
with care to get accurate measurements. For example
allocating space for new writes has significantly
different performance characteristics than
overwriting existing locations (see Section 5 for
impact quantification). To expose this behavior,
NASPT leaves write-only files to be created and
written fresh during testing. Similarly, our
experiments show that the manner in which the file
arrives on the NAS device is important. A file which
is copied will be laid out differently than one
streamed (with size unknown at create time),
resulting in significantly different performance.
Section 6 details this difference for a Linux based
NAS device with a Windows client. With NASPT
small files are copied from the local drive. Large
files, above 1 GB, are assumed to be media files and
so are written directly to the NAS device.
After disk preparation, NASPT replays the traced
workloads recording operations, offset, size, type,
initiation time, latency, and file name of each
transaction in a XML file. This test output format is
identical to the trace input format to enable timing
identical replay if desired. Notes entered by the user
in the GUI text boxes remain with the trace records
and the tool automatically organizes results by
manufacturer, model name, and time of execution.
Timing precision depends on the capabilities of the
client PC running NASPT, but is typically within a
few microseconds on most architectures. The tool
processes workload traces into access lists stored in
memory prior to generating any traffic. The bulk of
the performance calculations are done after playback
concludes. This approach minimizes the
performance impact of the client PC itself on the test
results. Some tools[7,9,16] seek more accurate trace
replay and so directly generating network traffic
thereby bypassing much of the kernel stack on the
client PC. We did not take this approach in favor of
faithfully emulating the behavior of real applications
that would certainly use the underlying driver stack
provided by the OS.
The NASPT exerciser can reproduce the traced
workload using the same timings as the original
observed application, generate the storage accesses as
quickly as possible, or insert a deterministic delay
between subsequent accesses. These three options
allow the user a great deal of flexibility over the pace
of the traffic generated.

6

Finally the exerciser offers a “batch mode” which
runs five iterations of each workload, each exercising
a separate disk image. The final result of the batch
mode run is the median throughput across all five
trials for each test. This approach exposes the impact
of disk layout decisions by the NAS to the tester and
accounts for outliers. The GUI displays the median
at the end of the batch run. Throughputs from all five
runs are recorded in a separate text file. Further,
NASPT records traces for every test completed.

Figure 4: NAS Performance Toolkit exerciser GUI

Figure 5: NAS Performance Toolkit analyzer output

showing a latency histogram over all file requests

The second part of the NAS Performance Toolkit, the
analyzer, consists of a set of data visualizations
designed to assist the user in obtaining a deeper
understanding of the exerciser driven tests. The tool
exposes both summary statistics as well as individual
files statistics. Charts show throughput over time,
transfer size histograms, latency histograms, and the
“map” of file system accesses over time shown in
Section 2. A sortable, filterable, output trace lists
every transaction, including start, finish, and response

times measured in microseconds. Figure 5 shows a
sample latency histogram. Many of the charts
include simple statistics, like mean and standard
deviation, and allow the user to modify the period of
the calculation and the chart axes to suit their needs.
The file access maps even allow the user to zoom in
on certain sections of the chart and select files to
include.
The NAS Performance Toolkit was designed
specifically to test consumer and small business NAS
devices. We believe the tool is uniquely suited to
these devices because of two key features:
Single user application trace driven – The NAS
Performance Toolkit measures end user visible
performance for a library of real world workload
traces introduced in Section 2 and described in
greater detail below. The traces are carefully selected
to include scenarios home users will understand and
will want their NAS devices to perform well.
NASPT uses a collection of traces to achieve
coverage of single home user workloads.
Additionally, users may add their own traces to the
mix, allowing the tool to grow to accommodate
future interesting usage models.
Mainstream personal computer client inclusive -
Workloads are generated from user level, so the full
impact of the client platform, NAS platform, and the
interaction between the two platforms is measured.
During the creation of the toolkit we found client
software had a first order impact on performance. In
particular, caching and prefetching performed by the
client OS can significantly impact results
(quantification in Section 5). We validated the NAS
Performance Toolkit against results from IOMeter
and found that we had to turn off both client caching
and prefetching to match IOMeter’s kernel level
workload generator. Turning off these client features
changed measured throughputs by up to 50%,
indicating the importance of including the full client
software stack when measuring end user
performance.
The NAS Performance Toolkit runs best on a modern
Windows XP PC. To eliminate network bottlenecks,
we encourage users to connect the test client directly
to the NAS under test without an intervening network
switch.

