

Securing Communications

Overview

- Client/Server Authentication (Kerberos)
- Remote User Authentication Service (RADIUS)
- Public-Key Infrastructure (PKI)
- ♦ IP Layer Security (IPSec)
- Web Access Security (SSL)
- E-mail Confidentiality (PGP, S/MIME)
- Wireless LANs Security (802.11b)
- Cellular Phone Security (WPKI)

Client/Server Authentication

Kerberos

Main sources: Stallings, Schneier, Kaufman et al

Kerberos

- Client / Server Authentication service
 - Deployed as a network service that allows users and servers to mutually authenticate
 - Uses conventional symmetric key as proof of identity (DES)
 - Developed in MIT by Project Athena.
- Types of concerns addressed
 - User impersonation
 - Alteration of a device identity
 - Replay attacks
- Requirements
 - Security:
 - eavesdropper cannot get enough information
 - Kerberos itself should be secure
 - Reliability and high availability
 - Transparency to the User

Kerberos Protocol

- Ticket: $T(c,s) = s, E_{Ks}(c,a,v,K_{c,s})$
 - c-client, s-server, a-client address, v-validity time
 - Used as a "pass" until expiration
- Authenticator: $A(c,s) = E_{Kc,s}(c,t,k)$
 - t-time stamp, k-additional session key
 - Used once, but the client can generate as many as she wishes

Kerberos Protocol

- Req TGT: Send c,tgs
- Grant TGT: Gen $K_{c,tgs}$; Send $E_{Kc}(K_{c,tgs})$, $\overline{E_{Ktgs}(T(c,tgs))}$
- Req Ticket: Send $E_{Kc,tgs}(A(c,tgs)), E_{Ktgs}(T(c,tgs)), s$
- Grant Ticket: Gen $K_{c,s}$; Send $E_{Kc,tgs}(K_{c,s}), E_{Ks}(T(c,s))$
- Req Service: $E_{Kc,s}(A(c,s)), E_{Ks}(T(c,s))$

Other Kerberos Features

Kerberos Replication

In large organizations, it is possible to replicate the TGT/Ss, with one copy serving as a master and the others being read-only

Realms

- It is common to divide the network services into groups, covered by different Kerberos servers
- It is possible to create trust between two realms, by defining the one Kerberos TGS as a server in the other realm

Kerberos Security Features

- Kerberos verifies client identity of client through key, and comparing identity and address to a database
- Tickets T(c,tgs/s) is given to the client but is locked
- Server verifies client through session key in authenticator
- Timestamps used to ensure synchronicity and against original ticket validity (typically 8 hours)
- With a simple addition, client can verify server
- It is common to quickly replace use of client long-term key with a session key

Attacks on Kerberos Security

- Kerberos itself stores many keys and should be protected
- Tickets may be replayed within allowed lifetime. Server should store recent requests and check for replays
- Adversary may cache many TGTs and work offline to decrypt them. Clients shall use safe passwords
- By changing server clocks, adversary may replay tickets. Hosts shall synchronize clocks often
- Kerberos will be enhanced with public-key cryptography and smart card-based key management

Remote User Authentication Service

RADIUS

Main resources: IETF, Josh Hill

RADIUS

- <u>Remote Authentication Dial In User Service</u>
 - Originally developed for dial-up access
- Widely implemented client/server network protocol
 - Implemented in transport layer (using UDP)
 - Clients are all types of Network Access Servers (NAS)
 - Provides 3A (authentication, authorization, accounting)
 - Example: NT4.0 IAS
- Supports mobile and remote users
 - physical ports (modems, DSL, wireless)
 - virtual ports (extranets, VPNs)
- Allows centralized/remote control and accounting
- Proxy RADIUS protocol allows distributed authentication

RADIUS Security Mechanisms

- RADIUS client and server share a secret (usually entered as a string password)
- Each request receives an authenticator (nonce)
- Messages are encrypted using a stream cipher, generated using MD5 applied to the secret and authenticator
 - Plaintext (user and password fields) are XORed with stream
 - Chained CBC-style if password is too large
- A few weaknesses were discovered
 - MD5 was not meant to be a stream cipher
 - By XORing two captured ciphertexts, the eavesdropper gets the XOR of the two plaintexts; if one password is shorter, the suffix of the other appears in plaintext
 - Similarly, enables an offline attack on the shared secret
- A few improvements were suggested, including use of symmetric encryption
- Better yet, RADIUS exchange can be encrypted via VPN (IPSec)

