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Abstract—Many applications require fast data transfer over 
high speed and long distance networks. However, standard TCP 
fails to fully utilize the network capacity due to the limitation in its 
conservative congestion control (CC) algorithm. Some works have 
been proposed to improve the connection’s throughput by adopt-
ing more aggressive loss-based CC algorithms. These algorithms, 
although can effectively improve the link utilization, have the 
weakness of poor RTT fairness. Further, they may severely de-
crease the performance of regular TCP flows that traverse the 
same network path. On the other hand, pure delay-based ap-
proaches that improve the throughput in high-speed networks 
may not work well when the traffic is mixed with both delay-
based and greedy loss-based flows. In this paper, we propose a 
novel Compound TCP (CTCP) approach, which is a synergy of 
delay-based and loss-based approach. Specifically, we add a scal-
able delay-based component into the standard TCP Reno conges-
tion avoidance algorithm (a.k.a., the loss-based component). The 
sending rate of CTCP is controlled by both components. This new 
delay-based component can rapidly increase sending rate when 
network path is under utilized, but gracefully retreat in a busy 
network when bottleneck queue is built. Augmented with this 
delay-based component, CTCP provides very good bandwidth 
scalability with improved RTT fairness, and at the same time 
achieves good TCP-fairness, irrelevant to the windows size. We 
developed an analytical model of CTCP and implemented it on the 
Windows operating system. Our analysis and experiment results 
verify the properties of CTCP. 
 

Index Terms—TCP performance, delay-based congestion con-
trol, high speed network 

I. INTRODUCTION 

Moving bulk data quickly over high-speed data network is a 
requirement for many applications. For example, the physicists 
at CERN LHC conduct physics experiments that generate giga-
bytes of data per second, which are required to be shared 
among other scientists around the world [2]. Currently, most 
applications use the Transmission Control Protocol (TCP) to 
transmit data over the Internet. TCP provides reliable data 
transmission with embedded congestion control algorithm [1] 
which effectively removes congestion collapses in the Internet 
by adjusting the sending rate according to the available band-
width of the network. However, although TCP achieves re-
markable success (maximizing the utilization of the link and 
fairly sharing bandwidth between competing flows) in today’s 
Internet environment, it has been reported that TCP substan-
tially underutilizes network bandwidth over high-speed and 
long distance networks [4].  

In high-speed and long distance networks, TCP requires a 

very large window, roughly equal to the bandwidth delay pro-
duction (BDP), to efficiently utilize the network resource. 
However, the standard TCP takes a very conservative approach 
to update its window in congestion avoidance stage. Specifi-
cally, TCP increases its congestion window by one packet every 
round trip time (RTT) and reduces it by half on a loss event. If 
BDP is too large, it requires an unreasonable long time for TCP 
to expand its window to that value. As an example, Floyd et al. 
[4], pointed out that under a 10Gbps link with 100ms delay, it 
will roughly take one hour for a standard TCP flow to fully util-
ize the link capacity, if no packet is lost or corrupted. This one 
hour error free transmission requires a packet loss rate around 
10-11 with 1500-byte packets (one packet loss over 
2,600,000,000 packet transmission!). This requirement is far 
from the reality of current network hardware. 

Recent research has proposed many approaches to address 
this issue. One class of approaches modifies the in-
crease/decrease parameters of TCP congestion avoidance algo-
rithm (CAA) and makes it more aggressive. Like TCP, ap-
proaches in this category are loss-based that uses packet-loss as 
the only indication of congestion. Some typical proposals in-
clude HSTCP [4], STCP [5], and BIC-TCP [7]. Another class of 
approaches, by contrast, is delay-based, which makes conges-
tion decisions that reduce the transmission rate based on RTT 
variations, e.g., FAST TCP [6]. All aforementioned approaches 
are shown to overcome TCP’s deficiencies in high bandwidth-
delay networks to some extent. However, in this paper, we ar-
gue that for a new high-speed protocol, following requirements 
must be met before it can be really deployed into the Internet: 

[Efficiency] It must improve the throughput of the connec-
tion to efficiently use the high-speed network link.  

[RTT fairness] It must also have good intra-protocol fairness, 
especially when the competing flows have different RTTs.  

[TCP fairness] It must not reduce the performance of other 
regular TCP flows competing on the same path. This means that 
the high-speed protocols should only make better use of free 
available bandwidth, but not steal bandwidth from other flows. 

 
For existing loss-based high-speed solutions, it is essential to 

be highly aggressive to satisfy the efficiency requirement. How-
ever, this aggressiveness also causes severe RTT unfairness and 
TCP unfairness. On the other hand, for delay-based approaches, 
although they can achieve high efficiency and good RTT fair-
ness in a network where the majority flows are delay-based, 
they may suffer from significant lower throughput than their 
fair share, if most competing flows are loss-based, e.g. TCP-
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Reno. The reason is that delay-based approaches reduce their 
sending rate when bottleneck queue is built to avoid self-
induced packet losses. However, this behavior will encourage 
loss-based flows to increase their sending rate since they may 
observe less packet losses. As a consequence, the loss-based 
flows will obtain much more bandwidth than their share while 
delay-based flows may be starved [10]. 

In this paper, we propose a new congestion control protocol 
for high-speed and long delay environment that satisfies all 
aforementioned three requirements. Our new protocol is a syn-
ergy of both delay-based and loss-based congestion avoidance 
approaches, which we call it Compound TCP (CTCP). The key 
idea of CTCP is to add a scalable delay-based component to 
the standard TCP1. This delay-based component has a scalable 
window increasing rule that not only efficiently uses the link 
capacity, but also reacts early to congestion by sensing the 
changes in RTT. If a bottleneck queue is sensed, the delay-
based component gracefully reduces the sending rate. This 
way, CTCP achieves good RTT fairness and TCP fairness. We 
have developed analytical model of CTCP and performed 
comprehensive performance studies on CTCP based on our 
implementation on Microsoft Windows platform. Our analysis 
and experimental results suggest that CTCP is a promising al-
gorithm to achieve high link utilization while maintaining good 
RTT fairness and TCP fairness.  

The rest of paper is organized as follows. In next section, we 
elaborate the background and existing approaches in detail. We 
review these schemes against the three properties we men-
tioned before. Then, we propose our design of CTCP in Section 
III. Analytical analysis of CTCP is presented in Section IV. We 
describe the implementation in Section V, and experiment re-
sults of CTCP are presented in Section VI. We conclude the 
paper in Section VII. 

II. BACKGROUND AND RELATED WORK 
The standard TCP congestion avoidance algorithm employs 

an additive increase and multiplicative decrease (AIMD) 
scheme. When there is no packet loss detected (by means of 
three duplicate-ACKs or retransmission timeout), the conges-
tion window (cwnd) is increased by one Maximum Segment 
Size (MSS) every RTT. Otherwise, if a packet loss is detected, 
the TCP sender decreases cwnd by half. In a high-speed and 
long delay network, it requires a very large window, e.g. thou-
sands of packets, to fully utilize the link capacity. Therefore, it 
will take the standard TCP many RTTs to recover the sending 
rate upon a single loss event. It is well-known that the average 
TCP congestion window is inversely proportional to the square 
root of the packet loss rate, as shown in (1) [9][13], 

p
W MSS22.1 ⋅= ,                 (1) 

where W is the average TCP window and p is the average 
packet loss rate. Therefore, it requires extremely small packet 
loss rate to sustain a large window. With the packet loss rate in 
real life networks, a standard TCP sender may never open its 
window large enough to fully utilize the high-speed link. 
 