4.1 Workload Traces
The NAS performance toolkit includes a set of traces
shipped with the tool in a documented XML format
to ensure workload transparency and repeatability.
Below is a listing of the included traces.
HD Video Playback: Traced from a commonly
available video playback application, this trace
represents about ten minutes of 720p high definition

7

MPEG-2 video playback. A single 1.3GB file is
accessed sequentially with 256kB user level reads.
As is true in many of the workloads the NAS itself
sees smaller reads since the SMB client and file
system break these 256kB requests into smaller
requests.
HD Video Record: This trace represents recording
roughly fifteen minutes of a broadcast 720p MPEG-
2. A single 1.6GB file is written sequentially with
256kB access. The bit rate is somewhat lower than
the playback test, they contain different video.
HD Video Play & Record: This test was
algorithmically constructed from the above video
playback and record traces. To combine we
introduced a 50ms offset into the record stream then
merged the two streams. The 1GB file represents
four minutes twenty seconds of application run time.
Because the two streams have differing bit rates and
because of variation in original trace periodicity,
there is not a strict alternation of accesses. About
20% of the transactions are sequential.
Two HD Video Playback Streams: Constructed
from two copies of the above HD Video Playback
test, this trace transfers 1.4GB of data representing
two video streams played back for about six minutes.
Again, sometimes one stream will issue two
transactions in rapid succession so about 18% of the
transactions are sequential.
Four HD Video Playback Streams: This workload
is constructed from four copies of the video playback
test. The 1.3GB trace represents about three minutes
forty-five seconds of video playback for each stream.
About 11% of the accesses are sequential.
Content Creation: This is a trace of commercially
available video and photo editing software products
executing a scripted set of operations to produce a
video from a collection of different source materials.
It contains a single very large file, apparently
containing the video output, which is written in bits
and pieces. About 11% of accesses within this file
are sequential. There are many smaller files that are
read and written more or less sequentially. Overall,
about 40% of the accesses are issued sequentially.
The test transfers 155MBs, 90% of transactions are
writes. The median read size is 1300 bytes. The
median write is 12kB. Transfers include a wide
range of different sized accesses.
Office Productivity: Scripted sequences of typical
workday operations from a commonly available
office productivity suite make up this trace. This test
is the largest of the collection, transferring 2.8GB of
data evenly divided between reads and writes. Eighty
percent of these accesses are logically sequential,
scattered across six hundred files ranging from 12

bytes in length to over 200MB. The median read size
is 2.2kB whereas the median write size is 1.8kB.
File Copy To NAS: This trace includes accesses
executed when copying a 1.4GB file to a NAS. Data
is written in 64kB sequential transactions.
File Copy From NAS: Identical to File Copy To
NAS, but in the opposite direction. All transactions
are sequential 64kB reads.
Directory Copy To NAS: This trace represents a
bulk copy of a complex directory tree containing
2833 files, a transfer a large collection of files to the
NAS. The directory used represented a typical
installation of a commercially available office
productivity suite. 247MBs is transferred with an
average write size of 41.4kB. Only 52% of the writes
are logically sequential as many files are small.
Directory Copy From NAS: Identical to File Copy
To NAS, but in the opposite direction creating many
read accesses.
The traces themselves are stored in a single directory
after installing the toolkit. Documentation on the
XML format as well as suggestions as to how one
might capture and format traces of new workloads
using commonly available tracing tools is included
with NASPT. Once formatted correctly, a user
simply copies their custom workload to the same
directory as the included traces and the NASPT
Exerciser will automatically add the new test in its
GUI upon its next startup. This feature will enable
users to explore a wide variety of interesting
workloads.