Public Key Infrastructure (PKI)

Main sources: Stallings, IETF

Public Key Infrastructure (PKI)

- IETF X.500 Directory Services Protocol is a distributed directory of resources, users, and access policies
 - A.k.a. Directory Access Protocol (DAP)
 - For each user, the directory stores a set of attributes, e.g., UserID, Organization, etc.
 - Most common implementations are of the Lightweight Directory Access Protocol (LDAP) variant, e.g., MS Active Directory
 - Directories are distributed, with protocol running above TCP

The X.509 sub-protocol provides authentication service

- Implemented in organizations using PKI servers, which provide access to authentication information, and local CA functionality
- For each user, the directory may store a certificate that contains some user information and her public key, signed by a CA
- Works with most common crypto-hash and signature algorithms

X.509 CA Hierarchy

- Stores forward- and reverse certificates for each CA
 - CA<<X>> is X's certificate signed by the CA
- Each certificate contains user attributes, as well as expiration
- Any user with the public key of the CA can get the full path to a specific user
 - e.g., for Z you can get U<<V>>, V<<Y>>, Y<<Z>>
- In case of distributed CAs, one can go back on the chain to obtain (securely) the public key of his counterpart CA
- Certificates can be revoked by CA through published CRLs

Example: VeriSign Certificates

Information on certificate

- Owner name, address, e-mail
- Public key
- Certificate expiration date
- Name of issuing CA
- CA digital signature

Digital ID (certificate) classes

- Class 1: only e-mail is verified
- Class 2: verification of postal address and other information from consumer databases
- Class 3: requires appearing in person and/or notarized documentation

X.509 Authentication

- One-way authentication
 - Alice sends authenticating message, and signed hash of same message
 - Message includes:
 - Timestamp
 - Random identifier (against replay)
 - Bob's identifier
 - Her own certificate
 - Session key encrypted with Bob's public key

Figure 4.5 X.509 Strong Authentication Procedures

PKI Servers Functionality

Main functions

- Issuing (CA) and registering (RA) certificates
- Storing and retrieving certificates
- Revoking certificates
- Key Lifecycle management
- Applications
 - E-mail (S/MIME)
 - Web browsing (SSL and IPSec)
 - Digitally signed mobile code and documents
 - Other applications, through API

IP Layer Security

IPSec

Main Source: Stallings

Network (IP) Layer

OSI 7 layers

IP Security

- IPSec is not a single protocol, but rather a framework, and set of algorithms that address security concerns at IP layer
 - Authentication
 - Confidentiality
 - Key Management
- Designed for IPv6 but implemented in most IPv4
- IPSec is carried out at the packet level
 - Implemented in transport level in routers or in PC-based software
 - All packets going out are encrypted
 - All packets coming in are authenticated and decrypted
- IPSec is implemented in the transport layer
 - Transparent to applications
 - Gives certain peace of mind to security ignorant applications
 - Routers can authenticate neighboring routers and routing requests

IPSec Usage: A Typical Scenario

IPSec Architecture

- Authentication Header (AH)
 - only authentication service
- Encapsulating Security Payload (ESP)
 - Packet Encryption
 - Packet Authentication (optional)
- Domain Of Interpretation (DOI)
 - Specific parameters for encryption and authentication algorithms
- Key Management

IPSec Services

	AH	ESP	ESP with authentication
Access Control			
Connectionless Integrity			
Data origin authentication			
Reject replayed packets			
Confidentiality			
Limited traffic flow			
confidentiality			

Security Association (SA)

- ♦ A one-way relationship between sender and receiver
 - Security Parameters Index (SPI)
 - Identifies the SA in the SA database
 - IP Destination
 - Address of destination endpoint
 - Security Protocol Identifiers
 - Specifies whether ESP or AH should be used
- SA Database stores all SA entries
 - AH info: authentication algorithm, keys, key lifetime,...
 - ESP info: encryption and authentication algorithms, keys, IVs,...
 - Running sequence number, used to prevent packet replays
 - SA lifetime
 - IPSec protocol mode: Tunnel, Transport
- Security Policy Database (SPD) specifies SA selectors that determine mapping of outbound packets to specific SAs

