

A Compound TCP Approach for High-speed and
Long Distance Networks

Kun Tan Jingmin Song
Microsoft Research Asia

Beijing, China
{kuntan, jmsong, }@microsoft.com

Qian Zhang
DCS, Hong Kong Univ. of Sci & Tech

Hong Kong
qianzh@cs.ust.hk

Murari Sridharan
Microsoft Corporation

One Microsoft way, Redmond, WA,
USA

muraris@microsoft.com

Abstract—Many applications require fast data transfer over
high speed and long distance networks. However, standard TCP
fails to fully utilize the network capacity due to the limitation in its
conservative congestion control (CC) algorithm. Some works have
been proposed to improve the connection’s throughput by adopt-
ing more aggressive loss-based CC algorithms. These algorithms,
although can effectively improve the link utilization, have the
weakness of poor RTT fairness. Further, they may severely de-
crease the performance of regular TCP flows that traverse the
same network path. On the other hand, pure delay-based ap-
proaches that improve the throughput in high-speed networks
may not work well when the traffic is mixed with both delay-
based and greedy loss-based flows. In this paper, we propose a
novel Compound TCP (CTCP) approach, which is a synergy of
delay-based and loss-based approach. Specifically, we add a scal-
able delay-based component into the standard TCP Reno conges-
tion avoidance algorithm (a.k.a., the loss-based component). The
sending rate of CTCP is controlled by both components. This new
delay-based component can rapidly increase sending rate when
network path is under utilized, but gracefully retreat in a busy
network when bottleneck queue is built. Augmented with this
delay-based component, CTCP provides very good bandwidth
scalability with improved RTT fairness, and at the same time
achieves good TCP-fairness, irrelevant to the windows size. We
developed an analytical model of CTCP and implemented it on the
Windows operating system. Our analysis and experiment results
verify the properties of CTCP.

Index Terms—TCP performance, delay-based congestion con-
trol, high speed network

I. INTRODUCTION

Moving bulk data quickly over high-speed data network is a
requirement for many applications. For example, the physicists
at CERN LHC conduct physics experiments that generate giga-
bytes of data per second, which are required to be shared
among other scientists around the world [2]. Currently, most
applications use the Transmission Control Protocol (TCP) to
transmit data over the Internet. TCP provides reliable data
transmission with embedded congestion control algorithm [1]
which effectively removes congestion collapses in the Internet
by adjusting the sending rate according to the available band-
width of the network. However, although TCP achieves re-
markable success (maximizing the utilization of the link and
fairly sharing bandwidth between competing flows) in today’s
Internet environment, it has been reported that TCP substan-
tially underutilizes network bandwidth over high-speed and
long distance networks [4].

In high-speed and long distance networks, TCP requires a

very large window, roughly equal to the bandwidth delay pro-
duction (BDP), to efficiently utilize the network resource.
However, the standard TCP takes a very conservative approach
to update its window in congestion avoidance stage. Specifi-
cally, TCP increases its congestion window by one packet every
round trip time (RTT) and reduces it by half on a loss event. If
BDP is too large, it requires an unreasonable long time for TCP
to expand its window to that value. As an example, Floyd et al.
[4], pointed out that under a 10Gbps link with 100ms delay, it
will roughly take one hour for a standard TCP flow to fully util-
ize the link capacity, if no packet is lost or corrupted. This one
hour error free transmission requires a packet loss rate around
10-11 with 1500-byte packets (one packet loss over
2,600,000,000 packet transmission!). This requirement is far
from the reality of current network hardware.

Recent research has proposed many approaches to address
this issue. One class of approaches modifies the in-
crease/decrease parameters of TCP congestion avoidance algo-
rithm (CAA) and makes it more aggressive. Like TCP, ap-
proaches in this category are loss-based that uses packet-loss as
the only indication of congestion. Some typical proposals in-
clude HSTCP [4], STCP [5], and BIC-TCP [7]. Another class of
approaches, by contrast, is delay-based, which makes conges-
tion decisions that reduce the transmission rate based on RTT
variations, e.g., FAST TCP [6]. All aforementioned approaches
are shown to overcome TCP’s deficiencies in high bandwidth-
delay networks to some extent. However, in this paper, we ar-
gue that for a new high-speed protocol, following requirements
must be met before it can be really deployed into the Internet:

[Efficiency] It must improve the throughput of the connec-
tion to efficiently use the high-speed network link.

[RTT fairness] It must also have good intra-protocol fairness,
especially when the competing flows have different RTTs.

[TCP fairness] It must not reduce the performance of other
regular TCP flows competing on the same path. This means that
the high-speed protocols should only make better use of free
available bandwidth, but not steal bandwidth from other flows.

For existing loss-based high-speed solutions, it is essential to

be highly aggressive to satisfy the efficiency requirement. How-
ever, this aggressiveness also causes severe RTT unfairness and
TCP unfairness. On the other hand, for delay-based approaches,
although they can achieve high efficiency and good RTT fair-
ness in a network where the majority flows are delay-based,
they may suffer from significant lower throughput than their
fair share, if most competing flows are loss-based, e.g. TCP-

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the Proceedings IEEE Infocom.

1-4244-0222-0/06/$20.00 (c)2006 IEEE

Reno. The reason is that delay-based approaches reduce their
sending rate when bottleneck queue is built to avoid self-
induced packet losses. However, this behavior will encourage
loss-based flows to increase their sending rate since they may
observe less packet losses. As a consequence, the loss-based
flows will obtain much more bandwidth than their share while
delay-based flows may be starved [10].

In this paper, we propose a new congestion control protocol
for high-speed and long delay environment that satisfies all
aforementioned three requirements. Our new protocol is a syn-
ergy of both delay-based and loss-based congestion avoidance
approaches, which we call it Compound TCP (CTCP). The key
idea of CTCP is to add a scalable delay-based component to
the standard TCP1. This delay-based component has a scalable
window increasing rule that not only efficiently uses the link
capacity, but also reacts early to congestion by sensing the
changes in RTT. If a bottleneck queue is sensed, the delay-
based component gracefully reduces the sending rate. This
way, CTCP achieves good RTT fairness and TCP fairness. We
have developed analytical model of CTCP and performed
comprehensive performance studies on CTCP based on our
implementation on Microsoft Windows platform. Our analysis
and experimental results suggest that CTCP is a promising al-
gorithm to achieve high link utilization while maintaining good
RTT fairness and TCP fairness.

The rest of paper is organized as follows. In next section, we
elaborate the background and existing approaches in detail. We
review these schemes against the three properties we men-
tioned before. Then, we propose our design of CTCP in Section
III. Analytical analysis of CTCP is presented in Section IV. We
describe the implementation in Section V, and experiment re-
sults of CTCP are presented in Section VI. We conclude the
paper in Section VII.

II. BACKGROUND AND RELATED WORK
The standard TCP congestion avoidance algorithm employs

an additive increase and multiplicative decrease (AIMD)
scheme. When there is no packet loss detected (by means of
three duplicate-ACKs or retransmission timeout), the conges-
tion window (cwnd) is increased by one Maximum Segment
Size (MSS) every RTT. Otherwise, if a packet loss is detected,
the TCP sender decreases cwnd by half. In a high-speed and
long delay network, it requires a very large window, e.g. thou-
sands of packets, to fully utilize the link capacity. Therefore, it
will take the standard TCP many RTTs to recover the sending
rate upon a single loss event. It is well-known that the average
TCP congestion window is inversely proportional to the square
root of the packet loss rate, as shown in (1) [9][13],

p
W MSS22.1 ⋅= , (1)

where W is the average TCP window and p is the average
packet loss rate. Therefore, it requires extremely small packet
loss rate to sustain a large window. With the packet loss rate in
real life networks, a standard TCP sender may never open its
window large enough to fully utilize the high-speed link.