5. NAS Performance Conclusions
In this section we’ll share NASPT measurements to
underscore important observations about NAS
performance. Although NASPT collects a number of
statistics, herein we use average throughput over the
duration of the test as the principle value of merit.
We find this metric is both an important performance
measure and a comparable and immediately intuitive
indicator of single user wait time.
Using the toolkit we measured a large number of
commercially available home and small business
NAS platforms. The diversity in the results, shown
in Figure 6 surprised us. The difference between a
slow NAS and a fast NAS is great, up to 12x. Even
within a single class of devices with similar feature

8

0

10

20

30

40

50

60

H
D

Vi
de

o_
1P

la
y

H
D

Vi
de

o_
4P

la
y

H
D

Vi
de

o_
1R

ec
or

d

O
ffi

ce
Pr

od
uc

tiv
ity

Co
nt

en
tC

re
at

io
n

Fi
le

Co
py

To
N
AS

D
ire

ct
or

yC
op

yT
oN

AS

Th
ro

ug
hp

ut
 (M

B
/s

)

100Mb/s Eth.

802.11g

802.11n

Gb Ethernet

0

10

20

30

40

50

60

H
D

Vi
de

o_
1P

la
y

H
D

Vi
de

o_
4P

la
y

H
D

Vi
de

o_
1R

ec
or

d

O
ffi

ce
Pr

od
uc

tiv
ity

Co
nt

en
tC

re
at

io
n

Fi
le

Co
py

To
N
AS

D
ire

ct
or

yC
op

yT
oN

AS

Th
ro

ug
hp

ut
 (M

B
/s

)

100Mb/s Eth.

802.11g

802.11n

Gb Ethernet

Figure 6. NASPT performance of commercially
available home and small business NASes

sets and price points like the 4-5 drive small
business/home NASes (the three rightmost bars in
each group), the difference in throughput was greater
than 3x for a number of workloads.
All tests were conducted using direct gigabit Ethernet
connection (no switch or hub) between the NAS and
client. The NAS was empty except for the toolkit
generated directory/file tree. Software that shipped
with the NAS was left in place. Our client featured
an Intel® CoreTM 2 Duo Processor, Windows* XP,
1GB of DRAM and a Gigabit NIC. As shown in
Figure 6, even users connected by 100Mb/s Ethernet
or 802.11n will see a significant performance delta
between many NAS devices, though clearly not the
same magnitude of difference gigabit Ethernet users
will see.
Figure 7 contains measurements of a common NAS
from both a Windows XP based PC client and a
Windows Vista* client on identical hardware. The
performance differences are much larger than the
typical run to run variance - up to 20% on some tests.
NASPT users should always employ identical client
PCs to generate comparable results.
As noted in Section 4, NASPT creates media files
written during the workload rather than creating a
preexisting files to overwrite. Figure 8 shows
performance for a representative consumer NAS,
illustrating our reason for carefully including create-
at-test-time for write-only media files. Overwriting
the file in place delivers significantly higher
throughput. Since a video record won’t write over an
existing file (who would record a program they
already have?) NASPT correctly measures file create
performance. Our literature search revealed no other
trace playback tools making a similar consideration.

0

5

10

15

20

25

HD V
ide

o P
lay

ba
ck

2x
 H

D P
lay

ba
ck

4x
 H

D P
lay

ba
ck

HD V
ide

o R
ec

or
d

HD P
lay

ba
ck

 an
d R

ec
or

d

Con
ten

t C
rea

tio
n

Offic
e P

rod
uc

tiv
ity

File
 co

py
 to

 N
AS

File
 co

py
 fro

m N
AS

Dir c
op

y t
o N

AS

Dir c
op

y f
rom

 N
AS

Pho
to

Albu
m

Th
ro

ug
hp

ut
 (M

B
/s

) Windows XP*
Windows Vista*

Figure 7. NAS performance for varying client OS

Figure 8. File create vs. file overwrite

For some of the higher performing NASes, where
performance is essentially disk-bound, we notice a
small but significant variance due to disk layout.
Figure 9 shows different trials to the same NAS, each
trial targeting a distinct disk image. The results show
up to 15% difference between trials, clearly
indicating that disk layout has a noticeable effect in
the performance of these faster devices. As noted in
section 4, above, NASPT’s batch mode feature runs
multiple tests using separate disk images reporting
the median of five trials as the result.