1 In this paper, terms of “regular TCP” and “standard TCP” all refer to TCP-
Reno. 

One straightforward way to overcome this limitation is to 
modify TCP’s increase/decrease control rules in congestion 
avoidance. More specifically, in the absence of packet loss, the 
sender increases cwnd more quickly and decreases it more gen-
tly upon a packet loss.  

STCP [5] alters TCP’s AIMD congestion avoidance scheme 
to MIMD (multiplicative increase and multiplicative decrease). 
Specifically, STCP increases cwnd by 0.01 MSS on every re-
ceived ACK and reduces cwnd to its 0.875 times upon a packet 
loss. HSTCP [4], on the other hand, still mimics the AIMD 
scheme, but with varying increase/decrease parameters. As 
cwnd increases from 38 packets to 83,333 packets, the decrease 
parameter reduces from 0.5 to 0.1, while the increase parameter 
increases accordingly. HSTCP is less aggressive than STCP, 
but is far more aggressive than the standard TCP. As pointed in 
[7], these aggressive schemes suffer great RTT unfairness. 
From simple analysis based on synchronized loss model, Xu et 
al., [7] shows that for any loss-based congestion control proto-
col with steady state throughput in the form of dpR

CTh
⋅

= , where 

R is the RTT, p is the packet loss rate, C and d are constant, the 
throughput ratio between two flows with different RTT should 
be inversely proportional to 1/(1-d)th power of their RTT ratio. 

Or, 
d

R
R
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Th −
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2 . This value d for HSTCP and STCP is 0.82 and 

1, respectively. Thus, the RTT unfairness of HSTCP and STCP 
is 5.56 and infinite, respectively.  

In [7], BIC-TCP is proposed to mitigate this RTT unfairness 
by using binary increase scheme and switching to AIMD with 
constant parameters when cwnd is large. BIC-TCP has similar 
RTT-fairness to TCP-Reno when the window is large and then 
the sender has switched to AIMD mode (window > 16000 
packet and in this time d is near 0.5). However, if the protocol 
works at lower window range, d could increase to near 1 and 
BIC-TCP may have similar RTT unfairness to STCP.  

Besides the RTT-unfairness, the above approaches also have 
TCP-unfairness concerns when they are working in a mixed 
network environment with standard TCP flows and these en-
hanced flows. When an aggressive high-speed variant flow trav-
erses the bottleneck link with other standard TCP flows, it may 
increase its own share of bandwidth by reducing the throughput 
of other competing TCP flows. The reason is that the aggressive 
high-speed variants will cause much more self-induced packet 
losses on bottleneck links, and therefore push back the through-
put of the regular TCP flows. Indeed, there is a mechanism pre-
sent in the existing aggressive high-speed variants to revert to 
standard TCP congestion avoidance algorithm if the window is 
smaller than a pre-defined threshold (low_window as defined in 
[4], which is typically set to 38 packets). This, although may 
prevent collapses in heavy congested cases, can not provide 
satisfactory TCP-fairness in general network situations. The 
aggressive behavior of these enhanced flows may severely de-
grade the performance of regular TCP flows whenever the net-
work path is already highly utilized. As an illustration, we con-
ducted the following simulation in NS 2 [22]. The network to-
pology was a simple dumbbell topology, as shown in Figure 1. 
The capacity of the bottleneck link was set to 100Mbps and the 
round-trip delay was 100ms. We tested the cases where one 
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enhanced high-speed flow (i.e. HSTCP, STCP, BIC-TCP2) was 
competing with five regular TCP flows. We also compared 
with the case where there were six identical regular TCP flows. 
The results are summarized in Figure 2. With this network 
setup, six regular TCP flows already fully utilized the network 
path. As clearly shown in Figure 2, all the three aggressive 
high-speed flows occupied over 60% of link bandwidth in its 
testing, and the throughput of a regular TCP was reduced to 
only 30% compared to that if there was no aggressive high-
speed flow. In other words, each aggressive high-speed flow 
increased its throughput only by reducing throughputs of other 
regular TCP flows, and therefore caused TCP unfairness. Note 
that BIC-TCP caused even severe TCP-unfairness than HSTCP 
in this case. According to [7], BIC-TCP may have better TCP-
fairness property than HSTCP when the window is large. But 
in the window size in this example, the aggressiveness of BIC-
TCP was between HSTCP and STCP.  

100Mbps, 50ms

10Gbps, 1m
s 10

Gbp
s, 

1m
s

 
Figure 1. The network topology with simple bottleneck link. 
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Figure 2. Bandwidth allocation between competing flows. 
 
Another class of high speed protocols, like FAST TCP [6], 

instead of making simple modifications on TCP’s in-
crease/decrease parameters, chooses to design a new conges-
tion control scheme which takes RTT variances as congestion 
indicator. These delay-based approaches are more-or-less de-
rived from seminal work of TCP Vegas [12]. One core idea of 
delay-based congestion avoidance is that the increase of RTT is 
considered as early congestion, and the sending rate is reduced 
to avoid self-induced buffer overflow. Another interpretation of 
this delay-based behavior is that it tries to maintain a fixed 
buffer occupation. In this way, they will not cause large queue-
ing delay and reduce packet losses. FAST TCP can be regarded 
as a scaled version of TCP Vegas. FAST TCP incorporates 
multiplicative increase if the buffer occupied by the connection 

 
2 We chose the parameters of BIC-TCP according to [7]. 

at the bottleneck is far less than some pre-defined threshold α , 
and switch to linear increase if it is near α . Then, FAST tries 
to maintain the buffer occupancy around α  and reduces send-
ing rate if delay is further increased. Theoretical analysis and 
experiments show that delay-based approaches have better 
properties than pure loss-based approaches, such as higher utili-
zation, less self-induced packet losses, faster convergence 
speed, better RTT fairness and stabilization [17][6]. However, 
previous work also reveals that delay-based approaches may not 
be able to obtain fair share when they are competing with loss-
based approaches like standard TCP [10]. This can be explained 
as follows. Consider a delay-based flow, e.g. Vegas or FAST, 
shares a bottleneck link with a standard TCP. Since the delay-
based flow tries to maintain a small number of packets in the 
bottleneck queue, it will stop increasing its sending rate when 
the delay reaches some value. However, the loss-based flow 
will not react to the increase of delay, and continues to increase 
the sending rate. This, observed by the delay-based flow, is 
considered as congestion indication and therefore the sending 
rate of the delay-based flow is further reduced. In this way, the 
delay-based flow may obtain far less bandwidth than its fair 
share. One possible way to remedy this is to design a dynamic 
scheme to choose α  to ensure it is TCP-compatible [26]. How-
ever, designing such a scheme is simply not trivial, since the 
correct α  is a function of buffer size and number of concurrent 
connections, which are generally unknown in a real world net-
work. To our best knowledge, this is no design of such a dy-
namic scheme for this purpose. 