1 In this paper, terms of “regular TCP” and “standard TCP” all refer to TCP-
Reno.

One straightforward way to overcome this limitation is to
modify TCP’s increase/decrease control rules in congestion
avoidance. More specifically, in the absence of packet loss, the
sender increases cwnd more quickly and decreases it more gen-
tly upon a packet loss.

STCP [5] alters TCP’s AIMD congestion avoidance scheme
to MIMD (multiplicative increase and multiplicative decrease).
Specifically, STCP increases cwnd by 0.01 MSS on every re-
ceived ACK and reduces cwnd to its 0.875 times upon a packet
loss. HSTCP [4], on the other hand, still mimics the AIMD
scheme, but with varying increase/decrease parameters. As
cwnd increases from 38 packets to 83,333 packets, the decrease
parameter reduces from 0.5 to 0.1, while the increase parameter
increases accordingly. HSTCP is less aggressive than STCP,
but is far more aggressive than the standard TCP. As pointed in
[7], these aggressive schemes suffer great RTT unfairness.
From simple analysis based on synchronized loss model, Xu et
al., [7] shows that for any loss-based congestion control proto-
col with steady state throughput in the form of dpR

CTh
⋅

= , where

R is the RTT, p is the packet loss rate, C and d are constant, the
throughput ratio between two flows with different RTT should
be inversely proportional to 1/(1-d)th power of their RTT ratio.

Or,
d

R
R

Th
Th −

=

1
1

2

1

1

2 . This value d for HSTCP and STCP is 0.82 and

1, respectively. Thus, the RTT unfairness of HSTCP and STCP
is 5.56 and infinite, respectively.

In [7], BIC-TCP is proposed to mitigate this RTT unfairness
by using binary increase scheme and switching to AIMD with
constant parameters when cwnd is large. BIC-TCP has similar
RTT-fairness to TCP-Reno when the window is large and then
the sender has switched to AIMD mode (window > 16000
packet and in this time d is near 0.5). However, if the protocol
works at lower window range, d could increase to near 1 and
BIC-TCP may have similar RTT unfairness to STCP.

Besides the RTT-unfairness, the above approaches also have
TCP-unfairness concerns when they are working in a mixed
network environment with standard TCP flows and these en-
hanced flows. When an aggressive high-speed variant flow trav-
erses the bottleneck link with other standard TCP flows, it may
increase its own share of bandwidth by reducing the throughput
of other competing TCP flows. The reason is that the aggressive
high-speed variants will cause much more self-induced packet
losses on bottleneck links, and therefore push back the through-
put of the regular TCP flows. Indeed, there is a mechanism pre-
sent in the existing aggressive high-speed variants to revert to
standard TCP congestion avoidance algorithm if the window is
smaller than a pre-defined threshold (low_window as defined in
[4], which is typically set to 38 packets). This, although may
prevent collapses in heavy congested cases, can not provide
satisfactory TCP-fairness in general network situations. The
aggressive behavior of these enhanced flows may severely de-
grade the performance of regular TCP flows whenever the net-
work path is already highly utilized. As an illustration, we con-
ducted the following simulation in NS 2 [22]. The network to-
pology was a simple dumbbell topology, as shown in Figure 1.
The capacity of the bottleneck link was set to 100Mbps and the
round-trip delay was 100ms. We tested the cases where one

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the Proceedings IEEE Infocom.

enhanced high-speed flow (i.e. HSTCP, STCP, BIC-TCP2) was
competing with five regular TCP flows. We also compared
with the case where there were six identical regular TCP flows.
The results are summarized in Figure 2. With this network
setup, six regular TCP flows already fully utilized the network
path. As clearly shown in Figure 2, all the three aggressive
high-speed flows occupied over 60% of link bandwidth in its
testing, and the throughput of a regular TCP was reduced to
only 30% compared to that if there was no aggressive high-
speed flow. In other words, each aggressive high-speed flow
increased its throughput only by reducing throughputs of other
regular TCP flows, and therefore caused TCP unfairness. Note
that BIC-TCP caused even severe TCP-unfairness than HSTCP
in this case. According to [7], BIC-TCP may have better TCP-
fairness property than HSTCP when the window is large. But
in the window size in this example, the aggressiveness of BIC-
TCP was between HSTCP and STCP.

100Mbps, 50ms

10Gbps, 1m
s 10

Gbp
s,

1m
s

Figure 1. The network topology with simple bottleneck link.

0%

20%

40%

60%

80%

100%

6 Regular TCP 1 HSTCP vs 5 RegTCP 1 BIC-TCP vs 5 RegTCP 1 STCP vs 5 RegTCP

Li
nk

 U
til

iz
at

io
n

(%
)

Aggressive High-speed Variance Regular TCP Unused

Figure 2. Bandwidth allocation between competing flows.

Another class of high speed protocols, like FAST TCP [6],

instead of making simple modifications on TCP’s in-
crease/decrease parameters, chooses to design a new conges-
tion control scheme which takes RTT variances as congestion
indicator. These delay-based approaches are more-or-less de-
rived from seminal work of TCP Vegas [12]. One core idea of
delay-based congestion avoidance is that the increase of RTT is
considered as early congestion, and the sending rate is reduced
to avoid self-induced buffer overflow. Another interpretation of
this delay-based behavior is that it tries to maintain a fixed
buffer occupation. In this way, they will not cause large queue-
ing delay and reduce packet losses. FAST TCP can be regarded
as a scaled version of TCP Vegas. FAST TCP incorporates
multiplicative increase if the buffer occupied by the connection

2 We chose the parameters of BIC-TCP according to [7].

at the bottleneck is far less than some pre-defined threshold α ,
and switch to linear increase if it is near α . Then, FAST tries
to maintain the buffer occupancy around α and reduces send-
ing rate if delay is further increased. Theoretical analysis and
experiments show that delay-based approaches have better
properties than pure loss-based approaches, such as higher utili-
zation, less self-induced packet losses, faster convergence
speed, better RTT fairness and stabilization [17][6]. However,
previous work also reveals that delay-based approaches may not
be able to obtain fair share when they are competing with loss-
based approaches like standard TCP [10]. This can be explained
as follows. Consider a delay-based flow, e.g. Vegas or FAST,
shares a bottleneck link with a standard TCP. Since the delay-
based flow tries to maintain a small number of packets in the
bottleneck queue, it will stop increasing its sending rate when
the delay reaches some value. However, the loss-based flow
will not react to the increase of delay, and continues to increase
the sending rate. This, observed by the delay-based flow, is
considered as congestion indication and therefore the sending
rate of the delay-based flow is further reduced. In this way, the
delay-based flow may obtain far less bandwidth than its fair
share. One possible way to remedy this is to design a dynamic
scheme to choose α to ensure it is TCP-compatible [26]. How-
ever, designing such a scheme is simply not trivial, since the
correct α is a function of buffer size and number of concurrent
connections, which are generally unknown in a real world net-
work. To our best knowledge, this is no design of such a dy-
namic scheme for this purpose.

Besides the protocols discussed above, there is recently a
proposal of TCP Africa [27]. Similar to CTCP, it also proposes
to incorporate delay information to improve the RTT and TCP
fairness. However, the key difference of this proposal to CTCP
lies in that, in TCP Africa, the delay-information is used only as
a trigger to switch TCP Africa from “fast mode” (aggressive
increase) and “slow mode” (additive increase), but never used
to reduce the window size. Therefore, TCP Africa is intrinsi-
cally a loss-based approach. When competing with other regular
TCP flows, it will still steal much bandwidth from them, though
better than HSTCP. As we will show later in our design and
experiments, reducing window based on delay information is
essential to prevent stealing bandwidth from other regular TCP
flows in a mixed network environment (see SectionVI.B.6)).