0

5

10

15

20

25

30

35

HDVideo
_1Play

HDVideo
_2Play

HDVideo
_4Play

HDVideo
_1Reco

rd

HDVideo
1Play

1R
eco

rd

Con
tentC

rea
tio

n

Offic
eP

ro
duc

tiv
ity

Th
ro

ug
hp

ut
 (M

B
/s

)

Tria l 1

Tria l 2

Tria l 3

Tria l 4

Tria l 5

Figure 9. Performance for different disk layouts

9

6. NAS measurement tool comparison
A primary motivation for NASPT development was
to provide a more realistic measure of single user
NAS performance than already provided by other
easy-to-run tools we saw in use. In this section we
compare NASPT measurements to those generated
by IOMeter, a tool often used for measuring small
business/home NAS performance, and representative
of the type of synthetic workloads generation tools
that in our judgment are most often used for these
measurements.
To compare the results from the two tools we
collected three similarly targeted NAS devices. Each
is marketed to the home and small business and has
room for four drives and a Gigabit Ethernet LAN
interface. From available specifications we know
that their internal processors, amount of memory, and
even operating system differ significantly. Measuring
these NASes with both NASPT and IOMeter shows
significant differences in comparative performance
resulting from the tool used.
Throughputs normalized to NAS1 for each NASPT
and IOMeter workload are included in Table 2 as
well as a calculated average across workloads.
IOMeter tests correspond to those we’ve found to
best characterize local hard drive performance: small
(4kbyte) randomly addressed reads and writes, and
large (128kbyte) sequentially addressed reads and
writes. We tested for a single outstanding transaction
(QD=1) and many outstanding transactions (QD=32)
as is commonly done.
The average IOMeter measurement predicts very
little difference in performance between the three
systems. This is a surprising prediction given both
our anecdotal use of the systems, where we see
noticeable performance differences, and given the
significant differences in hardware and software
between the NAS systems. NASPT predicts
significant performance differences with NAS2 1.3x
the performance of NAS1, and NAS3 2.6x the
performance. Limiting IOMeter to a single
outstanding transaction provides better correlation,
although significant differences remain. For example
IOMeter predicts NAS2 as 80% faster than NAS1
while NASPT shows only a 30% difference.
Averages depend on the mix of workloads they
include. Individual workload comparisons don’t
suffer the same issue. As expected, since the
workloads are similar, IOMeter 128kbyte read
performance (sequential, QD=1) well predicts
NASPT file read performance (FileCopyFromNAS)
and Video Play (HDVideo_1Play) workloads.
IOMeter 128k sequential reads with QD=32 well
predicts Office Productivity – although given the

underlying workloads this may be coincidence. We
are hard pressed to find any other strong IOMeter to
NASPT single workload correlation.

