

11-

Copyright @ 1999, Cisco Systems, Inc

Objectives

Upon completion of this chapter, you will be able to perform the following tasks:

- Configure Frame Relay
- Configure Frame Relay subinterfaces
- Configure Frame Relay traffic shaping
- Verify Frame Relay operation

11-2—BCRAN—Establishing a Dedicated Frame Relay Connection and Controlling Traffic Flow

Router#show interface serial 0
Serial0 is up, line protocol is up
Hardware is CD2430 in sync mode
MTU 1500 bytes, BW 128 Kbit, DLY 20000 usec, rely 255/255, load 1/255
Encapsulation FRAME-RELAY, loopback not set, keepalive set (10 sec)
LMI enq sent 112971, LMI stat recvd 112971, LMI upd recvd 0, DTE LMI up
LMI enq recvd 0, LMI stat sent 0, LMI upd sent 0
LMI DLCI 1023 LMI type is CISCO frame relay DTE
FR SVC disabled, LAPF state down
Broadcast queue 0/64, broadcasts sent/dropped 32776/0, interface broadcasts 14
Last input 00:00:00, output 00:00:03, output hang never
Last clearing of "show interface" counters never
Input queue: 0/75/0 (size/max/drops); Total output drops: 0
Queueing strategy: weighted fair
<Output Omitted>

Displays line, protocol, DLCI, and LMI information

11-9—BCRAN—Establishing a Dedicated Frame Relay Connection and Controlling Traffic Flow

Copyright © 1999, Cisco Systems, Inc.

Verifying Frame Relay Operation (cont.)

Router#show frame-relay pvc 110

PVC Statistics for interface Serial0 (Frame Relay DTE)

DLCI = 110, DLCI USAGE = LOCAL, PVC STATUS = ACTIVE, INTERFACE = Serial0

input pkts 14055 output pkts 32795 in bytes 1096228 out bytes 6216155 dropped pkts 0 in FECN pkts 0 in BECN pkts 0 out FECN pkts 0 out BECN pkts 0 in DE pkts 0 out DE pkts 0 out bcast pkts 32795 out bcast bytes 6216155

<Output Omitted>

Displays PVC traffic statistics

11-10—BCRAN—Establishing a Dedicated Frame Relay Connection and Controlling Traffic Flow

Verifying Frame Relay Operation (cont.)

Router#show frame-relay map

Serial0 (up): ip 10.140.2.1 dlci 120(0x78,0x1C80), dynamic, broadcast,, status defined, active

Displays the route maps, either static or dynamic

11-11—BCRAN—Establishing a Dedicated Frame Relay Connection and Controlling Traffic Flow

Copyright © 1999, Cisco Systems, Inc.

Verifying Frame Relay Operation (cont.)

Router#show frame-relay lmi

LMI Statistics for interface Serial0 (Frame Relay DTE) LMI TYPE = CISCO Invalid Unnumbered info 0 Invalid Prot Disc 0 Invalid dummy Call Ref 0 Invalid Msg Type 0 Invalid Status Message 0 Invalid Lock Shift 0 Invalid Information ID 0 Invalid Report IE Len 0 Invalid Report Request 0 Invalid Keep IE Len 0

Num Status Enq. Sent 113100 Num Status msgs Rcvd 113100

Num Update Status Rcvd 0 Num Status Timeouts 0

Displays LMI information

CISCO SYSTEMS

11-12—BCRAN—Establishing a Dedicated Frame Relay Connection and Controlling Traffic Flow

Verifying Frame Relay Operation (cont.)

```
Router#debug frame-relay lmi

Serial3/1(in): Status, myseq 214

RT IE 1, length 1, type 0

KA IE 3, length 2, yourseq 214, myseq 214

PVC IE 0x7 , length 0x6 , dlci 130, status 0x2 , bw 0

Serial3/1(out): StEnq, myseq 215, yourseen 214, DTE up

datagramstart = 0x1959DF4, datagramsize = 13

FR encap = 0xFCF10309

00 75 01 01 01 03 02 D7 D6

Serial3/1(in): Status, myseq 215

RT IE 1, length 1, type 1

KA IE 3, length 2, yourseq 215, myseq 215

Serial3/1(out): StEnq, myseq 216, yourseen 215, DTE up

datagramstart = 0x1959DF4, datagramsize = 13

FR encap = 0xFCF10309

00 75 01 01 01 03 02 D8 D7
```

Displays LMI debug information

11-13—BCRAN—Establishing a Dedicated Frame Relay Connection and Controlling Traffic Flow

Copyright © 1999, Cisco Systems, Inc.

Verifying Frame Relay Operation (cont.)

Clears dynamically created Frame Relay maps

11-14—BCRAN—Establishing a Dedicated Frame Relay Connection and Controlling Traffic Flow

- Split horizon can cause problems in NBMA environments
- A single physical interface simulates multiple logical interfaces
- Subinterfaces can resolve split horizon issues

11-17—BCRAN—Establishing a Dedicated Frame Relay Connection and Controlling Traffic Flow

Copyright © 1999, Cisco Systems, In

Configuring Subinterfaces

- Multipoint
 - Subinterfaces act as default NBMA network
 - Can save subnets because uses single subnet
 - Good for full-mesh topology
- Point-to-point
 - Subinterfaces act as leased line
 - Each point-to-point connection requires its own subnet
 - Good for star or partial-mesh topologies

CISCO SYSTEMS

11-18—BCRAN—Establishing a Dedicated Frame Relay Connection and Controlling Traffic Flow

Configuring Frame Relay Traffic Shaping—Steps 1 and 2

Router(config) #map-class frame-relay map-class-name

Enters map class configuration mode so you can define a map class

11-25—BCRAN—Establishing a Dedicated Frame Relay Connection and Controlling Traffic Flow

Conviriabl € 1999 Cieco Svetame In

Configuring Frame Relay Traffic Shaping—Step 2 (cont.)