Transport and Tunnel Modes

- Transport Mode
 - Protects upper layers
 - IP Payload is encrypted
- Tunnel Mode
 - Protects all layers
 - New outer packet is created at the network boundary, with original packet as its payload, and the entire inner packet is encrypted

Authentication Header (AH)

Authentication of data and source

- Prevent modifications of payload while in transit
- Prevent IP spoofing
- AH contains Integrity Check Value (ICV)
 - Calculated HMAC over payload and all transit-immutable values, concatenated with shared key (truncated to 96 bits)
 - IPSec requires support of at least SHA-1 and MD5

Counter replay attacks

- Prevent capture and replay of packets
- For every SA, source generates up to 2³² sequence numbers, then starts a new SA with a new key
- Receiver authenticates using a sliding window (w=64)

Encapsulating Security Payload (ESP)

- Adds encryption of the payload
 - Encryption Algorithms: 3DES, RC5, IDEA, 3IDEA, CAST, Blowfish
 - Plaintext payload is replaced with ciphertext by source and is routed as new payload
- Optionally provides authentication
 - HMAC with SHA-1 or MD5
- Anti-replay sequence number
- Note: This is not a repetition because each SA can only use either ESP or AH but not both

SA Bundles and Tunneling

SA bundles allow a sequence of SAs to be applied to same packet, or within a tunnel

- Transport adjacency
 - Transport ESP SA (without authen) followed by Transport AH SA (covering also ESP fields)
- Iterated Tunneling

Key Management

- Option 1: Manual configuration
- Option 2: Automated on-demand creation of keys (ISAKMP/Oakley)
 - ISAKMP default SA and key management protocol
 - Does not mandate a specific key determination and exchange protocol, but implements at least Oakley
 - Oakley default key determination protocol

Oakley

- ♦ A refinement of Diffie-Hellman
 - Reminder: session key = g^{xy} mod p, where x and y are private keys of parties
- DH weaknesses
 - Clogging attack: attacker forces Alice to exponentiate endlessly
 - Man-in-the-middle attack: attacker impersonates Alice to Bob and impersonates Bob to Alice
- Oakley hardening
 - Uses cookies, exchange of authenticating party-dependent random numbers, hence attacker can only clog with acknowledge requests
 - Authenticates DH exchange to prevent impersonation
 - Uses nonces against replay attacks
- Options:
 - Choice of "groups": setup parameters for DH exchange
 - Choice of authentication method

ISAKMP

- Protocol to establish, negotiate, modify, and delete SAs
- ISAKMP messages:
 - Security Association establish new SA (initial parameters)
 - Proposal indicates the protocol to be used (ESP or AH)
 - Transform the algorithms to be used, e.g., 3DES, HMAC-SHA-1
 - Key Exchange which key exchange protocol, e.g., Oakley, RSA
 - Identification the identity of the peers, e.g., IP address, User ID
 - Certificate certificates of the peers
 - Certificate Request
 - Hash data generated by the hash function
 - Signature data generated by digital signature function
 - Nonce the current nonce
 - Notification messages
 - Delete revoke an SA

Virtual Private Networks (VPN)

- Types of VPNs
 - Remote Access, a.k.a. Virtual Private Dialup Network (VPDN), where a user dials into the network
 - Site-to-Site intranet, and/or extranet

VPN Implementations

- IPSec tunneling or transport encryption
- Simple encryption for systems that are not IPSec enabled
 - Symmetric encryption using a physically-delivered shared key
 - Public-key encryption, e.g., using RSA or PGP

Most implementations include

- Authentication, Authorization, and Accounting (3A) servers
- Firewalls/ QoS servers

Actual implementation

- Desktop client for remote users
- VPN concentrator (hardware)
- Part of firewalls/routers

Web Access Security

Secure Socket Layer (SSL) Transport Layer Security (TLS)