NAS 3 NAS 2 NAS 1
NASPT
ContentCreation 0.8 0.7 1.0
DirectoryCopyFromNAS 2.5 1.6 1.0
DirectoryCopyToNAS 3.3 0.9 1.0
FileCopyFromNAS 3.3 1.9 1.0
FileCopyToNAS 5.5 1.1 1.0
HDVideo_1Play 2.8 2.1 1.0
HDVideo_1Play_1Record 3.0 1.3 1.0
HDVideo_1Record 4.0 0.8 1.0
HDVideo_2Play 2.1 1.8 1.0
HDVideo_4Play 1.5 2.0 1.0
OfficeProductivity 0.7 0.2 1.0
PhotoAlbum 2.0 1.0 1.0
NASPT Average 2.6 1.3 1.0
IOMeter
4k random rd, QD=1 1.1 1.1 1.0
128k seqential rd, QD=1 3.3 2.2 1.0
4k random wr, QD=1 0.7 1.0 1.0
128k sequential wr, QD=1 2.0 1.4 1.0
QD=1 Average 2.7 1.8 1.0
4k random rd, QD=32 0.1 1.5 1.0
128k seqential rd, QD=32 0.8 0.2 1.0
4k random wr, QD=32 0.0 0.1 1.0
128k sequential wr, QD=32 1.8 0.7 1.0
QD=32 Average 1.1 0.5 1.0
I/Ometer Average 1.2 1.0 1.0

Table 2. NAS measurements: NASPT & IOMeter

Clearly homogenous synthetic measurements with
tools like IOMeter paint a fundamentally different
comparative NAS performance story than the
application trace workloads of NASPT, even at the
single workload level. The workloads are simply
different in terms of read/write mix, access size, file
opens/creates/deletes. Rather than trying to find the
right synthetic mix, we prefer to use the real traced
workloads available with NASPT.

7. Improving Linux NAS performance
for Windows clients
NASPT measurements identified a Windows client to
Linux NAS performance issue. The realistic creation
of files, already underscored as important in this
paper, enabled us to find this issue. Had files been

10

opened during the preparation phase with caching
and prefetching flags turned off (i.e.: direct_io), like
many other tools but unlike any real application we
have observed, the issue would have remained
hidden. The section presents the issue along with
modifications we made and verified to samba[23]
resulting in a significant performance improvement
(38% average improvement in NASPT scores).
Using NASPT we compared two high-end NAS
platforms featuring identical PC hardware but with
different operating systems: Linux 2.6 in the
Openfiler[24] distribution and Windows XP. NASPT
measurements showed a significant performance
disadvantage for the Linux NAS on most workloads.
For example Video Playback returned 22MB/s for the
Linux NAS and 36 MB/sec for the Windows NAS.
Other results were similar.

Figure 10: Histogram of latencies for Video Playback

test on Windows based NAS

Figure 11: Histogram of latencies for Video Playback

test on Linux based NAS

Using the NASPT visualization tool, we found
identical file requests regardless of the server OS, as
expected. However, further analysis using the
visualizer showed significant differences in the
access latencies as shown in Figure 10 and Figure 11.
The mystery then is why for identical sequences of
256kB reads do we see the long tail of latencies on
the Linux based NAS?

The figures represent latencies as the file is read, as
this particular workload contains only reads.
However, file layout is determined as the file is
written, during NASPT’s preparation phase.
Observing network traffic during preparation we
found a number of unexpected single byte writes
mixed with the expected large writes to the video
data file. These one byte writes were each about
128kB apart, addressed to offsets within the file well
above the accesses concurrently generated by
NASPT, and were apparently introduced by some
portion of the Windows operating system or
SMB/CIFS redirector. These small writes contained
no real data and were eventually overwritten by large
data writes of the actual HD video file.
For an XP system using NTFS, these one byte writes
appear to serve as hints to drive allocation of
contiguous disk[25] blocks when the final size of the
file is unknown at file creation. NTFS assumes that
all file bytes will be filled with data, so the small
write to a high offset forces the file system to allocate
a set of contiguous blocks up to that offset[26]. When
valid data is written to the intervening addresses, the
blocks are already allocated, resulting in a highly
sequential disk layout and better performance when
the file is eventually read.

