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Abstract—Mobile devices and embedded devices need more
processing power but energy consumption should be less to save
battery power. Google has released an open source platform
Android for mobile devices. Android uses new power
management framework to save power in mobile devices.
Android developers are allowed to build only JAVA applications.
In this work, we present benefits of using Android in low power
embedded devices. We compared Android JAVA performance
with popular Sun embedded JVM running on top of Angstrom
linux. Our work shows that Android can be made more energy
efficient by improving performance of JAVA applications. We
developed a JAVA DSP framework which allows Android JAVA
applications to use both ARM & DSP parallely and thus
improves performance. We also showed, Android can be made
more energy efficient by using our developed framework.

I

An embedded system is a special-purpose computer system
designed to perform one or a few dedicated functions, often
with real-time computing constraints. Embedded systems
control many of the common devices in use today. A key
component of such systems is the Operating Systems (OS)
which is the interface between hardware and user, it is the
critical component responsible for the management and
coordination of activities and the sharing of the resources of the
computer. Google has developed open source Android
operating system for mobile platform which is also used in the
net book. In this paper, we describe how we can improve
performance and energy efficiency of Android.

INTRODUCTION

In the next section, we briefly review essential parts of the
experimental setup. In the Section III, we showed that Android
can be made more energy efficient by improving performance.
Section IV describes parallel computation framework. Section
V & VI describes an example application using our framework
and benchmark results. The last section concludes the paper
with suggestion of how the energy consumed by applications
running on Android can be improved by using our framework.

II. ReviEw

A. Android DALVIK JVM

Android Dalvik JVM is optimized especially for slow CPU,
relatively little RAM and to run on OS without any swap space.
It is optimized for a system which has 64MB as total RAM.
Dalvik is register based VM but Sun JVM is stack based.
Generally stack based VM use push, pop instructions to load
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data on the stack and manipulate that data. Thus stack based
VM requires more instructions than register based VM to
implement same high level JAVA code. But instructions in a
register based VM tends to be larger. Google hasn’t released
JIT compiler for Dalvik in the initial phase of our work. But
Sun embedded JVM contains JIT compiler optimized for
embedded platform.

B. Android Power Management Driver

Android power management support sits on top of linux
kernel power management. Android implements more
aggressive power management policy on top of the standard
linux kernel power management. In Android, applications and
services must request CPU resources with “wake locks”
through the Android application framework and native linux
libraries in order to keep power on. Each application informs
power management framework its power requirements, which
can be viewed as constraints for suspending system
components. If there are no active wake locks then Android
will suspend CPU and other peripheral devices (e.g.
Keyboard).

C. Beagleboard

We used beagleboard as our embedded platform. This
board uses up to 2W of power. We run both Android 1.6 (also
known as Android Donut release) and Angstrom on this board.
This board contains integrated power management/audio
codec chip TPS65950 and current resistor R6 to help
developer to measure board current through software. The
values measured using software were not found to be accurate.
For example, before starting any OS, beagleboard software
measurement of current consumption varied as 268.55 mA,
214.843 mA, 161.133 mA etc on the uboot boot loader
command prompt but our digital multimeter shows 290 mA
always. Due to this fluctuating errors in software measurement
of current values, we sampled the current values using Agilent
34410A digital multimeter in every 0.5 second. This was used
with the board supply voltage to plot the power dissipated.

D. DSP BIOS OS

DSP/BIOS enables our applications to be structured as a
collection of threads, each of which carries out a modularized
function. Multi threaded programs run on a single processor
by allowing higher-priority threads to preempt lower priority
threads and by allowing various types of interaction between
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threads, including  blocking, = communication, and
synchronization. The thread types (from highest to lowest
priority) are: hardware interrupt (HWI), software interrupt
(SWI), Task thread (TSK), idle loop (IDL).

E. Dsplink Driver

Dsplink driver facilitates communication between DSP and
ARM. The dsplink driver encapsulates low-level control
operations on the physical link between ARM and DSP. This
module is responsible for controlling the execution of the DSP
and data transfer using defined protocol across the ARM-DSP
boundary.

II1.

In this section, we discuss how we analyzed Android
energy consumption rate and motivation for improving it using
parallel framework.

ANALYZING ANDROID ENERGY FRAMEWORK

A. Experimental Setup

We run quick sort, heap sort and Caffeine Mark JAVA
applications on both Android and Angstrom linux. We also
measured energy consumption of those applications. At the
time of our work, Android didn’t have JIT (Just In Time
compiler) support. We considered following versions of quick
sort for Android:

* JAVA implementations without JNI and

*  Quick sort algorithm written in native C and a JAVA
program calls that algorithm through JNI.