III. THE COMPOUND TCP
After understanding the existing approaches and their limita-

tions, we revisit the design of a high-speed congestion control
algorithm that fulfills all three requirements listed in Section I.
The key idea is that if the link is under-utilized, the high-speed
protocol should be aggressive in increasing sending rate to ob-
tain available bandwidth more quickly. However, once the link
is fully utilized, being aggressive is no longer good, as it will
only cause problems like TCP unfairness. We note that delay-
based approaches already have this nice property of adjusting
its aggressiveness based on the link utilization, which is ob-
served by the end-systems from the increase in the packet delay.
However, as mentioned in previous section, the major weakness
of delay-based approaches is that they are not competitive to

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the Proceedings IEEE Infocom.

loss-based approaches. And this weakness is difficult to be
remedied by delay-based approaches themselves.

Having made this observation, we propose to adopt a syner-
gic way that combines a loss-based approach with a delay-
based approach for high speed congestion control. For easy
understanding, let’s imagine application A communicates with
application B simultaneously using two flows. One is a stan-
dard loss-based TCP flow, and the other is a delay-based flow.
When the network is underutilized, A can get an aggregated
communication throughput, with B, which is the sum of both
flows. With the increase of the sending rate, queue is built at
the bottleneck, and the delay-based flow gradually reduces its
sending rate. The aggregated throughput for the communica-
tion also gradually reduces but is bound by the standard TCP
flow.

Then, there comes the core idea of our novel Compound
TCP (CTCP), which incorporates a scalable delay-based com-
ponent into the standard TCP congestion avoidance algorithm.
This scalable delay-based component has a rapid window in-
crease rule when the network is sensed to be under-utilized and
gracefully reduces the sending rate once the bottleneck queue
is built. With this delay-based component as an auto-tuning
knob, Compound TCP can satisfy all three requirements pretty
well:

1) CTCP can efficiently use the network resource and
achieve high link utilization. In theory, CTCP can be very fast
to obtain free network bandwidth, by adopting a rapid increase
rule in the delay-based component, e.g. multiplicative increase.
However, in this paper, we choose CTCP to have similar ag-
gressiveness to obtain available bandwidth as HSTCP. The
reasons are two-folds. On one hand, HSTCP has been tested to
be aggressive enough in real world networks and is now an
experimental IETF RFC. On the other hand, we want to bound
the worst case behavior of CTCP as HSTCP if the network is
poorly buffered, as we will elaborate in Section VI.B.5).

2) CTCP has similar or even improved RTT fairness com-
pared to regular TCP. This is due to the delay-based compo-
nent employed in the CTCP congestion avoidance algorithm. It
is known that delay-based flow, e.g. Vegas, has better RTT
fairness than the standard TCP [20].

3) CTCP has good TCP-fairness. By employing the delay-
based component, CTCP can gracefully reduce the sending rate
when the link is fully utilized. In this way, a CTCP flow will
not cause more self-induced packet losses than a standard TCP
flow, and therefore maintains fairness to other competing regu-
lar TCP flows.

A. Architecture
As explained earlier, CTCP is a synergy of a delay-based

approach with a loss-based approach. This synergy is imple-
mented by adding a new scalable delay-based component in the
standard TCP congestion avoidance algorithm (also called loss-
based component). To do so, a new state variable is introduced
in current TCP Control Block (TCB), namely, dwnd (Delay
Window), which controls this delay-based component in
CTCP. The conventional congestion window, cwnd, remains
untouched, which controls the loss-based component in CTCP.
Then, the CTCP sending window now is controlled by both

cwnd and dwnd. Specifically, the TCP sending window (called
window hereafter) is now calculated as follows:

),min(awnddwndcwndwin += ,
where awnd is the advertised window from the receiver.

The update of dwnd will be elaborated in detail in next sub-
section, while the update of cwnd is in the same way as in the
regular TCP in the congestion avoidance phase, i.e., cwnd is
increased by one MSS every RTT and halved upon a packet
loss event. However, here CTCP may send (cwnd +dwnd)
packets in one RTT. Therefore, the increment of cwnd on arri-
val of an ACK is modified accordingly:

)/(1 dwndcwndcwndcwnd ++= . (2)
CTCP keeps the same Slow-Start behavior of regular TCP at

the start-up of a new connection. It is because that we believe
slow-start, which exponentially increases window, is quick
enough even for fast and long distance environment that we
target at [4]. We initially set dwnd to zero if the connection is in
slow-start state, and the delay-based component is effective
only when the connection is working at congestion avoidance
phase.

B. Design of delay-based congestion avoidance
The delay-based component in CTCP is enabled when the

connection is in congestion avoidance phase. This delay-based
algorithm should have the following properties. Firstly, it
should have an aggressive, scalable increase rule when the net-
work is sensed to be under-utilized. Secondly, it should also
reduce sending rate accordingly when the network is sensed to
be fully utilized. By reducing its sending rate, the delay-based
component yields a step to competing TCP flows and ensures
TCP fairness. Lastly, it should also react to packet losses. It is
because packet losses may still be an indicator of heavy conges-
tion, and hence reducing sending rate upon packet loss is a nec-
essary conservative behavior to avoid congestion collapse.

Our algorithm for delay-based component is derived from
TCP Vegas. A state variable, called baseRTT, is maintained as
an estimation of the transmission delay of a packet over the
network path. When the connection is started, baseRTT is up-
dated by the minimal RTT that has been observed so far. An
exponentially smoothed RTT, sRTT, is also maintained. Then,
the number of backlogged packets of the connection can be
estimated by following algorithm:

baseRTTActualExpectedDiff
RTTwinActual

baseRTTwinExpected

⋅−=
=

=

)(
/

/
.

The Expected gives the estimation of throughput we get if we
do not overrun the network path. The Actual stands for the
throughput we really get. Then, (Expected – Actual) is the dif-
ference between the expected throughput and the actual
throughput. When multiplying by baseRTT, it stands for the
amount of data that injected into the network in last round but
does not pass through the network in this round, i.e. the amount
of data backlogged in the bottleneck queue. An early congestion
is detected if the number of packets in the queue is larger than a
threshold γ . If diff <γ , the network path is determined as un-
der-utilized; otherwise, the network path is considered as busy
and delay-based component should gracefully reduce its win-

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the Proceedings IEEE Infocom.

dow.
Note here, it requires the connection to have at least γ pack-

ets backlogged in the bottleneck queue to detect early conges-
tion. Therefore, we want γ to be small, since it requires less
buffer size on the bottleneck to ensure TCP fairness. On the
other hand, we can not set γ to be too small, since it may cause
false early congestion detections and adversely affect the
throughput. In this paper, we set γ to be 30 packets. As we
will show in Section VI.B.4), we believe this γ value is a
pretty good tradeoff between TCP fairness and throughput.

The increase law of the delay-based component should make
CTCP more scalable in high-speed and long delay pipes. In this
paper, we choose the CTCP window evolution to have the bi-
nomial behavior. More specifically, when there is no conges-
tion occurs, neither increase in queue nor packet losses, the
CTCP window increases as follows

ktwintwintwin)()()1(⋅+=+ α ; (3)
while there is a lose, the window is multiplicatively decreased,
 ()β−⋅=+ 1)()1(twintwin . (4)

Parameters of α , β and k are tunable to give out desirable
scalability, smoothness and responsiveness. As mentioned be-
fore, we tune CTCP to have comparable scalability to HSTCP
when there is absence of congestion (the detailed derivation is
presented in Section IV.A).