O
bs

e
rv

ed
 T

ra
ns

ac
tio

ns

Unlike NTFS, most Linux file systems assume that
discontiguous files are sparsely populated with
data[27]. The file system allocates blocks as they are
written, abutting discontiguous writes. In this case
the one byte writes create numerous discontinuities as
the file is written. A conceptual diagram of the
resulting file layout is shown in Figure 12. In
practice, we have observed pre-allocate writes to
offsets up to 15 MB above current data write pointer.
The fragmentation turns what should be a best-case
workload for most modern hard disks (large,
sequential reads) into a set of low performance disk
seeks. We observed one 3.5GB video file fragmented
into 49,986 separate disk extents. A simple copy to a
new location defragmented this file to 28 extents (26
extents being ideal). Reads Writes

Service Time (ms)
0 10 20 30 40 50 60 70 80 90 100

0

100

200

300

400

500

600

700

800

900

Figure 12. 1-byte hints result in severe fragmentation

1-byte writes
placed adjacent
to app. writes

App writes and
hints continue to

interleave

When app writes
reach hint

offsets, ext3
tries to fill in

11

The behavior we observed is not limited to test cases
driven by NASPT: using iTunes* to rip a CD to a
NAS device shows the same behavior. We expect to
see this behavior any time a Windows client is
appending to a file and the ultimate length of the file
is not currently known. Additionally, the Windows
client behavior does not change in response to the
Samba-advertised "fstype" parameter. The client
issues pre-allocate writes whether the server
announces itself as "NTFS" or "Samba."
We’ve also experimented with the “strict allocate”
feature found in newer revisions of Samba (post
3.0.20). This flag appears to force the underlying file
system to allocate files based on NTFS-like
policies[28], resulting in performance improvements
like those seen with XFS. Setting this flag gave us
performance gains described later in this section.
Unfortunately, strict allocate forces sequential
allocation by filling discontinuities with zeros,
resulting in another performance issue: long latencies
for random writes to big, new files. NASPT’s
Content Creation workload includes such writes as
already shown in Figure 3. As previously discussed
in section 4, NASPT creates Content Creation’s big
write-only file at test time to better model the
behavior of the original application. Therefore writes
within this test are sometimes substantially above the
previous end of file. With strict allocate such writes
result in many writes, enough to fill the file from the
last written data to the point of the current data write
with zeros. While these fill writes take place the
actual application write-stalls. This is seen by
applications, and by NASPT, as very long transaction
latency. Observed latencies can exceed tens of
seconds, sometimes even leading the Windows client
to disconnect and throw an exception; apparently
concluding that the server has crashed.
We fixed this issue, while keeping the advantages of
strict allocate, by modifying the manner in which
Samba implements strict allocate. Our specific
changes are shown in Figure 13.
The modification to smbd/vfs.c imposes a limit on the
number of bytes to fill above the current end of file.
If the current write exceeds that limit it is handled as
a sparse file write, otherwise Samba follows the strict
allocate behavior and fills with zeros. We have
experimentally determined 2MB effectively balances
individual write latency with overall throughput.
This allows streams of large sequential writes to
remain sequential in the presence of those 1-byte
hints while minimizing the impact on real
discontiguous writes.
The second change, to modules/vfs_default.c disables
strict allocate for files whose size is known at

c
d
W
a
N
F
a
a
N
s
d
t
r
i
m
w

12
samba/source/smbd/vfs.c
vfs_fill_sparse(…)
{
 …
 if (len <= st.st_size)
 return 0;

 //Impose limit on how much to write ahead of current position
 #define ALLOCATION_LIMIT 0x200000
 if (len - st.st_size > ALLOCATION_LIMIT)
 return 0;
 …
}

samba/source/modules/vfs_default.c:
vfswrap_ftruncate(…)
{
 int result = -1;
 SMB_STRUCT_STAT st;
 char c = 0;
 SMB_OFF_T currpos;

 START_PROFILE(syscall_ftruncate);

 /* ignore file fill when presented with new file of known size.
 if (lp_strict_allocate(SNUM(fsp->conn)))
 {
 result = strict_allocate_ftruncate(handle, fsp, fd, len);
 END_PROFILE(syscall_ftruncate);
 return result;
 }
 */
 …
}
 Figure 13. Linux Samba code changes