In Angstrom, we used four versions of Quick sort:
*  Quick sort using Sun JAVA embedded JNI,
* JAVA implementation of Quick sort with JIT enabled,

* JAVA implementation of Quick sort with JIT disabled
and

* Native C implementation of Quick sort.

Arrays of random integers were generated and sorted using
Quick sort algorithms. Sun JVM uses enhanced hotspot
technique to compile JAVA byte code into native code and
compiles them by detecting which methods needs to be
compiled. G. Chen et al. [4] showed how different number of
method invocations affects JIT enabled JAVA compiler
performance. We used same Heap sort algorithm to sort 60000
elements in 50 different methods and called these method
different number of times to see how Sun JIT compiler affects
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Figure 1: Heap sort performance
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TABLE 1. CarreweMARK v3.0 Score
Android Angstrom Angstrom
(Dalvik) Sun JVM Sun JVM
(with JIT) | (without JIT)
Sieve Score 945 3454 576
Loop Score 820 14073 456
Logic Score 929 7779 751
String Score 938 3623 771
Float Score 627 5180 460
Method Score 909 8897 512
Total  Score 852 6310 574
TABLE II. AvERAGE ENERGY CoNSUMPTION RATE
Angstrom (Sun Android (Dalvik
embedded JVM) JVM)
Heap sort average |1.75 watt 1.72 watt
energy
consumption rate
Quick sort average |1.76 watt 1.73 watt
energy
consumption rate
CaffeineMark v3.0 | 1.74 watt 1.72 watt

average energy
consumption rate

TABLE III. ToraL ENErRGY CONSUMPTION
Angstrom (Sun Android (Dalvik
embedded JVM) JVM)

Heap sort total 681.64 watt-sec 5064.79 watt-sec
energy

consumption

Quick sort total 10.56 watt-sec 31.07 watt-sec
energy

consumption

CaffeineMark v3.0
total energy
consumption

85.18 watt-sec 86.23 watt-sec

on different number of invocations. We used CaffeineMark
v3.0 benchmark to benchmark both Dalvik and Sun embedded
JVM. CaffeineMark scores roughly correlate with the number
of JAVA instructions executed per second, and don’t depend
significantly on the the amount of memory in the system or on
the speed of a computers disk drives or internet connection.
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Figure 2(b): Energy consumption on Angstrom
B. Results

Android Dalvik VM shows better performance compared to
JIT-disabled Sun Embedded JVM running on Angstrom (see
Figure-1 and 3). JNI based quick sort also run faster in Android
than Angstrom. But JIT enabled Sun embedded JVM performs
much better than Android’s Dalvik VM for both applications
(see Figure-1 and 3). Using register based VM architecture and
bionic libc native libraries, Android gets 1.484 times
improvement over commercial Sun embedded JVM (with JIT
disabled) in CaffeineMark benchmark (see Table-I) total score.
In all three cases, Android becomes slower than Sun embedded
JVM with JIT. Table-II shows that in all three cases, Android
is more power efficient because its power driver saves power
on application basis (as explained earlier). Figure-2(a), Figure-
2(b), Table-IIT shows, Android consumes more energy due to
longer running duration of JAVA applications: Quick sort and
Heap sort. But in case of CaffeineMark, JIT enabled Sun JVM
doesn’t affects its running time much. So, it consumes almost
same energy in Android and Angstrom linux (see Table-III).
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Figure 3: Quick sort performance
C. Motivation For Parallel Computation Framework

So, our analysis shows that Android application can be
made more energy efficient by improving performance. Google
implemented JIT compilers in later version of Android to
improve performance. Borkar et al. [2] suggested that a perfect
two-way parallelization would lead to one-quarter of the
energy consumption compared with the sequential execution
given the same execution time constraint. Sangyeun et al. [3]
developed an analytical framework to study the trade offs
between parallelization, performance and energy consumption
for applications. A program has both sequential section and
parallel section. They showed that energy consumption can be
reduced by using maximum number of processors to execute
parallel section. They also proved that energy can be further
improved by turning off individual processors (when they don’t
require to execute any code). Beagleboard has both ARM and
DSP processor. They have different clock speed and DSP
processor can be shut down if not required. In next section, we
showed how we improved performance and energy efficiency
for a class of Android JAVA applications using our parallel
computation framework.