Besides the protocols discussed above, there is recently a 
proposal of TCP Africa [27]. Similar to CTCP, it also proposes 
to incorporate delay information to improve the RTT and TCP 
fairness. However, the key difference of this proposal to CTCP 
lies in that, in TCP Africa, the delay-information is used only as 
a trigger to switch TCP Africa from “fast mode” (aggressive 
increase) and “slow mode” (additive increase), but never used 
to reduce the window size. Therefore, TCP Africa is intrinsi-
cally a loss-based approach. When competing with other regular 
TCP flows, it will still steal much bandwidth from them, though 
better than HSTCP. As we will show later in our design and 
experiments, reducing window based on delay information is 
essential to prevent stealing bandwidth from other regular TCP 
flows in a mixed network environment (see SectionVI.B.6)).  

III. THE COMPOUND TCP 
After understanding the existing approaches and their limita-

tions, we revisit the design of a high-speed congestion control 
algorithm that fulfills all three requirements listed in Section I. 
The key idea is that if the link is under-utilized, the high-speed 
protocol should be aggressive in increasing sending rate to ob-
tain available bandwidth more quickly. However, once the link 
is fully utilized, being aggressive is no longer good, as it will 
only cause problems like TCP unfairness. We note that delay-
based approaches already have this nice property of adjusting 
its aggressiveness based on the link utilization, which is ob-
served by the end-systems from the increase in the packet delay. 
However, as mentioned in previous section, the major weakness 
of delay-based approaches is that they are not competitive to 
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loss-based approaches. And this weakness is difficult to be 
remedied by delay-based approaches themselves.  

Having made this observation, we propose to adopt a syner-
gic way that combines a loss-based approach with a delay-
based approach for high speed congestion control. For easy 
understanding, let’s imagine application A communicates with 
application B simultaneously using two flows. One is a stan-
dard loss-based TCP flow, and the other is a delay-based flow. 
When the network is underutilized, A can get an aggregated 
communication throughput, with B, which is the sum of both 
flows. With the increase of the sending rate, queue is built at 
the bottleneck, and the delay-based flow gradually reduces its 
sending rate. The aggregated throughput for the communica-
tion also gradually reduces but is bound by the standard TCP 
flow.  

Then, there comes the core idea of our novel Compound 
TCP (CTCP), which incorporates a scalable delay-based com-
ponent into the standard TCP congestion avoidance algorithm. 
This scalable delay-based component has a rapid window in-
crease rule when the network is sensed to be under-utilized and 
gracefully reduces the sending rate once the bottleneck queue 
is built. With this delay-based component as an auto-tuning 
knob, Compound TCP can satisfy all three requirements pretty 
well: 

1) CTCP can efficiently use the network resource and 
achieve high link utilization. In theory, CTCP can be very fast 
to obtain free network bandwidth, by adopting a rapid increase 
rule in the delay-based component, e.g. multiplicative increase. 
However, in this paper, we choose CTCP to have similar ag-
gressiveness to obtain available bandwidth as HSTCP. The 
reasons are two-folds. On one hand, HSTCP has been tested to 
be aggressive enough in real world networks and is now an 
experimental IETF RFC. On the other hand, we want to bound 
the worst case behavior of CTCP as HSTCP if the network is 
poorly buffered, as we will elaborate in Section VI.B.5). 

2) CTCP has similar or even improved RTT fairness com-
pared to regular TCP. This is due to the delay-based compo-
nent employed in the CTCP congestion avoidance algorithm. It 
is known that delay-based flow, e.g. Vegas, has better RTT 
fairness than the standard TCP [20]. 

3) CTCP has good TCP-fairness. By employing the delay-
based component, CTCP can gracefully reduce the sending rate 
when the link is fully utilized. In this way, a CTCP flow will 
not cause more self-induced packet losses than a standard TCP 
flow, and therefore maintains fairness to other competing regu-
lar TCP flows. 

A. Architecture 
As explained earlier, CTCP is a synergy of a delay-based 

approach with a loss-based approach. This synergy is imple-
mented by adding a new scalable delay-based component in the 
standard TCP congestion avoidance algorithm (also called loss-
based component). To do so, a new state variable is introduced 
in current TCP Control Block (TCB), namely, dwnd (Delay 
Window), which controls this delay-based component in 
CTCP. The conventional congestion window, cwnd, remains 
untouched, which controls the loss-based component in CTCP. 
Then, the CTCP sending window now is controlled by both 

cwnd and dwnd. Specifically, the TCP sending window (called 
window hereafter) is now calculated as follows: 

),min( awnddwndcwndwin +=  , 
where awnd is the advertised window from the receiver. 

The update of dwnd will be elaborated in detail in next sub-
section, while the update of cwnd is in the same way as in the 
regular TCP in the congestion avoidance phase, i.e., cwnd is 
increased by one MSS every RTT and halved upon a packet 
loss event. However, here CTCP may send (cwnd +dwnd) 
packets in one RTT. Therefore, the increment of cwnd on arri-
val of an ACK is modified accordingly: 

)/(1 dwndcwndcwndcwnd ++= .               (2) 
CTCP keeps the same Slow-Start behavior of regular TCP at 

the start-up of a new connection. It is because that we believe 
slow-start, which exponentially increases window, is quick 
enough even for fast and long distance environment that we 
target at [4]. We initially set dwnd to zero if the connection is in 
slow-start state, and the delay-based component is effective 
only when the connection is working at congestion avoidance 
phase. 

B. Design of delay-based congestion avoidance 
The delay-based component in CTCP is enabled when the 

connection is in congestion avoidance phase. This delay-based 
algorithm should have the following properties. Firstly, it 
should have an aggressive, scalable increase rule when the net-
work is sensed to be under-utilized. Secondly, it should also 
reduce sending rate accordingly when the network is sensed to 
be fully utilized. By reducing its sending rate, the delay-based 
component yields a step to competing TCP flows and ensures 
TCP fairness. Lastly, it should also react to packet losses. It is 
because packet losses may still be an indicator of heavy conges-
tion, and hence reducing sending rate upon packet loss is a nec-
essary conservative behavior to avoid congestion collapse. 

Our algorithm for delay-based component is derived from 
TCP Vegas. A state variable, called baseRTT, is maintained as 
an estimation of the transmission delay of a packet over the 
network path. When the connection is started, baseRTT is up-
dated by the minimal RTT that has been observed so far. An 
exponentially smoothed RTT, sRTT, is also maintained. Then, 
the number of backlogged packets of the connection can be 
estimated by following algorithm: 

baseRTTActualExpectedDiff
RTTwinActual

baseRTTwinExpected

⋅−=
=

=

)(
/

/
. 

The Expected gives the estimation of throughput we get if we 
do not overrun the network path. The Actual stands for the 
throughput we really get. Then, (Expected – Actual) is the dif-
ference between the expected throughput and the actual 
throughput. When multiplying by baseRTT, it stands for the 
amount of data that injected into the network in last round but 
does not pass through the network in this round, i.e. the amount 
of data backlogged in the bottleneck queue. An early congestion 
is detected if the number of packets in the queue is larger than a 
threshold γ . If diff <γ , the network path is determined as un-
der-utilized; otherwise, the network path is considered as busy 
and delay-based component should gracefully reduce its win-
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dow. 
Note here, it requires the connection to have at least γ  pack-

ets backlogged in the bottleneck queue to detect early conges-
tion. Therefore, we want γ  to be small, since it requires less 
buffer size on the bottleneck to ensure TCP fairness. On the 
other hand, we can not set γ  to be too small, since it may cause 
false early congestion detections and adversely affect the 
throughput. In this paper, we set γ  to be 30 packets. As we 
will show in Section VI.B.4), we believe this γ  value is a 
pretty good tradeoff between TCP fairness and throughput. 