Main Source: Stallings

Web Security Considerations

- ♦ In principle, Web access is simply client-server
 - Protocols such as Kerberos apply
- Special characteristics of Web access
 - Web servers are "out there" accessible to anyone
 - Web servers often must be connected to corporate databases, and can be dangerous if subverted
 - Applicative software is quickly developed for web servers, and is often security-ignorant
 - Web users are often not subject to corporate rules
 - Web users are often not knowledgeable
 - Web users cannot be counted on to fulfill their part in a security protocol

Security Threats on the Web

Integrity

- Modification of data on servers
- Modification of messages
- Confidentiality
 - − Theft of data from server, or from client ← System Security
 - Eavesdropping on communication
 - Info on network configuration
 - Info on network traffic
- Interruption
 - Denial of Service and DDOS
- Authentication
 - Impersonation of legitimate users
 - Data forgery on server (or client)

← System Security

Communication Security

- Communication Security
- ← System Security
- Communication Security

System Security

Communication Security System Security

Alternative Security Facilities for Web Communications

- ♦ Network layer: IPSec
- Application layer
- ♦ SSL/TLS protocols
 - As a protocol above TCP in transport and session layers
 - As part of application software: browser on client side and web server (SSL was developed by Netscape)

НТТР	FTP	SMTP	
ТСР			
IP/IPSec			

НТТР	FTP	SMTP	
SSL or TLS			
ТСР			
IP			

	S/MIME	PGP	SET	
Kerberos	SMTP		НТТР	
UDP	ТСР			
IP				

(a) Network Level

(b) Transport Level

(c) Application Level

Secure Socket Layer (SSL)

- Developed by Netscape as part of their browser
 - SSLv3 was subjected to public review
 - Transport Layer Security (TLS) designed as successor to SSLv3
- SSL works is a session-based protocol, and each session may consist of multiple connections
- SSL consists of two layers
 - SSL Record Protocol provides basic security services, e.g. https
 - Handshake protocol is used to initiate sessions
 - Alert protocol for peer messaging
- ◆ SSL session states:
 - Security algorithms Master keys
 - Compression methods Certificates

SSL Handshake Protocol	SSL Change Cipher Spec Protocol	SSL Alert Protocol	НТТР
SSL Record Protocol			
ТСР			
IP			

Figure 7.2 SSL Protocol Stack

SSL Record Protocol

- Services: Confidentiality, Message Integrity
- Several encryption algorithms are permitted
- HMAC standard

Header:

 \blacklozenge

Handshake Protocol

- Client suggests; Server chooses
- SSL version: lower version will be used
- Nonce: timestamp+random
- Session ID: existing or new
- Alternative CipherSpec suites, in decreasing preference
 - Key exchange
 - Encryption algorithms
 - MAC algorithm
 - Parameters
- Compression methods supported

Handshake Protocol

- Server starts; client follows
- Server sends certificate
- Server sends key exchange message
- Server may ask for client certificate
- Client responds

- State changed to pending cipher_spec
- Handshake done

Secure E-mail

Pretty Good Privacy (PGP) Secure MIME

E-mail Security Requirements

E-mail is most widely used network application
Compatibly available on virtually any platform and OS

Security services

- Confidentiality
- Source Authentication
- Message Integrity Authentication
- Other Requirements
 - Cross-platform compatibility
 - Asynchronous availability: no need for both parties to be simultaneously logged-in

Pretty Good Privacy (PGP)

Created by Philip Zimmerman

- Freely available on most platforms <u>http://www.pgpi.org</u>
- Was adopted at OpenPGP RFC that can be freely implemented
- Commercial version available from Network Associates (pgp.com)
- Based on a selection of best available algorithms
- Provides the following services:
 - Confidentiality
 - Key exchange: Diffie-Hellman, or RSA
 - Encryption: CAST-128, or IDEA, or 3DES
 - Authentication
 - Digital signature using SHA-1/MD5, and encrypted using DSS/RSA
 - Compression: ZIP
 - Attachments also encrypted using PGP's file encryption protocol
 - Partitioning and reassembly of large messages
- PGP available also for icq and wireless communication

PGP Confidentiality

- Sender processing
 - Generates a distinct session key per message
 - Compresses message
 - Encrypts session key using receiver's public key
 - RSA, or ElGamal/DH for key exchange
 - Encrypts message using session key
 - Using conventional cryptography faster than RSA
 - Appends encrypted key and message, and sends
- Receiver processing
 - Decrypts session key using own private key
 - Decrypts message
 - Unzips