0

10

20

30

40

50

60
Th

ro
ug

hp
ut

 (M
B

/s
)

HDVideo
_1

Play

HDVideo
_2

Play

HDVideo
_3

Play

HDVideo
_4

Play

HDVideo
_1

Rec
ord

HDVideo
_1

Play
_1

Rec
ord

Conte
ntC

reati
on

Default
Strict Allocate
SA Fix

Figure 14. Changes to Samba improve performance

reation, eliminating unnecessary zero fills when the
iscontiguous 1-byte writes won’t occur anyway.
ith the simple Samba code changes in place we

gain measured performance over a number of
ASPT workloads. The results are displayed in
igure 14 for a Linux based NAS. Moving to strict
llocate fixes the layout issue on disk resulting in an
verage of 38% higher performance across all
ASPT workloads with a much bigger impact for

ome individual tests. The long latencies already
escribed drive a drop is Content Creation
hroughput. The Samba changes (SA Fix)
ecommended here provide the highest throughput,
mproving disk layout for the sequential files while
inimizing the impact on the Content Creation test
ith its real discontiguous writes.

8. Conclusions
Future home and small business NAS devices will
face increasingly intense, interactive workloads.
Single user performance of these devices will become
increasingly visible to the end user, as they wait for
time sensitive accesses to complete. We’ve
developed the NAS Performance Toolkit, enabling
easy measurement of home and small business NAS
performance. We’ve made NASPT freely available
at www.intel.com/software/NASPT.
NASPT’s unique contributions include a new trace
set, focused on single user scenarios and covering
media, productivity and file management workloads.
NASPT replays these traces to measure resulting
single user NAS performance and includes a
visualizer for understanding measured NAS behavior.
As we have shown, great care was taken to ensure
workload replay representative of real single user
accesses from mainstream personal computers
including proper file open flags, disk layout, and
client side caching/prefetching. This is the second
unique contribution of our work. These contributions,
and NASPT ease-of–use, are increasingly recognized
in the industry as home and small business review
sites base more and more reviews on NASPT tests.
We also show that homogeneous synthetic test tools,
like IOMeter show a different NAS performance
story, diverging from real trace driven NASPT
measurements. Our measurements using this new
tool show that current NAS performance varies
greatly, with the performance of some NAS devices
falling into a range that will disappoint users even
when connected over relatively slow 100Mb/s
networks. Users with faster networks will see up to
3x performance difference even between NAS
devices in the same market segment.
NASPT measurements led us to identify and fix an
interaction between the pre-allocate writes generated
by Windows clients and the Linux ext3 based NAS.
We share the code fixes that result in a 38% increase
in performance - the third contribution of this work. .

9. References

[1] D. Roselli, J. R. Lorch, and T. E. Anderson. “A
comparison of File System Workloads.”
Proceedings of 2000 USENIX Annual Technical
Conference. June 2000

[2] A. Traeger, E. Zadok, N. Joukov, C. P. Wright.
“A Nine Year Study of File System and Storage
Benchmarking.” ACM Transactions on
Storage,Vol 4, No 2, Article 5. May 2008.

[3] A. Aranya, C. P. Write, E. Zadok. “Tracefs: A
File System to Trace Them All.” In Proceedings
of the Third USENIX Conference on File and
Storage Technologies. March 2004.

[4] N. Joukov. T. Wong, and E. Zadok. “Accurate
and Efficient Replaying of File System Traces.”
In Proceedings of the Fourth USENIX
Conference on File and Storage Technologies.
March 2005.

[5] N. Joukov, A. Traeger, R. Iyer, C. P. Write and E.
Zadok. “Operating System Profiling via Latency
Analysis.” In Proceedings of USENIX
Symposium on Operating Systems Design and
Implementation. 2006. pp89-102.

[6] L, Mummert and M. Satyanarayann. “Long Term
Distributed File Reference Tracing:
Implementation and Experience.” Technical
Report CMU-CS-94-213. School of Computer
Science, Carnegie Mellow University, November
1994.