The increase law of the delay-based component should make 
CTCP more scalable in high-speed and long delay pipes. In this 
paper, we choose the CTCP window evolution to have the bi-
nomial behavior. More specifically, when there is no conges-
tion occurs, neither increase in queue nor packet losses, the 
CTCP window increases as follows 

ktwintwintwin )()()1( ⋅+=+ α ;           (3) 
while there is a lose, the window is multiplicatively decreased,  
 ( )β−⋅=+ 1)()1( twintwin .             (4) 

Parameters of α , β  and k are tunable to give out desirable 
scalability, smoothness and responsiveness. As mentioned be-
fore, we tune CTCP to have comparable scalability to HSTCP 
when there is absence of congestion (the detailed derivation is 
presented in Section IV.A). 

Considering there is already a loss-based component in 
CTCP, the delay-based component needs to be designed to 
only fill the gap, and the overall CTCP should follows the be-
havior defined in (3) and (4). We summarize the algorithm for 
the delay-based component as in (5) 

( )
( )









−−⋅

≥⋅−

<−⋅+

=+
+

+

+

detected is loss if ,2/)1()(

   if ,)(

 if ,)1)(()(

)1(

cwndtwin

diffdifftdwnd

difftwintdwnd

tdwnd

k

β
γζ

γα
, (5) 

where (.)+ is defined as max (., 0 ). The first line shows that in 
the increase phase, dwnd only needs to increase 

+−⋅ )1)(( ktwinα  packets, since the loss-based component 
(cwnd) will also increase by 1 packet. Similarly, when there is 
a loss, dwnd is set to the difference between the desired re-
duced window size and that can be provided by cwnd. The rule 
on the second line is important. It shows that dwnd does de-
crease when the queue is built, and this is the core for CTCP to 
preserve good RTT and TCP fairness. Here, ζ  is a parameter 
that defines how rapidly the delay-based component should 
reduce this window when early congestion is detected. Note 
that dwnd will never be negative. Therefore, CTCP window is 
lower-bounded by its loss-based component (a.k.a. a standard 
TCP). 

In above control laws, we assume the loss is detected by 
three duplicate ACKs. If a retransmission timeout occurs, dwnd 
should be reset to zero and the delay-based component is dis-
abled. It is because that after a timeout, the TCP sender is put 
into slow-start state. After the CTCP sender exits the slow-start 
recovery state, the delay-based component may be enabled 
once more. 

IV. ANALYSIS OF CTCP 
In this section, we develop analytical models of CTCP to 

study its characteristics. More specifically, we want to quantify 
how well CTCP satisfies the three requirements proposed ear-
lier for high speed protocols, namely efficiency property, RTT 
fairness property, and TCP fairness property. In the following 
analysis, we use a synchronized loss model. There is much evi-
dence showing that synchronized loss is common in high-speed 
networks [7]. We develop our analytic model based on a simple 
network topology which contains one bottleneck link, as shown 
in Figure 3, where u stands for the link capacity; B is the buffer 
size on the bottleneck link; and Ti is the transmission delay. 
Note that this transmission delay can be different for different 
connections. 

 

u

CTCP

B
Ti

Regular TCP

l

m  
Figure 3. A simple network model. 

 

A. Efficiency property 
We first focus on the stable state throughput of CTCP. We 

ignore the slow-start phase and assume all loss events are de-
tected by three duplicate ACKs. We follow the common as-
sumptions as in previous work [13][20] that packet losses in 
different rounds are independent and RTT is independent to the 
window size of individual flow. The evolution of the CTCP 
window is illustrated in Figure 4. At time D, the connection just 
experiences a loss event and reduces the window size. At this 
point, the queue at the bottle-neck has been drained, and there-
fore, the window increases binomially. At time E, the queue 
begins to build, the CTCP senses this from the increase in the 
packet delay, and dwnd decreases to try to maintain a stable 
window. Note that cwnd still increases one MSS each round and 
when dwnd decreases to zero, CTCP window increases again at 
time F. CTCP continues to probe the network capacity until a 
packet loss occurs at time G, and window is reduced by Wβ . 
The dashed line in Figure 4 illustrates the evolution of cwnd in 
CTCP. From time D to time G, we define a Loss Free Period 
(LFP).  
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Figure 4. The evolution of CTCP window during a LFP. 

We denote w0 the window size at the stable state, i.e. from 
time E to time F, at which CTCP tries to maintain γ  packets 
backlogged at the bottleneck queue. Following the previous 
analysis [20], the average diff in this stable state is approxi-
mately γ . Therefore, we have 

baseRTTR
Rw

−
⋅= γ0

,               (6) 

where R is  the round trip time. 
Below, we develop the throughput model of CTCP. During 

time D to E, window increases according to 

R
t

k
W

R
W

dt
dW kk ⋅=

−
⇒⋅=

− αα
1

)1( .            (7) 
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And the number of packets transmitted during time interval D-
E is 
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 During time E to F, while cwnd continues to grow, dwnd 
keeps dropping. As a consequence, the CTCP window remains 
stable until dwnd drops to zero and window starts again to in-
crease at time F. Therefore, we have 
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and EFEF TWN ⋅= 0 .                (11) 
 During time F to G, CTCP window increases linearly just as 
if it is a simple TCP Reno. Therefore, we simply have 
 ( )RWWT mFG 0−= ,                 (12) 
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2
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 The total number of packet sent in one LPF is 
  pNNNY FGEFDE /1≈++= .             (14) 
Note that Wm is the only variable in equation (14), so that we 
can get it by solving (14). Then, we plug Wm back into (8), 
(10), and (12) to get the total number of RTTs in each LPF. 
Finally, the throughput of CTCP is 

)(
/1

FGEFDE TTTR
p

++⋅
=Λ . Be-

low, we give the close-form expression of CTCP throughput in 
a special case, from where we give the rationale based on 
which we choose CTCP parameters.  

We assume the packet loss rate is rather high. In this case, 
random packet loss limits the throughput of CTCP and the sta-
ble state mentioned above is never achieved. The response 
function in this case reflexes the ability of CTCP to use the free 
bandwidth. Since LFP ends before time E, from (9), we have  
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Therefore, we have the throughput of CTCP as  
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Figure 5. The response functions. 

Note that k determines the slope of response function (ag-
gressiveness). As mentioned earlier, we intend to let CTCP 
have the similar ability as HSTCP in a congestion-free network. 
By comparing (17) to the response function of HSTCP, whose 
window is 

833.0

1
p

WHSTCP ∝ , we can get k by solving the following 

equation, 8.0833.0
2

1 ≈⇒=
−

k
k

. However, it is rather difficult to 

implement an arbitrary power calculation using integer algo-
rithm. Therefore, we choose k equal to 0.75, which can be im-
plemented with fast integer algorithm of square root. α andβ  is 
a trade-off between smoothness and the responsiveness. In this 
paper, we choose α =1/8, β =1/2. We plot the CTCP response 
function in log-log scale, in Figure 5, as well as the response 
functions of the standard TCP, STCP and HSTCP. From the 
figure, we can see that CTCP is slightly more aggressive than 
HSTCP in moderate and light packet loss rate and is approach-
ing to HSTCP when window is large. 