Considering there is already a loss-based component in
CTCP, the delay-based component needs to be designed to
only fill the gap, and the overall CTCP should follows the be-
havior defined in (3) and (4). We summarize the algorithm for
the delay-based component as in (5)

()
()

−−⋅

≥⋅−

<−⋅+

=+
+

+

+

detected is loss if ,2/)1()(

 if ,)(

 if ,)1)(()(

)1(

cwndtwin

diffdifftdwnd

difftwintdwnd

tdwnd

k

β
γζ

γα
, (5)

where (.)+ is defined as max (., 0). The first line shows that in
the increase phase, dwnd only needs to increase

+−⋅)1)((ktwinα packets, since the loss-based component
(cwnd) will also increase by 1 packet. Similarly, when there is
a loss, dwnd is set to the difference between the desired re-
duced window size and that can be provided by cwnd. The rule
on the second line is important. It shows that dwnd does de-
crease when the queue is built, and this is the core for CTCP to
preserve good RTT and TCP fairness. Here, ζ is a parameter
that defines how rapidly the delay-based component should
reduce this window when early congestion is detected. Note
that dwnd will never be negative. Therefore, CTCP window is
lower-bounded by its loss-based component (a.k.a. a standard
TCP).

In above control laws, we assume the loss is detected by
three duplicate ACKs. If a retransmission timeout occurs, dwnd
should be reset to zero and the delay-based component is dis-
abled. It is because that after a timeout, the TCP sender is put
into slow-start state. After the CTCP sender exits the slow-start
recovery state, the delay-based component may be enabled
once more.

IV. ANALYSIS OF CTCP
In this section, we develop analytical models of CTCP to

study its characteristics. More specifically, we want to quantify
how well CTCP satisfies the three requirements proposed ear-
lier for high speed protocols, namely efficiency property, RTT
fairness property, and TCP fairness property. In the following
analysis, we use a synchronized loss model. There is much evi-
dence showing that synchronized loss is common in high-speed
networks [7]. We develop our analytic model based on a simple
network topology which contains one bottleneck link, as shown
in Figure 3, where u stands for the link capacity; B is the buffer
size on the bottleneck link; and Ti is the transmission delay.
Note that this transmission delay can be different for different
connections.

u

CTCP

B
Ti

Regular TCP

l

m
Figure 3. A simple network model.

A. Efficiency property
We first focus on the stable state throughput of CTCP. We

ignore the slow-start phase and assume all loss events are de-
tected by three duplicate ACKs. We follow the common as-
sumptions as in previous work [13][20] that packet losses in
different rounds are independent and RTT is independent to the
window size of individual flow. The evolution of the CTCP
window is illustrated in Figure 4. At time D, the connection just
experiences a loss event and reduces the window size. At this
point, the queue at the bottle-neck has been drained, and there-
fore, the window increases binomially. At time E, the queue
begins to build, the CTCP senses this from the increase in the
packet delay, and dwnd decreases to try to maintain a stable
window. Note that cwnd still increases one MSS each round and
when dwnd decreases to zero, CTCP window increases again at
time F. CTCP continues to probe the network capacity until a
packet loss occurs at time G, and window is reduced by Wβ .
The dashed line in Figure 4 illustrates the evolution of cwnd in
CTCP. From time D to time G, we define a Loss Free Period
(LFP).

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the Proceedings IEEE Infocom.

D F GE

Wm

W0

Wm(1-β)

LFP
Figure 4. The evolution of CTCP window during a LFP.

We denote w0 the window size at the stable state, i.e. from
time E to time F, at which CTCP tries to maintain γ packets
backlogged at the bottleneck queue. Following the previous
analysis [20], the average diff in this stable state is approxi-
mately γ . Therefore, we have

baseRTTR
Rw

−
⋅= γ0

, (6)

where R is the round trip time.
Below, we develop the throughput model of CTCP. During

time D to E, window increases according to

R
t

k
W

R
W

dt
dW kk ⋅=

−
⇒⋅=

− αα
1

)1(. (7)

Therefore, the interval between D and E can be calculated as
[])1()1()1(

0)1(
)1(

k
m

kk
DEDE WW

k
RttT −−− −−
−

=−= β
α

. (8)

And the number of packets transmitted during time interval D-
E is

()())2(2)2(
0

1
1)

1
1(

1
)2(

1

1)1(

k
m

kk

t

t

t

t

k
k

DE

WW
k

dtt
RR

kdt
R
WN

E

D

E

D

−−−

−
−

⋅−−
−

=

⋅

 −== ∫ ∫

β
α

α . (9)

 During time E to F, while cwnd continues to grow, dwnd
keeps dropping. As a consequence, the CTCP window remains
stable until dwnd drops to zero and window starts again to in-
crease at time F. Therefore, we have
 ()

[])1()1()1(
0

0

)1(
)1(

)1(
k

m
kk

mDEFDEF

WW
k

R
RWWTTT

−−− −−
−

−−−=−=

β
α

β , (10)

and EFEF TWN ⋅= 0 . (11)
 During time F to G, CTCP window increases linearly just as
if it is a simple TCP Reno. Therefore, we simply have
 ()RWWT mFG 0−= , (12)

and)(
2
1))((

2
1 2

0
2

00 WWWWWWN mmmFG −=−+= (13)

 The total number of packet sent in one LPF is
 pNNNY FGEFDE /1≈++= . (14)
Note that Wm is the only variable in equation (14), so that we
can get it by solving (14). Then, we plug Wm back into (8),
(10), and (12) to get the total number of RTTs in each LPF.
Finally, the throughput of CTCP is

)(
/1

FGEFDE TTTR
p

++⋅
=Λ . Be-

low, we give the close-form expression of CTCP throughput in
a special case, from where we give the rationale based on
which we choose CTCP parameters.

We assume the packet loss rate is rather high. In this case,
random packet loss limits the throughput of CTCP and the sta-
ble state mentioned above is never achieved. The response
function in this case reflexes the ability of CTCP to use the free
bandwidth. Since LFP ends before time E, from (9), we have

[]
p

WW
k

k
m

kk
m

1)1(
)2(

1)2()2()2(=−−
−

−−− β
α

. (15)

So, now we get

() k

k

km

p

kW
−

−

− ⋅

−−

−=
2

1

2
1

)2(
1

)1(1
)2(

β
α . (16)

Therefore, we have the throughput of CTCP as

 ()

() k

k
k

k

kk

kk
m

p
k

R

WR
kp

−

−
−

−

−−

−−

⋅

−
−−

−−⋅⋅
=

−−⋅⋅
−⋅=Λ

2
1

2
1

2

12
1

11

1
2

)1(1

)1(1

1

)1(1
)1(/1

β

βα

β
α

. (17)

10-10 10-9 10-8 10-7 10-6 10-5 10-4 10-3 10-2 10-1
10-1

10
0

101

10
2

10
3

104

10
5

106

10
7

108

109

Packet loss rate

W
in

do
w

CTCP (k=3/4)
HSTCP
TCP Reno
STCP

Figure 5. The response functions.

Note that k determines the slope of response function (ag-
gressiveness). As mentioned earlier, we intend to let CTCP
have the similar ability as HSTCP in a congestion-free network.
By comparing (17) to the response function of HSTCP, whose
window is

833.0

1
p

WHSTCP ∝ , we can get k by solving the following

equation, 8.0833.0
2

1 ≈⇒=
−

k
k

. However, it is rather difficult to

implement an arbitrary power calculation using integer algo-
rithm. Therefore, we choose k equal to 0.75, which can be im-
plemented with fast integer algorithm of square root. α andβ is
a trade-off between smoothness and the responsiveness. In this
paper, we choose α =1/8, β =1/2. We plot the CTCP response
function in log-log scale, in Figure 5, as well as the response
functions of the standard TCP, STCP and HSTCP. From the
figure, we can see that CTCP is slightly more aggressive than
HSTCP in moderate and light packet loss rate and is approach-
ing to HSTCP when window is large.