IV. A ParaLLEL CoMPUTATION FRAMEWORK

A. Porting Dsplink Driver On Android

We cross compiled TI's dsplink 1.61.03 driver & local
power manager driver for beagleboard using Android Tool
Chain. Local power manager helps to shutdown DSP
processor after completion of Android JAVA Application. The
default dsplink memory map for any platform usually assumes
the following: 1 MB shared memory between ARM and DSP
and 1 MB DSP memory for DSP code & data. General JAVA
applications may need more memory than 1 MB. So, we
modified that memory map and reserved 30MB memory as
shared memory between ARM and DSP. We passed an



initialization parameter to Android linux kernel so that it
doesn’t manage this reserved memory segment.

B. JAVA DSP API

A typical JAVA application which uses DSP, has two
parts: ARM side JAVA application and DSP side application.
ARM side JAVA application performs following tasks:

* Initializing dsplink driver components: JAVA
application developer creates an array of pool
memory buffers with different sizes from ARM-DSP
shared memory region. These pool memory buffers
are used to allocate shared JAVA data objects in
shared memory region. JAVA application loads DSP
executables on DSP and starts execution of DSP
processor.

e Sharing data with DSP side application: Dalvik VM
allocates JAVA data objects from JAVA heap
memory which doesn’t reside in ARM-DSP shared
memory. We have given two options to JAVA
developer to share JAVA data objects with DSP. One
is to copy JAVA primitive data types (e.g. JAVA
integer array, JAVA string object, JAVA float array)
from JAVA heap to ARM-DSP shared memory
region and informing DSP that. Another method is to
directly allocate JAVA data objects from ARM-DSP
shared memory region. Both options has some
advantages and disadvantages. Developers need to
choose both methods judiciously to get required
speed up.

* Synchronization between ARM and DSP: To
parallely work on both ARM and DSP, ARM side
JAVA application must maintain at least 2 JAVA
threads. One thread does all the initialization of
dsplink and synchronizes with DSP side application
as required. Another JAVA thread uses ARM
processor to work on shared data objects. Both thread
can synchronizes with each other through *JAVA
thread synchronization” methods. Synchronization
between 1st thread of ARM side JAVA application
and DSP side application can be done by passing
messages. ARM side JAVA application will issue a
message by calling JAVA_MSGQ_put() method.
DSP side application’s TSK thread can block itself
till it gets that message by calling MSGQ_get()
method. Similarly, ARM side JAVA application can
block itself till it receives messages from DSP by
calling JAVA_MSGQ_get() method.

* DSP Debugging support: We provided a logging
mechanism which helps developer to print any values
in Android logging daemon directly from DSP side
application.

V.

In this section, we describe how we benchmarked our
parallel computation framework. We use image filter JAVA
application to benchmark our framework. Image filtering
allows us to apply various affects on photos. We use
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sequential image filter code found in simple scaler benchmark
suite[1] for image filter application. In simple scaler
benchmark suite, image filter application known as CPU
intensive program.

A. Parallelization of Sequential Image Filter Algorithm:
1.

Create input image matrix (imageWdith x

imageHeight) and filter matrix
(filterWidth x filterHeight).
2. Initialize input image  matrix and
filter matrix.
3. For each pixel in input image matrix
begin
4. For each element in filter matrix
begin
5. calculate result image pixel
value by reading input image
and filter values.
end
6. Store calculated value in result
image matrix
end

Steps-1 to 2 are same in both sequential and parallel
version. Two threads calculate result image matrix
parallely from step-3 to step-6. Each thread calculates
result matrix for half of the image size.

B. Issues For Parallel Implementation

Our JAVA DSP API needs to initialize dsplink
components before using it. In JAVA, this can be done by
using two threads. One JAVA threads always uses ARM
processor (let's call it ”JAVA ARM thread”). It initializes
input image & filter matrix and calculates half of result image
matrix. Another thread initializes dsplink components and
transfers controls to DSP processor which calculates another
half of result image matrix (which is not calculated by
ARM).let's call second thread as ”JAVA DSP thread”. Here,
both processors need to know whole input image matrix and
filter matrix to calculate result image matrix. We considered
two sizes for filter matrix in different versions of our image
filter: one is 16x16 and another is 32x32. For filter size
>=16x16, steps-3 to 5 needs to read whole image matrix many
times and thus need to access image matrix and filter matrix
more efficiently. If we allocate whole image matrix from
ARM-DSP shared memory region then steps-3 to 5 will
become very slow for ARM processor (assuming filter matrix
has a size greater than or equal to 16x16) but it will be fast for
DSP processor. Reason behind this is, JAVA implementation
of bytebuffer class is slow. Solution is to allocate these image
matrices & filter matrix from JAVA heap and copy these from
JAVA heap to ARM-DSP shared memory region so that DSP
can access that. In this way, ARM and DSP both work fast in
steps-3 to 5. Sequential algorithm stores result image matrix in
steps-6. These statements are executed only once for each
pixel values in input image. So, these statements are less
computation intensive. So, result image matrix can be directly
allocated from ARM-DSP shared memory region. This helps
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Figure 4: Parallel Implementation Of Image Filter (continued)
us not to copy half of result image matrix from ARM-DSP
shared memory to JAVA heap.