B. Convergence and RTT fairness 
We first demonstrate that two CTCP flows with same RTT 

converge to their fair shares and then study its RTT fairness.  
Theorem 1: Two CTCP flows converge to fair share under 

the network model as shown in Figure 3 with same round trip 
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delay. 
Proof. We use Jain’s fairness index [23], which is defined as 

follows, 
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 Let’s consider two CTCP flows, whose window size are x1 
and x2, respectively. We assume x1 < x2. We see 0F∆ ≥ , if and 
only if 1 1 2 2/ /x x x x∆ ≥ ∆ . In increasing phase, kxx ⋅=∆ α  where 
k<1, it is easy to see that )1(
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1 /1/1 kk xx −− > , and therefore, 
0>∆F . When the queuing delay is detected, dwnd is decreasing 

while cwnd still increases by 1MSS. Therefore,  
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baseRTTxdiffx )1(11 −−=−=∆ ζζ .  

We see that when the two streams share the same bottleneck 
and the propagation delay is same, the baseRTT observed by 
two streams should also converge to the same value. Therefore,  
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, 
the fairness index also increases. When the packet loss is de-
tected, both rates are decreased by β  times. So the fairness 
index keeps the same value. In summary, in each phase of the 
control law, the fairness index is none decreasing. Therefore, 
eventually, the two CTCP flows converge to their fair share.   □ 

Then, we consider the case where different CTCP flows may 
have different delays. We show by Theorem 2 that the RTT 
unfairness of CTCP is bounded by that of the standard TCP 
Reno. 

Theorem 2: Let Th1 and Th2 present the throughput of two 
CTCP flows with round trip time as R1 and R2, respectively. 
Then, the following inequality satisfied 
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Proof. One CTCP flow contains two components, delay-
based component (dwnd) and the loss-based component 
(cwnd). The delay-based component reacts to the increase of 
round trip time and tries to maintain certain number of packets 
backlogged in the bottleneck queue. Since the flow rate of each 
connection is approximately proportional to its queue size, the 
delay-based component of each connection give roughly same 
throughput. However, we know that the throughput ratio of 
TCP Reno is inversely proportional to the square of their RTT 
ratio. 

Let Λ  and 'Λ  stand for the throughput of the delay-based and 
loss-based component of a CTCP flow. We have,  

2

1

2

22

11

2

1

2

1

2

2

1

2

1

'
'

'
'

1 







≤

Λ+Λ
Λ+Λ

=⇒







=

Λ
Λ

<≈
Λ
Λ

R
R

Th
Th

R
R .        □ 

Note that when including a delay-based component into the 
standard TCP would improve the RTT fairness of TCP’s con-
gestion avoidance algorithm. 
C. TCP Fairness 

In this section, we study the impact of CTCP on other stan-
dard TCP flows when they are competing for the same bottle-
neck. More specifically, we want to quantify the throughput 
reduction of the regular TCP flows because of the introduction 

of CTCP flows. We define a new metric here to measure the 
TCP fairness, named bandwidth stolen. 

Definition 1: bandwidth stolen.  Let P be the aggregated 
throughput of m regular TCP flows when they compete with 
another l regular TCP flows. Let Q be the aggregated through-
put of m regular TCP flows when they compete with another l 
high-speed protocol flows in the same network environment. 

Then, 
P

QPBstolen
−=  is the bandwidth stolen by high-speed proto-

col flows from regular TCP flows. 

TCP

CTCP

DWND

LFP

D E F G

 
Figure 6. Window evolution of TCP and CTCP. 

Theorem 3: With the system model shown in Figure 3, when 
γ>

+ lm
B , CTCP will not steal bandwidth from competing regu-

lar TCP flows. 
Proof. We assume all packet losses are caused by buffer 

overflow and synchronized. We use a graph argument. Figure 6 
shows a LFP when CTCP flows compete with regular TCP 
flows. As discussed before, CTCP flows will aggressively in-
crease dwnd until there are γ  packets are backlogged at the bot-
tleneck queue at time E. Assume the window size at this point is 
w0. After that, dwnd declines while cwnd continues to increase 
by one packet every RTT. Since γ>

+ lm
B , cwnd will eventually 

reach w0 before the next packet loss event. However, at this 
point (time F), dwnd is approaching zero. From then, CTCP is 
just controlled by its loss-based component. And at time G, 
buffer overflows and all flows sense packet loss. Since all 
dwnds drop to zero when packet loss occurs, each regular TCP 
flow will get a maximal window size as if there were (m+l) 
regular TCP flows. The average window of a TCP flow equals 
to 3/8 of its maximal window size. Therefore, the m regular 
TCP flows will receive the same throughput no matter they 
compete with l other TCP flows or l CTCP flows.      □ 

Theorem 3 shows that CTCP is fairness to TCP flows in term 
of not reducing TCP’s throughput when the network is suffi-
ciently buffered. However, CTCP does have higher throughput 
than regular TCP. It is because CTCP can make better use of 
free bandwidth that is currently not utilized. 

Note that when the network is significantly under buffered 
(which we argue should not be a normal setup), CTCP may still 
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steal bandwidth from regular TCP flows. It is because when 
buffer size is small, the early congestion detection may not 
perform well. We will discuss this worse case behavior in Sec-
tion VI.B.5). 

D. Summary of CTCP characteristics 
Our analysis above shows that the scalable delay-based 

component in CTCP can aggressively obtain free bandwidth 
when the network is light-loaded, while gracefully reduces its 
sending rate when queue is built and avoid adding more self-
induced packet losses. Therefore, CTCP can efficiently utilize 
the bandwidth while at the same time maintaining good RTT 
fairness and TCP fairness. 

V. IMPLEMENTATION 
We have implemented CTCP on the Microsoft Windows 

Platform by modifying the TCP/IP stack.  
The first challenge is to design a mechanism that can pre-

cisely track the changes in round trip time with minimal over-
head, and can scale well to support many concurrent TCP con-
nections. Naively taking RTT sample for every packet will 
obviously over-kill both CPU and system memory, especially 
for high-speed and long distance networks where a whole win-
dow worth of data may have tens of thousands packets. There-
fore, we need to limit the number of samples taken, but without 
lose of much accuracy. In our implementation, we only take up 
to M sample per window of data. M scales with the round trip 
delay. More specifically, δ/RTTM ∝ , where δ  is the minimal 
RTT value on the Internet. We believe ms1=δ  is a reasonable 
value, since most of operating systems have a scheduling accu-
racy larger than that. Since TCP flows can not change their 
sending rate faster than their RTT, letting δ/RTTM ≈  can 
pretty well track the changes of queueing delay on the network 
path. In order to further improve the efficiency in memory us-
age, we develop a dynamic memory allocation mechanism to 
allocate sample buffers from a kernel fix-size per-processor 
pool to each connection in an on-demand manner. The smallest 
unit (block) is 256 bytes which can hold 32 samples. As the 
window increases, more packets are sent. If current sample 
buffer is not enough, more blocks are allocated and linked to 
the existing sample buffer until up to M samples are taken. 
Note that sampled packets are uniformly distributed among the 
whole window. If a sample block is empty due to a reduced 
window or lack of application data, the unused blocks are re-
turned to the memory pool. This dynamic buffer management 
ensures the scalability of our implementation, so that it can 
work well even in a busy server which could host tens of thou-
sands of TCP connections simultaneously. Note that it may 
also require high-resolution timer to time RTT samples. On 
Win32 platform, we can get a micro-second timer by using 
KeQueryPerformanceCounter. After WinXP SP2, KeQuery-
PerformanceCounter has been optimized to directly read 
CPU’s Time Stamp Counter if available, and therefore intro-
duces very less overhead. 