B. Convergence and RTT fairness
We first demonstrate that two CTCP flows with same RTT

converge to their fair shares and then study its RTT fairness.
Theorem 1: Two CTCP flows converge to fair share under

the network model as shown in Figure 3 with same round trip

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the Proceedings IEEE Infocom.

delay.
Proof. We use Jain’s fairness index [23], which is defined as

follows,

.
)(

)(
)(2

2

∑
∑=

i

i

xn
x

xF

 Let’s consider two CTCP flows, whose window size are x1
and x2, respectively. We assume x1 < x2. We see 0F∆ ≥ , if and
only if 1 1 2 2/ /x x x x∆ ≥ ∆ . In increasing phase, kxx ⋅=∆ α where
k<1, it is easy to see that)1(

2
)1(

1 /1/1 kk xx −− > , and therefore,
0>∆F . When the queuing delay is detected, dwnd is decreasing

while cwnd still increases by 1MSS. Therefore,
baseRTT

RTT
baseRTTxdiffx)1(11 −−=−=∆ ζζ .

We see that when the two streams share the same bottleneck
and the propagation delay is same, the baseRTT observed by
two streams should also converge to the same value. Therefore,

2

2

2

2

211

1

11

1 1)1(11
x
x

x
diff

x
baseRTT

RTT
baseRTT

xx
diff

xx
x ∆

=
⋅

−>−⋅−=
⋅

−=
∆ ζζζ

,
the fairness index also increases. When the packet loss is de-
tected, both rates are decreased by β times. So the fairness
index keeps the same value. In summary, in each phase of the
control law, the fairness index is none decreasing. Therefore,
eventually, the two CTCP flows converge to their fair share. □

Then, we consider the case where different CTCP flows may
have different delays. We show by Theorem 2 that the RTT
unfairness of CTCP is bounded by that of the standard TCP
Reno.

Theorem 2: Let Th1 and Th2 present the throughput of two
CTCP flows with round trip time as R1 and R2, respectively.
Then, the following inequality satisfied

2

1

2

2

1

<

R
R

Th
Th .

Proof. One CTCP flow contains two components, delay-
based component (dwnd) and the loss-based component
(cwnd). The delay-based component reacts to the increase of
round trip time and tries to maintain certain number of packets
backlogged in the bottleneck queue. Since the flow rate of each
connection is approximately proportional to its queue size, the
delay-based component of each connection give roughly same
throughput. However, we know that the throughput ratio of
TCP Reno is inversely proportional to the square of their RTT
ratio.

Let Λ and 'Λ stand for the throughput of the delay-based and
loss-based component of a CTCP flow. We have,

2

1

2

22

11

2

1

2

1

2

2

1

2

1

'
'

'
'

1

≤

Λ+Λ
Λ+Λ

=⇒

=

Λ
Λ

<≈
Λ
Λ

R
R

Th
Th

R
R . □

Note that when including a delay-based component into the
standard TCP would improve the RTT fairness of TCP’s con-
gestion avoidance algorithm.
C. TCP Fairness

In this section, we study the impact of CTCP on other stan-
dard TCP flows when they are competing for the same bottle-
neck. More specifically, we want to quantify the throughput
reduction of the regular TCP flows because of the introduction

of CTCP flows. We define a new metric here to measure the
TCP fairness, named bandwidth stolen.

Definition 1: bandwidth stolen. Let P be the aggregated
throughput of m regular TCP flows when they compete with
another l regular TCP flows. Let Q be the aggregated through-
put of m regular TCP flows when they compete with another l
high-speed protocol flows in the same network environment.

Then,
P

QPBstolen
−= is the bandwidth stolen by high-speed proto-

col flows from regular TCP flows.

TCP

CTCP

DWND

LFP

D E F G

Figure 6. Window evolution of TCP and CTCP.

Theorem 3: With the system model shown in Figure 3, when
γ>

+ lm
B , CTCP will not steal bandwidth from competing regu-

lar TCP flows.
Proof. We assume all packet losses are caused by buffer

overflow and synchronized. We use a graph argument. Figure 6
shows a LFP when CTCP flows compete with regular TCP
flows. As discussed before, CTCP flows will aggressively in-
crease dwnd until there are γ packets are backlogged at the bot-
tleneck queue at time E. Assume the window size at this point is
w0. After that, dwnd declines while cwnd continues to increase
by one packet every RTT. Since γ>

+ lm
B , cwnd will eventually

reach w0 before the next packet loss event. However, at this
point (time F), dwnd is approaching zero. From then, CTCP is
just controlled by its loss-based component. And at time G,
buffer overflows and all flows sense packet loss. Since all
dwnds drop to zero when packet loss occurs, each regular TCP
flow will get a maximal window size as if there were (m+l)
regular TCP flows. The average window of a TCP flow equals
to 3/8 of its maximal window size. Therefore, the m regular
TCP flows will receive the same throughput no matter they
compete with l other TCP flows or l CTCP flows. □

Theorem 3 shows that CTCP is fairness to TCP flows in term
of not reducing TCP’s throughput when the network is suffi-
ciently buffered. However, CTCP does have higher throughput
than regular TCP. It is because CTCP can make better use of
free bandwidth that is currently not utilized.

Note that when the network is significantly under buffered
(which we argue should not be a normal setup), CTCP may still

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the Proceedings IEEE Infocom.

steal bandwidth from regular TCP flows. It is because when
buffer size is small, the early congestion detection may not
perform well. We will discuss this worse case behavior in Sec-
tion VI.B.5).

D. Summary of CTCP characteristics
Our analysis above shows that the scalable delay-based

component in CTCP can aggressively obtain free bandwidth
when the network is light-loaded, while gracefully reduces its
sending rate when queue is built and avoid adding more self-
induced packet losses. Therefore, CTCP can efficiently utilize
the bandwidth while at the same time maintaining good RTT
fairness and TCP fairness.

V. IMPLEMENTATION
We have implemented CTCP on the Microsoft Windows

Platform by modifying the TCP/IP stack.
The first challenge is to design a mechanism that can pre-

cisely track the changes in round trip time with minimal over-
head, and can scale well to support many concurrent TCP con-
nections. Naively taking RTT sample for every packet will
obviously over-kill both CPU and system memory, especially
for high-speed and long distance networks where a whole win-
dow worth of data may have tens of thousands packets. There-
fore, we need to limit the number of samples taken, but without
lose of much accuracy. In our implementation, we only take up
to M sample per window of data. M scales with the round trip
delay. More specifically, δ/RTTM ∝ , where δ is the minimal
RTT value on the Internet. We believe ms1=δ is a reasonable
value, since most of operating systems have a scheduling accu-
racy larger than that. Since TCP flows can not change their
sending rate faster than their RTT, letting δ/RTTM ≈ can
pretty well track the changes of queueing delay on the network
path. In order to further improve the efficiency in memory us-
age, we develop a dynamic memory allocation mechanism to
allocate sample buffers from a kernel fix-size per-processor
pool to each connection in an on-demand manner. The smallest
unit (block) is 256 bytes which can hold 32 samples. As the
window increases, more packets are sent. If current sample
buffer is not enough, more blocks are allocated and linked to
the existing sample buffer until up to M samples are taken.
Note that sampled packets are uniformly distributed among the
whole window. If a sample block is empty due to a reduced
window or lack of application data, the unused blocks are re-
turned to the memory pool. This dynamic buffer management
ensures the scalability of our implementation, so that it can
work well even in a busy server which could host tens of thou-
sands of TCP connections simultaneously. Note that it may
also require high-resolution timer to time RTT samples. On
Win32 platform, we can get a micro-second timer by using
KeQueryPerformanceCounter. After WinXP SP2, KeQuery-
PerformanceCounter has been optimized to directly read
CPU’s Time Stamp Counter if available, and therefore intro-
duces very less overhead.