PGP Message Integrity and Source Authentication

- Sender processing
 - Use SHA-1 to generate 160-bit hash code for the message
 - Hash code is encrypted using sender's private key
 - Encrypted hash code is appended to message and sent
- Receiver processing
 - Decrypts the hash code using the sender's public key
 - Generates a new hash code from the message
 - Compares received and computed hash codes
- Note: Signatures can be kept detached from the message, e.g., allowing multiple non-nested signatures on same document, and for record purposes

PGP Authentication+Confidentiality

- PGP supports both services
- Sender processing
 - Signature is generated first, and appended to original message
 - Appended message is compressed and encrypted using session key
 - Session key is encrypted using receiver's public key
- Compression is applied *after* the signature
 - Signature can be kept with original message for later verification
 - Compression algorithm is independent and can be changed
- Encryption applied to compressed message
 - has less redundancy than original plaintext harder cryptanalysis

PGP Key Management

- Session Keys. PGP employs a keystroke-based technique for generating cryptographically strong session keys
 Next Session Key = E_{PrevKey}(keystroke)
- Rings. PGP allows users to maintain "rings" with multiple pairs of private-public keys
 - To be able to decrypt messages encrypted with older keys
 - To communicate with different users using different keys
 - Each key is identified (almost uniquely) by its rightmost 64 bits
 - Each key is also indexed by the User ID
- Passphrases. Private keys are kept encrypted, using the hash code of a user-chosen passphrase as key

PGP Public-Key Management

- Key distribution main concern: impersonation
- Options:
 - Alice can physically deliver the key on a floppy
 - Alice can e-mail or dictate key to Bob over the phone; Bob can verify the key with Alice using its hash code "fingerprint"
 - A trusted "introducer" can sign a certificate with Alice's key
 - Obtain Alice's key from a trusted certificate authority
- PGP associates with each key
 - a set of introducers, and Bob's trust in each
 - a level of legitimacy, computed by PGP from the combined legitimacies of the introducers
 - a level of trust in each user to legitimize another user
- Key owner can revoke it by signing revocation certificate

S/MIME

- Developed by RSA Data Security
- Secure / Multipurpose Internet Mail Extension
 - Built on top of MIME, based on technology developed by RSA
 - Likely to become Internet standard
- MIME fixes some of the limitations of SMTP (Simple Mail Transfer Protocol)
 - Large files
 - Non-ASCII characters (binaries, special)
- MIME header allows specification
 - multiple types, e.g., application/postscript, video/mpeg
 - multiple transfer encodings, e.g., 7bit, base64
- MIME Messages can be multi-part and contain multiple different contents

S/MIME Services

- Confidentiality
 - Enveloped data
- Authentication
 - Signed data: digital signature is created and is encoded with content in radix-64 (A-Z,0-9,+,/)
 - Clear-signed data: only signature is encoded in radix-64 and the rest of the message is clear
- Confidentiality and Authentication
 - Nesting of signature and enveloping in either order
- New MIME types (pkcs) added

S/MIME Algorithms

- Message digesting
 - SHA-1, MD5
- Encrypt message digest
 - **DSS**, RSA-512/1024
- Encrypt session key
 - DH/ElGamal, RSA
- Encrypt message with session key
 - 3DES, RC2-40

S/MIME Key Management

- ♦ Based on a hybrid of X.509 (CA) and PGP (local)
- User must establish herself at a recognized CA
- Certificate registration and revocation can be communicated using a special MIME type
- S/MIME uses CA to verify UserID-public key match
- Users manage copies of certificates/keys locally

Wireless LANs Security

802.11b

Main Sources: IEEE standards, SANS, and Berkeley Group

Wireless Networks

• Originally devised for mobile, and/or location-based services, but now gaining popularity due to low cost and easy setup