The rest of implementation is rather straightforward. We add 
two new state variables into the standard TCP Control Block, 
namely dwnd and baseRTT. The baseRTT is a value that tracks 
the minimal RTT sample measured so far and it is used as an 

estimation of the transmission delay of a single packet. Follow-
ing the common practice of high-speed protocols, CTCP also 
revert to standard TCP behavior when the window is small. 
Delay-based component only kicks in when cwnd is larger than 
some threshold, lowwnd. When the delay-based component 
kicks in, we let it at least increase one MSS per RTT. Therefore, 
from the increase law in equation (5), CTCP window should be 
at least 41 packets. So, we select lowwnd to be 41 MSS.  

Dwnd is updated at the end of each round. If more than N 
(currently set to 5) RTT samples are taken, an average RTT is 
calculated and used to update dwnd according to equation (5). 
Note that RTT sampling and dwnd update are frozen during the 
loss recovery phase. It is because the retransmission during the 
loss recovery phase may result in inaccurate RTT samples and 
can adversely affect the delay-based control. 

VI. PERFORMANCE EVALUATION 

A. Methodology 
We constructed a test-bed to conduct experiments for CTCP 

in our lab. The test-bed contains several DELL Desktop GX280 
desktops equipped with Intel Pro/1000 XT Giga Ethernet cards. 
We use a DELL WS450 workstation as a router that connects 
two DLink DGS-1008T gigabit switches. The router is running 
FreeBSD 5.3 and DummyNet [25]. The DELL desktops are 
running Microsoft Windows and connected to the DLink 
switches. The testing environment is illustrated in Figure 7. We 
have extended the Windows TCP/IP stack to simultaneously 
support multiple TCP variants. Applications can dynamically 
select a congestion control scheme by a Socket option. We 
modified Iperf [21] to support the new Socket option, so that it 
can test the different TCP variants.  

We configure DummyNet to emulate network conditions 
with different packet loss rate and round trip delay. We config-
ure the polling frequency of FreeBSD system to be 1000 Hz, 
which in our experiments gives best tradeoff between simula-
tion smoothness and the CPU usage [28]. In each experiment, 
we set DummyNet to limit the bottleneck link speed to be 
700Mbps. It is the highest speed we can get before the router‘s 
CPU becomes a bottleneck. We configure the router to use 
DropTail queue management. Unless otherwise pointed, the 
link delay is 100ms and the buffer size at the router is set to 
1500 packets. 

Iperf

Sender ReceiverRouter

Iperf

DummyNet

Giga Ethernet
Switch

Giga Ethernet
Switch

FreeBSD 5.3MS Windows MS Windows

Multi-support
TCP/IP stack

Multi-support
TCP/IP stack

 
Figure 7. Testing Environment. 

We test three TCP implementations on our test-bed: CTCP, 
HSTCP and the default Windows TCP implementation (regular 
TCP). We make our own implementation of HSTCP according 
to RFC 3645 and the reference implementation in NS2 [22]. In 
all three TCP implementations, New Reno, SACK, D-SACK 
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and TCP high performance extensions are implemented and 
enabled by default. Each experiment lasts for 300 seconds, and 
the results presented are averaged over 5 runs of each test.  

B. Results  
1) Utilization 
We first want to verify whether or not CTCP can effectively 

use the available bandwidth in high-speed and long delay envi-
ronment. We configured DummyNet to generate random 
packet losses. We varied the loss rate from 10-2 to 10-6. We ran 
4 regular TCP, HSTCP and CTCP flows, respectively. The 
aggregated throughput of each TCP variant is plotted in Figure 
8. Note that when packet loss is high (>10-3), all three protocols 
behave exactly the same. However, with the decrease of packet 
loss rate, HSTCP and CTCP can use the bandwidth more effi-
ciently. CTCP has slightly higher throughput compared to 
HSTCP. The reasons are two-fold: 1) the CTCP’s response 
function is slightly more aggressive than HSTCP in moderate 
window range; and 2) CTCP introduces much less self-induced 
loss due to the delay-based nature. 

We then conducted another set of experiments under burst 
background traffic. We generated On/Off UDP traffic with 
different peak data rate. The on-period and off-period of the 
UDP traffic were both 10s. Table 1 summarizes the aggregated 
throughputs and link utilizations (shown in brackets, normal-
ized by the theoretical available bandwidth left over by UDP 
traffic) of 4 testing flows. It shows that CTCP and HSTCP can 
efficiently recover from the packet losses caused by burst 
background traffic and remain high link utilization. However, 
regular TCP can not efficiently use the link bandwidth. When 
the peak rate of UDP traffic goes from 50Mbps to 200Mbps, 
the bottleneck link utilization drops from 86% to 66%. This 
verifies that TCP’s congestion control algorithm is too conser-
vative under high-speed and long delay networks. 

Table 1. Throughputs under burst UDP traffic. 
BG traf-
fic peak 
rate 

50Mbps 100Mbps 150Mbps 200Mbps 

Regular 
TCP 

583.47 
(86%) 

558.44 
(85%) 

 415.01 
(66%) 

404.19 
(66%) 

HSTCP 613.77 
(91%) 

595.87 
(91%) 

566.85 
(90%) 

543.35 
(90%) 

CTCP 625.01 
(93%) 

600 
(93%) 

581.5 
(93%) 

544.83 
(91%) 

 
In the next experiment, we set DummyNet to have 10-6 loss 

rate. Then, we vary the delay of the link. Figure 9 shows the 
aggregated throughput of four concurrent flows. It shows that 
regular TCP can utilize the link capacity pretty well under 
small RTT situations, e.g. 30ms. However, with the increase of 
link delay, regular TCP has clear performance degradation. 
CTCP and HSTCP generally perform well under all tested 
situations, and CTCP slightly outperform HSTCP under longer 
RTT situation due to the delay-based design in CTCP that in-
duces less packet losses. 
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Figure 8. Throughputs under different packet loss rates. 
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Figure 9. Throughput with different RTTs with 10-6

 loss rate.  

 
2) TCP fairness 
After showing that CTCP is effective in utilizing link band-

width, we evaluate the TCP fairness property of CTCP. There 
are many methods that improve the efficiency at the cost of 
fairness to the regular TCP flows. However, our goal of CTCP 
is to improve the efficiency and maintain TCP fairness at the 
same time.  

To qualify the TCP fairness, we first ran 8 regular TCP flows 
as baseline. Then, we replaced 4 flows to be the high speed pro-
tocols and repeated the experiments under the same condition. 
We compared the throughput got by regular TCP flows with 
and without the present of high speed protocols. We used the 
bandwidth stolen defined in IV.C as an index in our compari-
sons.  