The rest of implementation is rather straightforward. We add
two new state variables into the standard TCP Control Block,
namely dwnd and baseRTT. The baseRTT is a value that tracks
the minimal RTT sample measured so far and it is used as an

estimation of the transmission delay of a single packet. Follow-
ing the common practice of high-speed protocols, CTCP also
revert to standard TCP behavior when the window is small.
Delay-based component only kicks in when cwnd is larger than
some threshold, lowwnd. When the delay-based component
kicks in, we let it at least increase one MSS per RTT. Therefore,
from the increase law in equation (5), CTCP window should be
at least 41 packets. So, we select lowwnd to be 41 MSS.

Dwnd is updated at the end of each round. If more than N
(currently set to 5) RTT samples are taken, an average RTT is
calculated and used to update dwnd according to equation (5).
Note that RTT sampling and dwnd update are frozen during the
loss recovery phase. It is because the retransmission during the
loss recovery phase may result in inaccurate RTT samples and
can adversely affect the delay-based control.

VI. PERFORMANCE EVALUATION

A. Methodology
We constructed a test-bed to conduct experiments for CTCP

in our lab. The test-bed contains several DELL Desktop GX280
desktops equipped with Intel Pro/1000 XT Giga Ethernet cards.
We use a DELL WS450 workstation as a router that connects
two DLink DGS-1008T gigabit switches. The router is running
FreeBSD 5.3 and DummyNet [25]. The DELL desktops are
running Microsoft Windows and connected to the DLink
switches. The testing environment is illustrated in Figure 7. We
have extended the Windows TCP/IP stack to simultaneously
support multiple TCP variants. Applications can dynamically
select a congestion control scheme by a Socket option. We
modified Iperf [21] to support the new Socket option, so that it
can test the different TCP variants.

We configure DummyNet to emulate network conditions
with different packet loss rate and round trip delay. We config-
ure the polling frequency of FreeBSD system to be 1000 Hz,
which in our experiments gives best tradeoff between simula-
tion smoothness and the CPU usage [28]. In each experiment,
we set DummyNet to limit the bottleneck link speed to be
700Mbps. It is the highest speed we can get before the router‘s
CPU becomes a bottleneck. We configure the router to use
DropTail queue management. Unless otherwise pointed, the
link delay is 100ms and the buffer size at the router is set to
1500 packets.

Iperf

Sender ReceiverRouter

Iperf

DummyNet

Giga Ethernet
Switch

Giga Ethernet
Switch

FreeBSD 5.3MS Windows MS Windows

Multi-support
TCP/IP stack

Multi-support
TCP/IP stack

Figure 7. Testing Environment.

We test three TCP implementations on our test-bed: CTCP,
HSTCP and the default Windows TCP implementation (regular
TCP). We make our own implementation of HSTCP according
to RFC 3645 and the reference implementation in NS2 [22]. In
all three TCP implementations, New Reno, SACK, D-SACK

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the Proceedings IEEE Infocom.

and TCP high performance extensions are implemented and
enabled by default. Each experiment lasts for 300 seconds, and
the results presented are averaged over 5 runs of each test.

B. Results
1) Utilization
We first want to verify whether or not CTCP can effectively

use the available bandwidth in high-speed and long delay envi-
ronment. We configured DummyNet to generate random
packet losses. We varied the loss rate from 10-2 to 10-6. We ran
4 regular TCP, HSTCP and CTCP flows, respectively. The
aggregated throughput of each TCP variant is plotted in Figure
8. Note that when packet loss is high (>10-3), all three protocols
behave exactly the same. However, with the decrease of packet
loss rate, HSTCP and CTCP can use the bandwidth more effi-
ciently. CTCP has slightly higher throughput compared to
HSTCP. The reasons are two-fold: 1) the CTCP’s response
function is slightly more aggressive than HSTCP in moderate
window range; and 2) CTCP introduces much less self-induced
loss due to the delay-based nature.

We then conducted another set of experiments under burst
background traffic. We generated On/Off UDP traffic with
different peak data rate. The on-period and off-period of the
UDP traffic were both 10s. Table 1 summarizes the aggregated
throughputs and link utilizations (shown in brackets, normal-
ized by the theoretical available bandwidth left over by UDP
traffic) of 4 testing flows. It shows that CTCP and HSTCP can
efficiently recover from the packet losses caused by burst
background traffic and remain high link utilization. However,
regular TCP can not efficiently use the link bandwidth. When
the peak rate of UDP traffic goes from 50Mbps to 200Mbps,
the bottleneck link utilization drops from 86% to 66%. This
verifies that TCP’s congestion control algorithm is too conser-
vative under high-speed and long delay networks.

Table 1. Throughputs under burst UDP traffic.
BG traf-
fic peak
rate

50Mbps 100Mbps 150Mbps 200Mbps

Regular
TCP

583.47
(86%)

558.44
(85%)

 415.01
(66%)

404.19
(66%)

HSTCP 613.77
(91%)

595.87
(91%)

566.85
(90%)

543.35
(90%)

CTCP 625.01
(93%)

600
(93%)

581.5
(93%)

544.83
(91%)

In the next experiment, we set DummyNet to have 10-6 loss

rate. Then, we vary the delay of the link. Figure 9 shows the
aggregated throughput of four concurrent flows. It shows that
regular TCP can utilize the link capacity pretty well under
small RTT situations, e.g. 30ms. However, with the increase of
link delay, regular TCP has clear performance degradation.
CTCP and HSTCP generally perform well under all tested
situations, and CTCP slightly outperform HSTCP under longer
RTT situation due to the delay-based design in CTCP that in-
duces less packet losses.

0

100

200

300

400

500

600

700

0.01 0.001 0.0001 0.00001 0.000001 0

Packet loss rate

Th
ro

ug
hp

ut
 (M

bp
s)

Regular TCP HSTCP CTCP

Figure 8. Throughputs under different packet loss rates.

0

100

200

300

400

500

600

700

170ms 100ms 80ms 30ms
Round Trip Delay

Th
ro

ug
hp

ut
 (M

bp
s)

Regular Tcp HSTCP CTCP

Figure 9. Throughput with different RTTs with 10-6

 loss rate.

2) TCP fairness
After showing that CTCP is effective in utilizing link band-

width, we evaluate the TCP fairness property of CTCP. There
are many methods that improve the efficiency at the cost of
fairness to the regular TCP flows. However, our goal of CTCP
is to improve the efficiency and maintain TCP fairness at the
same time.

To qualify the TCP fairness, we first ran 8 regular TCP flows
as baseline. Then, we replaced 4 flows to be the high speed pro-
tocols and repeated the experiments under the same condition.
We compared the throughput got by regular TCP flows with
and without the present of high speed protocols. We used the
bandwidth stolen defined in IV.C as an index in our compari-
sons.

The first experiment investigated the TCP fairness under dif-
ferent link packet loss rates. Figure 10 and Figure 11 present the
results of HSTCP and CTCP, respectively. The Regular
TCP(baseline) presents the throughput of 4 regular TCP flows
in the baseline test (total 8 regular TCP flows are in test). The
Regular TCP line shows the throughput got of 4 regular TCP
flows when they were competing with 4 high-speed protocols.
The gap between these two lines demonstrates the throughput
reduction of regular TCP flows when there are high-speed pro-
tocols. In Figure 10, we can see when the packet loss is high
(>0.0001), HSTCP will not degrade the throughput of regular
TCP. This is because when the packet loss rate is high, the link
is under utilized. Fairness issue only rises when the link is fully
utilized. When packet loss is light, HSTCP begins to occupy the
buffer more quickly than regular TCP and induces more packet

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the Proceedings IEEE Infocom.

loss events. As a consequence, the regular TCP obtains much
less throughput compared to the baseline case. On the contrary,
in Figure 11, when the bottleneck link is fully utilized, the de-
lay-based component begins to retreat early without causing
additional self-induced packet losses, and therefore, the com-
peting regular TCP flows will receive similar throughput as in
the baseline case. Figure 12 shows the bandwidth stolen.
HSTCP can steal up to 70% of bandwidth from regular TCP
flows, while throughput reduction of regular TCP when com-
peting with CTCP is less than 10%.