- HomeRF 1.2Mbps (recently increased to 10Mbps)
- Bluetooth short range (10m), Personal Area Network (PAN), very low voltage
- ♦ 802.11 IEEE Standard for wireless LANs
 - Frequency hopping, using 2.4GHz unlicensed ISM frequency
- 802.11b (WiFi) Direct Sequencing Spread Spectrum (DSSS), and increases bit rates to 11Mbps
 - Achieves market sweet spot, in terms of cost, acceptance, interoperability
- 802.11a forthcoming, will increase rate to 54Mbps, and will address some of the security shortcomings

Wired Equivalent Protocol (WEP)

- WEP is the standard security in 802.11b
- WEP security services:
 - Confidentiality
 - Integrity of messages
 - <u>No</u> key management, and no robust authentication
- WEP mechanisms
 - Challenge response mechanism for authentication (very weak)
 - RC4 used to encrypt packets, based on a key shared between mobile unit and access point (link encryption)
 - Integrity Check Vector (ICV) is appended to the packets, to ensure that they were not modified
- Note: in wireless communication, every communication is point-to-multi-point
 - Can simply intercept packets, without need for spoofing

RC4

- Developed by RSA, and kept secret till posted on Internet
- Keystream is generated based on initial key, XORed with the plaintext
 - An 8x8 S-box, with all 256 permutations as entries
 - Initial setting based on 256 iterations scrambling the Key
 - In each round, entries are swapped based on the values in other entries
 - i=(i+1) mod 256; j=(j+Si) mod 256; swap Si and Sj
 - One entry, selected based on the values in two other entries, is selected as next one-byte key
 - t=(Si+Sj) mod 256; K=St
- RC4 with 40 bits is exportable
- Also used in Lotus Notes, and SSL

Passive Attacks on WEP's Shortcomings

- A.k.a. "drive-by hacking" or "parking lot attacks"
- Given two ciphertexts, encrypted with same keystream, their XOR will significantly reduce the search space
 - (A XOR K) XOR (B XOR K) = A XOR B
- Keystream depends on key and IV
 - In most implementations, key is 40 bit and IV is 24 bits
 - Key is often shared, so IV is only randomization
- At 11Mbps, IVs are repeated after 5 hours
- Once plaintext is recovered, the key can be obtained from the reverse XOR

Active Attacks on WEP's Shortcomings

- WEP's authentication is based on challenge-response
 - The expected response is the encryption of the challenge
 - But, since the challenge is sent in the clear, with both plaintext and ciphertext, Eve can easily infer keystream and fake her own response
- WEP's ICV is based on Cyclical Redundancy Check (CRC)
 - When modifying content, it is easy to predict the bits that need to be flipped in the CRC
 - Eve can change destination IP address, and have the AP decrypt the packet for her
- Table-based attack: Eve can construct a table of all possible keystreams (2²⁴ x 1500 bytes = 24GB)

Improving 802.11b Security

- Administrators should use end-to-end encryption
 - Place base stations outside the firewall and use VPN to get inside
 - Use authentication protocols to authenticate remote clients

• WEP and 802.11b are both scrutinized for improvement

- WEP2 adds to IV space, and uses different and changing keys for different stations, but is suspect due to same vendor interests
- IEEE's Enhanced Security Network (ESN) will use AES with 128bit keys
- 802.1X is an authentication protocol that can use multiple auth paradigms (not only for wireless), such as Remote Authentication Dial-In User Service (RADIUS) servers

Cellular Security

WAP PKI

Main Sources: WAP Forum, Certicom

WAP Security Needs

- Main risks (today)
 - Eavesdropping, Impersonation, Malicious Code
 - Interruption
- Needed security services
 - Confidentiality, Authentication, Non-repudiation (m-commerce)
 - Must work in computationally-challenged environment

WAP Security Standards

• WAP Identity Module (WIM)

- Tamper resistant chip on the handheld that stores key material, typically implemented as a smart card
- WML Script Crypto API (WMLSCrypt)
 - Library of security functions for WAP applications, e.g., key generation and management, encryption, digital signature
 - Elliptic Curve Cryptography (ECC) requires less key material and less computation than traditional public-key encryption algorithms
- Wireless Transport Layer Security (WTLS)
 - Based on TLS, optimized for wireless applications
 - Provides authentication, encapsulation/encryption, integrity check
- WAP Public Key Infrastructure (WPKI)
 - Optimized PKI management of keys and certificates
 - Reduced size certificates