The first experiment investigated the TCP fairness under dif-
ferent link packet loss rates. Figure 10 and Figure 11 present the 
results of HSTCP and CTCP, respectively. The Regular 
TCP(baseline) presents the throughput of 4 regular TCP flows 
in the baseline test (total 8 regular TCP flows are in test). The 
Regular TCP line shows the throughput got of 4 regular TCP 
flows when they were competing with 4 high-speed protocols. 
The gap between these two lines demonstrates the throughput 
reduction of regular TCP flows when there are high-speed pro-
tocols. In Figure 10, we can see when the packet loss is high 
(>0.0001), HSTCP will not degrade the throughput of regular 
TCP. This is because when the packet loss rate is high, the link 
is under utilized. Fairness issue only rises when the link is fully 
utilized. When packet loss is light, HSTCP begins to occupy the 
buffer more quickly than regular TCP and induces more packet 
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loss events. As a consequence, the regular TCP obtains much 
less throughput compared to the baseline case. On the contrary, 
in Figure 11, when the bottleneck link is fully utilized, the de-
lay-based component begins to retreat early without causing 
additional self-induced packet losses, and therefore, the com-
peting regular TCP flows will receive similar throughput as in 
the baseline case. Figure 12 shows the bandwidth stolen. 
HSTCP can steal up to 70% of bandwidth from regular TCP 
flows, while throughput reduction of regular TCP when com-
peting with CTCP is less than 10%. 

Figure 13 shows the experiment results under different link 
delays. In this experiment, we fixed the link packet loss rate to 
be 10-6, while varied the round trip delay. Again, we see that 
HSTCP causes significant bandwidth reduction of regular TCP 
flows, while CTCP keeps good TCP fairness to regular TCP in 
all test situations. 
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Figure 10. Throughput of HSTCP and Regular TCP flows 

when competing for same bottleneck. 
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Figure 11. Throughput of CTCP and Regular TCP flows when 

competing for same bottleneck. 
 

We then repeated the experiment under burst traffic setup. 
We used the same On/off UDP background traffic pattern as in 
last section. Figure 14 shows the bandwidth stolen of CTCP 
and HSTCP in this experiment. We get similar results that 
HSTCP can cause around 60% throughput reduction of regular 
TCP, while the throughput reduction cause by CTCP is around 
10%.  
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Figure 12. Bandwidth Stolen under various packet loss rates. 
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Figure 13. Bandwidth Stolen under different RTTs with 10-6 

packet loss rate. 
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Figure 14. Bandwidth Stolen under burst background traffic. 

 
3) RTT fairness 
In this experiment, four high-speed flows were competing for 

the bottleneck link with different round trip delay. Two of them 
had shorter delay with 40ms. Two others had longer delay 
which varied among 40ms, 80ms, 120ms, and 240ms. The bot-
tleneck link delay is 20ms, and we set the buffer size to be 1000 
packets.  

Table 2 summarizes the throughput ratio between flows with 
different round trip delay. It is not surprising to see that HSTCP 
has very severe RTT unfairness because in this experiment, 
most of packet losses are synchronized. The interesting thing is 
that CTCP has much improved RTT fairness compared to regu-
lar TCP. It is because the delay-based component included in 
CTCP gives favor to long-delay flows.  
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Table 2. Throughput ratio with different round trip delay. 
Inverse RTT ratio 1 2 3 6 
Regular TCP 0.9 3.6 6.2 31.6 
HSTCP 1 28.9 90.5 233.8 
CTCP 1 2.2 4.1 9.5 
 

4) Impact of gamma 
Note that in previous experiments, we evaluate CTCP with 

γ =30. Recall from in Section III.B, that γ  is a tradeoff be-
tween throughput and the buffer requirement for TCP fairness. 
In this section, we explore the impact of γ  on the performance 
of CTCP, and this gives us the insight of how to choose γ  
value. 

In theory, we expect to choose small γ  value. But we show 
that too small γ  will adversely impact the throughput. It is be-
cause a slightly disturbance on the RTT will be sensed as early 
congestion in a dynamic network. To measure the impact of 
different γ  value, we ran a CTCP flow with mixed traffic of 
UDP and TCP background traffic. We added a CBR UDP traf-
fic which occupied 20% of capacity, and then we randomly 
added TCP flows. Each TCP flow would transmit 50Mbyte 
data. We measured the throughput of the CTCP flow over 5 
minutes. Figure 15 shows the throughput of the CTCP flow 
with different  γ  value. The grayed column presents the me-
dian value of 10 runs. The two short bars present the maximal 
and minimal value. It is expected that with higher  γ  , CTCP 
will have higher throughput. It is because that CTCP connec-
tion will accumulate more packets in the bottleneck queue and 
reduce the chance of buffer underflow, which causes through-
put reduction. However, when  30>γ , the throughput increase 
is almost saturated (from γ =30 to γ =50, the increase is less 
than 5%). Therefore, we set γ  to be 30 in this paper. 

0

50

100

150

200

250

300

3 6 10 15 20 25 30 35 40 45 50

Gamma

Th
ro

ug
hp

ut
 (M

bp
s)

 
Figure 15. Throughput of CTCP with different gamma. 

5) Impact on bottleneck buffer size 
As we mentioned before, delay-based component requires 

certain amount of buffer space at the bottleneck link, i.e. γ  
packet per flow. If the buffer size is too small, the delay may 
not significantly increase during the congestion period, so that 
the early congestion detection will not be effective. If this hap-
pens, CTCP would degrade to a pure loss-based congestion 
avoidance algorithm. We conducted experiments under differ-
ent buffer sizes. Our tests contained 4 high-speed flows with 4 
regular TCP flows. Similar as before, we firstly ran 8 regular 
TCP flows and measured their throughput as a baseline. We 
plot the bandwidth stolen of HSTCP and CTCP in Figure 16.  

We can see from Figure 17, that when the buffer size is very 

small (<=300packets), the delay-based control law can not work 
well. As a consequence, CTCP stole bandwidth from regular 
TCP flows similar as HSTCP, as we intentionally set CTCP to 
have similar aggressiveness as HSTCP (actually, CTCP is a bit 
more aggressive than HSTCP with low window size). However, 
when the buffer size increases, the delay-based control law be-
came more effective. Therefore, CTCP demonstrated good TCP 
fairness (the bandwidth stolen drops to around 10%). HSTCP, 
on the other hand, stole more bandwidth from competing regu-
lar TCP flows with the increase of the buffer size (the band-
width stolen became saturated after some point). The reason is 
that when buffer size is large, the window of HSTCP is also 
larger and it is more aggressive compared to regular TCP.  
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Figure 16. Bandwidth Stolen under different buffer size. 
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Figure 17. Throughput under different buffer size. 

We argue that for high-speed and long delay network, it is 
essential to provide sufficient buffer space in order to fully util-
ize the link capacity. To show that, we plot in Figure 17 the 
aggregated throughput of the eight flows under different buffer 
sizes in above experiment. It shows that only with enough 
buffer size (e.g. 1000 packets), the 700Mbps link with 100ms 
delay can be fully utilized. Therefore, we expect reasonable 
large buffer should be deployed on the high-speed and long 
delay Internet that we target at.  

6) Impact of window reduction rule according to delay in-
crease 
In this section, we evaluate the impact on the TCP fairness of 

the window reduction control law with the increasing of delay. 
We modified the CTCP implementation and removed the win-
dow reduction rule. We refer this modified CTCP implementa-
tion as CTCP-NWR. Note that CTCP-NWR is very similar to 
TCP Africa [27]. We conducted the following experiment. We 
set the bottleneck link speed to be 500Mbps with round trip 
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delay 60ms. Accordingly, we set the buffer size to be 750 
packets. We tested 4 regular TCP flows first as a baseline and 
we had averaged throughput of two flows as 229.1Mbps. Then, 
we ran 2 regular TCP flows against 2 HSTCP, CTCP-NWR, 
and CTCP flows, respectively. Table 3 summarizes the results. 
We can see that without the window reduction rule, CTCP-
NWR still behaved more aggressive that regular TCP and 
caused 50% throughput reduction. Indeed, this is better than 
HSTCP, which resulted in 81% bandwidth stolen, but much 
worse than CTCP, which only had 6% bandwidth stolen. This 
confirms that reducing window based on delay information is 
essential to ensure TCP fairness in a mixed network environ-
ment. 