Router(config-map-class)#frame-relay traffic-rate average [peak]

Defines the average and peak rates

or

Router(config-map-class) #frame-relay adaptive-shaping becn

 Specifies that the router fluctuates the sending rate based on the BECNs received

11-26—BCRAN—Establishing a Dedicated Frame Relay Connection and Controlling Traffic Flow

Configuring Frame Relay Traffic Shaping—Step 2 (cont.)

or

Router(config-map-class) #frame-relay custom-queue-list number

Specifies a custom queue list

or

Router(config-map-class) #frame-relay priority-group number

Specifies a priority group

11-27—BCRAN—Establishing a Dedicated Frame Relay Connection and Controlling Traffic Flow

Copyright © 1999, Cisco Systems, Inc.

Configuring Frame Relay Traffic Shaping—Steps 3 to 5

Step 3

Router(config-if)#encapsulation frame-relay

Enables Frame Relay on an interface

Step 4

Router(config-if) #frame-relay traffic-shaping

Enables Frame Relay traffic shaping on an interface

Step 5

Router(config-if) #frame-relay class map-class-name

Maps the map class to virtual circuits on the interface

11-28—BCRAN—Establishing a Dedicated Frame Relay Connection and Controlling Traffic Flow

Configuring Traffic Shaping Queuing Example

```
interface Serial0
 no ip address
                                             map-class frame-relay slow_vcs
 encapsulation frame-relay
                                             frame-relay traffic-rate 4800 9600
 frame-relay lmi-type ansi
                                             frame-relay custom-queue-list 1
 frame-relay traffic-shaping
                                             map-class frame-relay fast_vcs
 frame-relay class slow vcs
                                             frame-relay traffic-rate 16000 64000
interface Serial0.1 point-to-point
                                             frame-relay priority-group 2
 ip address 10.128.30.1 255.255.255.248
 ip ospf cost 200
                                             access-list 100 permit tcp any any eq 2065
 bandwidth 10
                                             access-list 115 permit tcp any any eq 256
 frame-relay interface-dlci 101
                                            priority-list 2 protocol decnet high
interface Serial0.2 point-to-point
                                            priority-list 2 protocol ip normal
 ip address 10.128.30.9 255.255.255.248
                                            priority-list 2 default medium
 ip ospf cost 400
 bandwidth 10
                                             queue-list 1 protocol ip 1 list 100
 frame-relay interface-dlci 102
                                             queue-list 1 protocol ip 2 list 115
 class fast_vcs
                                             queue-list 1 default 3
                                             queue-list 1 queue 1 byte-count 1600 limit 200
interface Serial0.3 point-to-point
 interface Serial0.3 point-to-point queue-list 1 queue 2 byte-count 600 limit 200 ip address 10.128.30.17 255.255.255.248 queue-list 1 queue 3 byte-count 500 limit 200
 ip ospf cost 200
 bandwidth 10
                                                                               CISCO SYSTEMS
 frame-relay interface-dlci 103
```

11-33—BCRAN—Establishing a Dedicated Frame Relay Connection and Controlling Traffic Flow

Copyright © 1999, Cisco Systems, Inc.

Verifying Frame Relay Traffic Shaping

```
CentralA#sh frame-relay pvc
PVC Statistics for interface Serial3/1 (Frame Relay DTE)
DLCI = 110, DLCI USAGE = LOCAL, PVC STATUS = ACTIVE, INTERFACE = Serial3/1.1
                    output pkts 40
dropped pkts 0
  input pkts 35
                                                   in bytes 4324
                                                  in FECN pkts 0
  out bytes 6684
  in BECN pkts 0
                          out FECN pkts 0
                                                   out BECN pkts 0
 in DE pkts 0
                          out DE pkts 0
  out bcast pkts 25
                           out bcast bytes 5124
 Shaping adapts to BECN
 pvc create time 00:12:55, last time pvc status changed 00:12:55
```

11-34—BCRAN—Establishing a Dedicated Frame Relay Connection and Controlling Traffic Flow

Cisco Systems Confidential

Cisco Systems Confidential

Cisco Systems Confidential

Summary

After completing this chapter, you should be able to perform the following tasks:

- Configure Frame Relay
- Configure Frame Relay subinterfaces
- Configure Frame Relay traffic shaping
- Verify Frame Relay operation

11-43—BCRAN—Establishing a Dedicated Frame Relay Connection and Controlling Traffic Flow

Copyright © 1999, Cisco Systems, Inc

Review Questions

- What is a DLCI and how is it used to route Frame Relay traffic?
- Why would you use Frame Relay subinterfaces?
- List and describe three Frame Relay traffic shaping features.

11-44—BCRAN—Establishing a Dedicated Frame Relay Connection and Controlling Traffic Flow