o

C. Implementing Parallel Algorithm
Android system server starts image filter JAVA application

on ARM processor. JAVA application initializes and loads
DSP executable on DSP.
*  DSP side application:

o It initializes dsplink driver and creates a TSK
thread.

o TSK thread waits to get input image matrix, filter
matrix, result image matrix pointer from ARM
side JAVA DSP thread.

o TSK thread computes half of the result matrix &
stores it in result matrix.

o TSK thread notifies ARM side JAVA DSP
thread about completion of task.

* ARM Side JAVA Application: ARM side JAVA
application creates two threads (Figures-4). JAVA

ARM thread calculates half of result matrix and waits

for DSP processor to finish. JAVA DSP thread
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Figure 4: Parallel Implementation Of Image Filter
initializes various components and asks DSP TSK
thread (which runs on DSP) to compute result matrix.
JAVA DSP thread loads DSP executable on DSP and
start execution of DSP processor in step-4. DSP
executables main function creates a TSK thread in
step-15. JAVA DSP thread locates DSP message
queue identified by a known string and opens ARM
side message queue (step-5). DSP message queue
helps to send message to DSP and ARM message
queue helps to receive message from DSP. DSP TSK
thread also opens two message queues, one to send
message to JAVA DSP thread and another to receive
message from JAVA DSP thread (step-16). JAVA
DSP thread allocates buffers for input image, filter
and result image matrices in ARM shared memory
(step-6 & 8). It copies input image and filter matrices
to ARM-DSP shared memory and translates pointer
addresses of all 3 matrices (step-10 & 11). It sends
those addresses to DSP TSK thread by message
protocol and ask DSP TSK thread to calculate half of
result image matrix(step-11 & 17). After calculating
half of result image matrix, DSP TSK thread informs
JAVA DSP thread (step-12 & 19). JAVA DSP thread
informs JAVA ARM thread about completion of DSP
processing (step-13 & 24). Thus, JAVA imagefilter
uses both ARM and DSP parallely to get speed up.
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We varied input image size from 64x64 pixels to 512x512
pixels and measured running time & energy consumption for
image filter application (see Figures-5 and 6). We get two
pairs of graph for filter size 16x16 pixels and 32x32 pixels.
Each pair of graphs shows a comparison between sequential
and parallel implementation. For filter size 16x16 pixels and
image size 64x64 pixels (Figure-6), we get 1.098 times speed
up which is very negligible. This happens because, it takes
some constant time to start and initialize (known as
initialization time) dsplink driver data structures and also takes
some constant time to stop DSP after completion of DSP TSK
thread (known as deletion time). A program has both
sequential and parallel sections. let's consider, a class of CPU
intensive programs, which will take longer time to execute
parallel section than this initialization & deletion time of
dsplink driver. This class of programs will offset this constant
time and will achieve better speed up. As we increases image
size and filter size, image filter spends more time in parallel
section than in initialization and deletion time of dsplink
driver. For large image size (512x512 pixels) and large filter
size (32x32) , we see good speed up (1.586 times) from
Figure-6. With increase of image size and filter size, parallel
implementation of image filter shows better energy efficiency
than sequential implementation (Figure-5). By comparing
Figure-6 with Figure-5, we see parallel implementation of
image filter application shows better energy efficiency where
it achieves good speedup in execution time. As an example:
for filter size 32x32 pixels and image size 512x512 pixels, it
consumes 23% less energy while running on both ARM &
DSP. (It consumes 1408.14 watt-sec on ARM and 1085.44
watt-sec on both ARM & DSP).

REsuLTS

VIIL.

Not all application can take benefit of parallelism. Some
application needs more than two processors to improve
performance. Moreover, ARM & DSP has different clock
speed and different cache size. Our analysis shows that a class
of Android applications can take benefit of using our
developed framework. This class of Android applications must
be CPU intensive and should be capable to achieve significant
speed up from two processors theoretically. The more we get
speed up, the more we will improve energy efficiency of
Android applications. Thus, intelligent use of our framework
will improve energy consumption of Android.

CONCLUSION
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