Figure 13 shows the experiment results under different link
delays. In this experiment, we fixed the link packet loss rate to
be 10-6, while varied the round trip delay. Again, we see that
HSTCP causes significant bandwidth reduction of regular TCP
flows, while CTCP keeps good TCP fairness to regular TCP in
all test situations.

0

100

200

300

400

500

600

700

0.01 0.001 0.0001 0.00001 0.000001 0
Packet loss rate

Th
ro

ug
hp

ut
 (M

bp
s)

Regular TCP(baseline) Regular TCP HSTCP Total throughput

Figure 10. Throughput of HSTCP and Regular TCP flows

when competing for same bottleneck.

0

100

200

300

400

500

600

700

0.01 0.001 0.0001 0.00001 0.000001 0
Packet loss rate

Th
ro

ug
hp

ut
 (M

bp
s)

Regular TCP(baseline) Regular TCP CTCP Total throughput

Figure 11. Throughput of CTCP and Regular TCP flows when

competing for same bottleneck.

We then repeated the experiment under burst traffic setup.
We used the same On/off UDP background traffic pattern as in
last section. Figure 14 shows the bandwidth stolen of CTCP
and HSTCP in this experiment. We get similar results that
HSTCP can cause around 60% throughput reduction of regular
TCP, while the throughput reduction cause by CTCP is around
10%.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.01 0.001 0.0001 0.00001 0.000001 0
Packet loss rate

B
an

dw
id

th
 s

to
le

n

CTCP HSTCP

Figure 12. Bandwidth Stolen under various packet loss rates.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

170ms 100ms 80ms 30ms
Round Trip Delay

B
an

dw
id

th
 S

to
le

n

CTCP HSTCP

Figure 13. Bandwidth Stolen under different RTTs with 10-6

packet loss rate.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

200 150 100 50

Peak rate of UDP traffic (Mbps)

B
an

dw
id

th
 s

to
le

n

CTCP HSTCP

Figure 14. Bandwidth Stolen under burst background traffic.

3) RTT fairness
In this experiment, four high-speed flows were competing for

the bottleneck link with different round trip delay. Two of them
had shorter delay with 40ms. Two others had longer delay
which varied among 40ms, 80ms, 120ms, and 240ms. The bot-
tleneck link delay is 20ms, and we set the buffer size to be 1000
packets.

Table 2 summarizes the throughput ratio between flows with
different round trip delay. It is not surprising to see that HSTCP
has very severe RTT unfairness because in this experiment,
most of packet losses are synchronized. The interesting thing is
that CTCP has much improved RTT fairness compared to regu-
lar TCP. It is because the delay-based component included in
CTCP gives favor to long-delay flows.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the Proceedings IEEE Infocom.

Table 2. Throughput ratio with different round trip delay.
Inverse RTT ratio 1 2 3 6
Regular TCP 0.9 3.6 6.2 31.6
HSTCP 1 28.9 90.5 233.8
CTCP 1 2.2 4.1 9.5

4) Impact of gamma
Note that in previous experiments, we evaluate CTCP with

γ =30. Recall from in Section III.B, that γ is a tradeoff be-
tween throughput and the buffer requirement for TCP fairness.
In this section, we explore the impact of γ on the performance
of CTCP, and this gives us the insight of how to choose γ
value.

In theory, we expect to choose small γ value. But we show
that too small γ will adversely impact the throughput. It is be-
cause a slightly disturbance on the RTT will be sensed as early
congestion in a dynamic network. To measure the impact of
different γ value, we ran a CTCP flow with mixed traffic of
UDP and TCP background traffic. We added a CBR UDP traf-
fic which occupied 20% of capacity, and then we randomly
added TCP flows. Each TCP flow would transmit 50Mbyte
data. We measured the throughput of the CTCP flow over 5
minutes. Figure 15 shows the throughput of the CTCP flow
with different γ value. The grayed column presents the me-
dian value of 10 runs. The two short bars present the maximal
and minimal value. It is expected that with higher γ , CTCP
will have higher throughput. It is because that CTCP connec-
tion will accumulate more packets in the bottleneck queue and
reduce the chance of buffer underflow, which causes through-
put reduction. However, when 30>γ , the throughput increase
is almost saturated (from γ =30 to γ =50, the increase is less
than 5%). Therefore, we set γ to be 30 in this paper.

0

50

100

150

200

250

300

3 6 10 15 20 25 30 35 40 45 50

Gamma

Th
ro

ug
hp

ut
 (M

bp
s)

Figure 15. Throughput of CTCP with different gamma.

5) Impact on bottleneck buffer size
As we mentioned before, delay-based component requires

certain amount of buffer space at the bottleneck link, i.e. γ
packet per flow. If the buffer size is too small, the delay may
not significantly increase during the congestion period, so that
the early congestion detection will not be effective. If this hap-
pens, CTCP would degrade to a pure loss-based congestion
avoidance algorithm. We conducted experiments under differ-
ent buffer sizes. Our tests contained 4 high-speed flows with 4
regular TCP flows. Similar as before, we firstly ran 8 regular
TCP flows and measured their throughput as a baseline. We
plot the bandwidth stolen of HSTCP and CTCP in Figure 16.

We can see from Figure 17, that when the buffer size is very

small (<=300packets), the delay-based control law can not work
well. As a consequence, CTCP stole bandwidth from regular
TCP flows similar as HSTCP, as we intentionally set CTCP to
have similar aggressiveness as HSTCP (actually, CTCP is a bit
more aggressive than HSTCP with low window size). However,
when the buffer size increases, the delay-based control law be-
came more effective. Therefore, CTCP demonstrated good TCP
fairness (the bandwidth stolen drops to around 10%). HSTCP,
on the other hand, stole more bandwidth from competing regu-
lar TCP flows with the increase of the buffer size (the band-
width stolen became saturated after some point). The reason is
that when buffer size is large, the window of HSTCP is also
larger and it is more aggressive compared to regular TCP.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1000 2000 3000 4000 5000 6000 7000
Buffer size (packets)

Ba
nd

w
di

th
 S

to
le

n

CTCP HSTCP

Figure 16. Bandwidth Stolen under different buffer size.

0

100

200

300

400

500

600

700

800

0 1000 2000 3000 4000 5000 6000 7000
Buffer size (packets)

Th
ro

ug
hp

ut
 (M

bp
s)

Regular TCP CTCP HSTCP

Figure 17. Throughput under different buffer size.

We argue that for high-speed and long delay network, it is
essential to provide sufficient buffer space in order to fully util-
ize the link capacity. To show that, we plot in Figure 17 the
aggregated throughput of the eight flows under different buffer
sizes in above experiment. It shows that only with enough
buffer size (e.g. 1000 packets), the 700Mbps link with 100ms
delay can be fully utilized. Therefore, we expect reasonable
large buffer should be deployed on the high-speed and long
delay Internet that we target at.