[7] N. Zhu, J. Chen and T. Chueh. “TBBT:Scalable
and accurate trace replay for file server
evaluation.” In Proceedings of the 4th USENIX
Conference on File and Storage Technologies.
pp 326-336.

[8]M. P. Mesnier, M. Wachs, R. R. Sambasivan, J.
Lopez, J. Hendricks, G. R. Ganger, D.
O’Hallaron “//Trace: Parallel trace replay with
approximate casual events.” In Proceedings of
the 5th USENIX Conference on File and Storage
Technologies. February 2007.

[9] E. Anderson, M. Kallahalla, M. Uysal, and R.
Swaminathan. “Buttress: A toolkit for flexible
and high fidelity I/O Benchmarks.” In
Proceedings of the 3rd Conference on File and
Storage Technologies. March 2004

[10] SNIA IOTTA Repository, I/O Trace Data Files
http://iotta.snia.org/traces/

[11] “SPECsfs2008 User’s Guide Version 1.0”,
2008, Standard Performance Evaluation
Corporation.
http://www.spec.org/benchmarks.html#nfs

[12] D. Anderson. “Fstress: A Flexible Network File
Service Benchmark.” Tech Report TR2001-2002
Duke University

[13] J. Katcher, “PostMark: A New Fil System
Benchmark,” 1997 Network Appliance
Corporation.
http://communities.netapp.com/servlet/JiveServlet/download/
2609-1551/Katcher97-postmark-netapp-

13

http://www.intel.com/software/NASPT

tr3022.pdf;jsessionid=9073920195F57B27590B75142AC0F
946

[14] John H. Howard, Michael L. Kazar, Sherri G.
Menees, David A. Nichols, M. Satyanarayanana,
Robert N. Sidebotham, and Michael J. West.
“Scale and performance in a distributed file
system.” ACM Transaction on Computer
Systems, 6(1):51-81, February 1988

[15] “FileBench.” Solaris Internals.
http://www.solaris
internals.com/wiki/index.php/FileBench

[16] Open Source Development Lab.
http://www.iometer.org

[17] Russell Coker, http://www.coker.com.au
/bonnie++/

[18] B. Wolman, T. M. Olson. IOBENCH: a system
independent IO benchmark. ACM SIGARCH
Computer Architecture News, Volume 17 Issue
5: 55-70, September 1989

[19] SiSoftware. http://www.sisoftware.co.uk
[20] Spiny Software. http://www.xbench.com
[21] William D. Norcott, Don Capps. Iozone

Filesystem Benchmark. http://www.iozone.org
[22] Business Applications Performance Corporation.

http://www.bapco.com/products/sysmark2004se/
[23] “Opening Windows to a Wider World.”

www.samba.org
[24] “Openfiler” http://www.openfiler.com/
[25] Leonard Chung, Jim Gray, Bruce Worthington,

Robert Horst. “Windows 2000 Disk IO
Performance.“ Microsoft Bay Area Research
Center. 28 April 2000

[26] Pat Filot, Arne Ludwig. NTFS block allocation
policy (Windows XP).
http://www.pcreview.co.uk/ forums/thread-
1484343-1.php

[27] K. Muniswamy-Reddy, C. P. Wright, A.
Himmer, and E. Zadok. “A Versatile and User-
Oriented Versioning File System.” In
Proceedings of the Third USENIX Conference on
File and Storage Technologies (FAST 2004), San
Francisco, CA, March/April 2004.

[28] Release notes for Samba 3.0.20. August 19,
2005.
http://www.samba.org/samba/history/samba-
3.0.20.html

14

	Abstract
	1. Introduction
	2. Application storage trace characteristics
	3. Related Work and Motivation
	4. NAS Performance Toolkit
	4.1 Workload Traces
	5. NAS Performance Conclusions
	6. NAS measurement tool comparison
	7. Improving Linux NAS performance for Windows clients
	8. Conclusions
	9. References