Table 3. Impact on TCP fairness of window reduction rule in 
CTCP (unit Mbps) 

 Regular 
TCP 

High-speed 
protocol 

Sum Bandwidth 
stolen 

HSTCP 42.9 435. 478. 81% 
CTCP-
NWR 

113.6 362. 476. 50% 

CTCP 215.2 264.9 480.1 6% 

VII. CONCLUSIONS 
In this paper, we present a novel congestion control algo-

rithm for high-speed and long delay networks. Our Compound 
TCP approach combines a scalable delay-based component 
with a standard TCP loss-based component. The delay-based 
component can efficiently use free bandwidth with its scalable 
increasing law. When the network is congested, the delay-
based component will gracefully reduce the sending rate, but 
the loss-based component keeps the throughput of CTCP lower 
bounded by TCP Reno. This way, CTCP will not be timid, nor 
induce more self-induced packet losses than a single TCP Reno 
flow, and therefore achieves good TCP fairness. Further, delay-
based schemes allocate network resource without RTT bias. 
Therefore, adding a delay-based component in CTCP greatly 
improves the RTT fairness even compared to TCP Reno.  

We have implemented CTCP on Windows Platform by 
modifying Win32 TCP/IP stack. We conducted excessive lab 
experiments with our implementation and convinced ourselves 
that our implementation is stable and robust. The experimental 
results verify that CTCP can effectively utilize the link capac-
ity, while at the same time maintaining excellent RTT and TCP 
fairness.  

Finally, we note that CTCP may still be able to improve in 
many ways. For example, one going-on effort is to adaptively 
set γ  value. Our goal is to detect early congestion with con-
stant buffer requirement independent of the number of CTCP 
flows. We are currently investigating several ways to achieve 
this goal.  

VIII. ACKNOWLEDGEMENT 
The authors are very grateful to Sanjay Kaniyar, Deepak 

Bansal and Arvind Murching for their insightful comments and 

suggestions. The authors also thank Yaya Wei for her helpful 
discussion during her internship at MSRA. 

REFERENCES 
[1] M. Allman, V. Paxson and W. Stevens, “TCP Congestion Control”, RFC 

2581, April 1999. 
[2] W. Allock, J. Bester, J. Bresnahan, A. Chervenak, I. Foster, C. Kesselman, 

S. Meder, V. Nefedova, D. Quesnel, and S. Tuecke, “Data management 
and transfer in highperformance computational grid environments”, Paral-
lel Computing, 2002. 

[3] V. Jacobson and M. J. Karels, “Congestion Avoidance and Control”, 
SIGCOMM, 1988. 

[4] S. Floyd, “HighSpeed TCP for Large Congestion Windows”, RFC 3649, 
December 2003. 

[5] Tom Kelly, “Scalable TCP: Improving Performance in HighSpeed Wide 
Area Networks”, in First International Workshop on Protocols for Fast 
Long Distance Networks (PFLDnet), Geneva, February 2003. 

[6] C. Jin, D. Wei and S. Low, “FAST TCP: Motivation, Architecture, Algo-
rithms, Performance”, In Proc IEEE INFOCOM 2004. 

[7] L. Xu, K. Harfoush and I. Rhee, “Binary Increase Congestion Control 
(BIC) for Fast Long-Distance Networks”, In Proc. IEEE  INFOCOM 
2004. 

[8] B. Allcock, J. Bester, J. Bresnahan, A. L. Chervenak, I. Foster, C. Kes-
selman, S. Meder, V. Nefedova, D. Quesnel, and S. Tuecke, “Data 
management and transfer in high performance computational grid environ-
ments”, Parallel Computing, May 2002. 

[9] S. Floyd and K. Fall, “Promoting the Use of End-to-End Congestion Con-
trol in the Internet”, IEEE/ACM Trans. on Networking, August 1999. 

[10] J. Mo, R.J. La, V. Anantharam, and J.Walrand, “Analysis and Comparison 
of TCP Reno and Vegas”, in Proc. INFOCOM, March 1999. 

[11] J. Martin, A. Nilsson, I. Rhee, “Delay-based Congestion Avoidance for 
TCP”, IEEE/ACM Transactions on Networking, June 2003. 

[12] L. Brakmo, S. O'Malley, and L. Peterson, “TCP Vegas: New techniques 
for congestion detection and avoidance”, in Proc. ACM SIGCOMM, 1994. 

[13] J. Padhya, V. Firoiu, D. Towsley and J. Kurose, “Modeling TCP 
Throughput: A Simple Model and its Empirical Validation”, in Proc. 
ACM SIGCOMM 1998. 

[14] E. de Souza and D. Agaral, “A Highspeed TCP Study: Characteristics and 
Deployment issues”, LBL Technique report. 

[15] D. Bansal and H. Balakrishnan, “Binomial Congestion Control Algo-
rithms”, in Proc. INFOCOM 2001. 

[16] R. Wang, G. Pau, K. Yamada, M. Y. Sanadidi and M. Gerla, “TCP Start 
up Performance in Large Bandwidth Delay Networks”, in Proc. 
INFOCOM 2004. 

[17] J.S. Ahn, P. B. Danzig, Z. Liu and L. Yan, “Evaluation of TCP Vegas: 
Emulation and experiment”, in Proc. ACM SIGCOMM, 1995. 

[18] S. Ravot, “TCP transfers over high latency/bandwidth networks & Grid 
DT”, in First International Workshop on Protocols for Fast Long-
Distance Networks (PFLDnet), 2003. 

[19] S. Floyd, “Limited Slow-Start for TCP with Large Congestion Windows”, 
Internet Draft, draft-floyd-tcp-slowstart-01.txt, Aug, 2002. Work in pro-
gress. 

[20] C. Samios and M. K. Vernon, “Modeling the Throughput of TCP Vages”, 
ACM SIGMETRICS 2003. 

[21] Iperf. Available at http://dast.nlanr.net/Projects/Iperf/ 
[22] The Network Simulation - NS2. Available at http://www.isi.edu/nsnam/ns/ 
[23] D. Chiu and R. Jain, “Analysis of the increase and decrease algorithms for 

congestion avoidance in computer networks”, Computer Networks, 1989. 
[24] G. Hasegawa, M. Murata and H. Miyahara, “Fairness and Stability of 

Congestion Control Mechanisms of TCP”, In Proc. INFOCOM 1999. 
[25] L. Rizzo, DummyNet, available at 

http://info.iet.unipi.it/~luigi/ip_dummynet. 
[26] S. Low, Question about FAST TCP. End-to-end mailing list, Nov. 2003.  
[27] R. King, R. Baraniuk and R. riedi, “TCP-Africa: An Adaptive and Fair 

Rapid Increase Rule for Scalable TCP”, In Proc. INFOCOM 2005. 
[28] M. Zec and M. Mikuc,”Real-Time IP Network Simulation at Gigabit Data 

Rates”, In Proc. 7th Intl. Conf. on Telecommunications, June 2003. 

 

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the Proceedings IEEE Infocom.