6) Impact of window reduction rule according to delay in-
crease
In this section, we evaluate the impact on the TCP fairness of

the window reduction control law with the increasing of delay.
We modified the CTCP implementation and removed the win-
dow reduction rule. We refer this modified CTCP implementa-
tion as CTCP-NWR. Note that CTCP-NWR is very similar to
TCP Africa [27]. We conducted the following experiment. We
set the bottleneck link speed to be 500Mbps with round trip

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the Proceedings IEEE Infocom.

delay 60ms. Accordingly, we set the buffer size to be 750
packets. We tested 4 regular TCP flows first as a baseline and
we had averaged throughput of two flows as 229.1Mbps. Then,
we ran 2 regular TCP flows against 2 HSTCP, CTCP-NWR,
and CTCP flows, respectively. Table 3 summarizes the results.
We can see that without the window reduction rule, CTCP-
NWR still behaved more aggressive that regular TCP and
caused 50% throughput reduction. Indeed, this is better than
HSTCP, which resulted in 81% bandwidth stolen, but much
worse than CTCP, which only had 6% bandwidth stolen. This
confirms that reducing window based on delay information is
essential to ensure TCP fairness in a mixed network environ-
ment.

Table 3. Impact on TCP fairness of window reduction rule in
CTCP (unit Mbps)

 Regular
TCP

High-speed
protocol

Sum Bandwidth
stolen

HSTCP 42.9 435. 478. 81%
CTCP-
NWR

113.6 362. 476. 50%

CTCP 215.2 264.9 480.1 6%

VII. CONCLUSIONS
In this paper, we present a novel congestion control algo-

rithm for high-speed and long delay networks. Our Compound
TCP approach combines a scalable delay-based component
with a standard TCP loss-based component. The delay-based
component can efficiently use free bandwidth with its scalable
increasing law. When the network is congested, the delay-
based component will gracefully reduce the sending rate, but
the loss-based component keeps the throughput of CTCP lower
bounded by TCP Reno. This way, CTCP will not be timid, nor
induce more self-induced packet losses than a single TCP Reno
flow, and therefore achieves good TCP fairness. Further, delay-
based schemes allocate network resource without RTT bias.
Therefore, adding a delay-based component in CTCP greatly
improves the RTT fairness even compared to TCP Reno.

We have implemented CTCP on Windows Platform by
modifying Win32 TCP/IP stack. We conducted excessive lab
experiments with our implementation and convinced ourselves
that our implementation is stable and robust. The experimental
results verify that CTCP can effectively utilize the link capac-
ity, while at the same time maintaining excellent RTT and TCP
fairness.

Finally, we note that CTCP may still be able to improve in
many ways. For example, one going-on effort is to adaptively
set γ value. Our goal is to detect early congestion with con-
stant buffer requirement independent of the number of CTCP
flows. We are currently investigating several ways to achieve
this goal.

VIII. ACKNOWLEDGEMENT
The authors are very grateful to Sanjay Kaniyar, Deepak

Bansal and Arvind Murching for their insightful comments and

suggestions. The authors also thank Yaya Wei for her helpful
discussion during her internship at MSRA.

REFERENCES
[1] M. Allman, V. Paxson and W. Stevens, “TCP Congestion Control”, RFC

2581, April 1999.
[2] W. Allock, J. Bester, J. Bresnahan, A. Chervenak, I. Foster, C. Kesselman,

S. Meder, V. Nefedova, D. Quesnel, and S. Tuecke, “Data management
and transfer in highperformance computational grid environments”, Paral-
lel Computing, 2002.

[3] V. Jacobson and M. J. Karels, “Congestion Avoidance and Control”,
SIGCOMM, 1988.

[4] S. Floyd, “HighSpeed TCP for Large Congestion Windows”, RFC 3649,
December 2003.

[5] Tom Kelly, “Scalable TCP: Improving Performance in HighSpeed Wide
Area Networks”, in First International Workshop on Protocols for Fast
Long Distance Networks (PFLDnet), Geneva, February 2003.

[6] C. Jin, D. Wei and S. Low, “FAST TCP: Motivation, Architecture, Algo-
rithms, Performance”, In Proc IEEE INFOCOM 2004.

[7] L. Xu, K. Harfoush and I. Rhee, “Binary Increase Congestion Control
(BIC) for Fast Long-Distance Networks”, In Proc. IEEE INFOCOM
2004.

[8] B. Allcock, J. Bester, J. Bresnahan, A. L. Chervenak, I. Foster, C. Kes-
selman, S. Meder, V. Nefedova, D. Quesnel, and S. Tuecke, “Data
management and transfer in high performance computational grid environ-
ments”, Parallel Computing, May 2002.

[9] S. Floyd and K. Fall, “Promoting the Use of End-to-End Congestion Con-
trol in the Internet”, IEEE/ACM Trans. on Networking, August 1999.

[10] J. Mo, R.J. La, V. Anantharam, and J.Walrand, “Analysis and Comparison
of TCP Reno and Vegas”, in Proc. INFOCOM, March 1999.

[11] J. Martin, A. Nilsson, I. Rhee, “Delay-based Congestion Avoidance for
TCP”, IEEE/ACM Transactions on Networking, June 2003.

[12] L. Brakmo, S. O'Malley, and L. Peterson, “TCP Vegas: New techniques
for congestion detection and avoidance”, in Proc. ACM SIGCOMM, 1994.

[13] J. Padhya, V. Firoiu, D. Towsley and J. Kurose, “Modeling TCP
Throughput: A Simple Model and its Empirical Validation”, in Proc.
ACM SIGCOMM 1998.

[14] E. de Souza and D. Agaral, “A Highspeed TCP Study: Characteristics and
Deployment issues”, LBL Technique report.

[15] D. Bansal and H. Balakrishnan, “Binomial Congestion Control Algo-
rithms”, in Proc. INFOCOM 2001.

[16] R. Wang, G. Pau, K. Yamada, M. Y. Sanadidi and M. Gerla, “TCP Start
up Performance in Large Bandwidth Delay Networks”, in Proc.
INFOCOM 2004.

[17] J.S. Ahn, P. B. Danzig, Z. Liu and L. Yan, “Evaluation of TCP Vegas:
Emulation and experiment”, in Proc. ACM SIGCOMM, 1995.

[18] S. Ravot, “TCP transfers over high latency/bandwidth networks & Grid
DT”, in First International Workshop on Protocols for Fast Long-
Distance Networks (PFLDnet), 2003.

[19] S. Floyd, “Limited Slow-Start for TCP with Large Congestion Windows”,
Internet Draft, draft-floyd-tcp-slowstart-01.txt, Aug, 2002. Work in pro-
gress.

[20] C. Samios and M. K. Vernon, “Modeling the Throughput of TCP Vages”,
ACM SIGMETRICS 2003.

[21] Iperf. Available at http://dast.nlanr.net/Projects/Iperf/
[22] The Network Simulation - NS2. Available at http://www.isi.edu/nsnam/ns/
[23] D. Chiu and R. Jain, “Analysis of the increase and decrease algorithms for

congestion avoidance in computer networks”, Computer Networks, 1989.
[24] G. Hasegawa, M. Murata and H. Miyahara, “Fairness and Stability of

Congestion Control Mechanisms of TCP”, In Proc. INFOCOM 1999.
[25] L. Rizzo, DummyNet, available at

http://info.iet.unipi.it/~luigi/ip_dummynet.
[26] S. Low, Question about FAST TCP. End-to-end mailing list, Nov. 2003.
[27] R. King, R. Baraniuk and R. riedi, “TCP-Africa: An Adaptive and Fair

Rapid Increase Rule for Scalable TCP”, In Proc. INFOCOM 2005.
[28] M. Zec and M. Mikuc,”Real-Time IP Network Simulation at Gigabit Data

Rates”, In Proc. 7th Intl. Conf. on Telecommunications, June 2003.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the Proceedings IEEE Infocom.

