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Mathematical Background
for Cryptography

Overview

♦ Modular Arithmetic
♦ Relatively Prime Numbers
♦ Generating Prime Numbers
♦ Factoring
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Modular Arithmetic

Fields

♦ A  field is a set of elements with
– two operations (+, ✕ )
– a “zero”, s.t.  ∀ a,  a+0=a
– a “one”, s.t. ∀ a, a ✕ 1=a

– a-1 iff a ✕ a-1 =1
– -a iff a+(-a)=0
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Galois Fields: GF(p)

♦ Elements: {0,1, …p}
♦ Operations: (+, ✕ ) modulo a prime p
♦ Examples:

4+6 mod 7 = 3 4 ✕ 6 mod 7 = 3
-4 = 3 4-1 = 2

♦ Properties:
(a mod p) +/- (b mod p) = (a+/-b) mod p
(a mod p) ✕ (b mod p) = (a ✕ b) mod p

Fermat’s Little Theorem

♦ Theorem:
– in GF(p), ∀ a≠0, a(p-1) mod p = 1

• note that there is a cycle here, because
ap mod p = a ✕ a(p-1) mod p = a ✕ 1 mod p = a

♦ Example
– a6 mod 7 = 1 ∀ a≠0 in GF(7)
– hence, for any b, s.t. b=a2 mod 7, b3 mod 7 =1
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The Field GF(2n)
♦ Elements: n-bits binary vectors , e.g., (1101) in GF(24)

♦ Polynomial Representation
– In GF(24), (1101) is represented with the polynomial X3+ X2+1
– Addition = XOR of coefficients

• Note: addition = subtraction
– Multiplication = multiplication of polynomials modulo an 

irreducible polynomial

♦ Irreducible polynomial is divisible only by 1 and by itself
– Analogous to a prime number
– Usually, the polynomial Xn+X+1 is used
– Other irreducible polynomials can also be used

The Field GF(2n) – Examples 
♦ Addition:

– (0100) + (1101) = (1001)

♦ Multiplication
– (0100) x (1101) =                                            

X2(X3+X2+1) mod (X3+X+1) =                           
X5+X4+X2 mod (X3+X+1) =                                            
X2(X3+X+1) – X3 – X 2 + X4 + X2 mod (X3+X+1) =   
X4 + X3 mod (X3+X+1) =                                 
X(X3+X+1 ) – X2 – X + X3 = (1110)
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Relatively Prime Numbers

Relatively Prime Numbers

♦ Two numbers a and b are relatively prime if 
they share no common factors
– i.e. GCD (a,b) =1,     GCD = Greatest Common Divisor

♦ Examples
– GCD(21,7) = 7
– GCD(21,8) = 1
– GCD(a,p) = 1, unless a|p
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Computing GCD
♦ Euclidean GCD Algorithm:

– Iteratively take modulo of each other until 0

10
12
32
350
185105
18231015
41234015
4110540135

Euler Totient Function
♦ Definition

– φ(n) is the number of elements a<n s.t., a is relatively 
prime to n (i.e. GCD(a,n)=1)

♦ Examples:
– φ(12)=4   {1,5,7,11}
– φ(p)=p-1, for a prime p   {1,2,…p-1}

♦ Euler’s Generalization of Fermat’s Little Theorem
– If a is relatively prime to n, then  a φ(n) mod n = 1

♦ Corollary: ab mod n  = a(b mod φ(n)) mod n
♦ Easy to compute powers

– e.g., a703 mod 12 = a3 mod 12
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Calculating Inverses
♦ In general, in GF(n), there is not always an inverse.
♦ In GF(n), a has an inverse iff a is relatively prime to n
♦ In particular, if n is prime then there is an inverse (a<n)

♦ The Extended Euclidean Algorithm
– If r is the GCD(a,b), then  r=xa+yb (linear combination)
– x and y can be computed by reversing the Euclidean Algorithm

♦ If a and n are relatively prime, then 1=xa+yn
– Under mod n, we have  1=xa+0, or x=a-1

Generating Prime Numbers
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Primality Tests: Fermat
♦ According to Fermat’s Little Theorem

– If p is prime then  a(p-1) mod p=1
• Test 1: Generate a number a<n, and test if holds
• Test 2: Test for 2,   2p mod p =2

♦ Most non-primes will fail the test, but the test does not 
guarantee primality
– Pseudoprimes satisfy the Fermat’s condition for some a’s, but are 

not primes
– Carmichael numbers are non-primes for which the Fermat 

condition is satisfied for all a<p
• Examples: 561, 1105

♦ Unfortunately, there are infinitely many Carmichael 
numbers

♦ Fortunately, they are sparse and easy to detect

Primality Tests: Rabin-Miller
♦ Let p=1+2b m

– p is odd;   m is the odd number past the trailing zero bits

♦ Calculate z=am mod p
– if z = 1 mod p, then p may be a prime

♦ Calculate z=a2j m mod p , for each 0<=j<b
– if z = -1 mod p, then p may be a prime  (-1 = p-1 )

♦ Theorem: chances of p qualifying for an arbitrary a<1/4

♦ Algorithm: Repeat the test enough times to reduce the 
chance of coincidence
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Practical Implementation
♦ Generate an odd number p with enough bits

– Simply set the high and low bits to 1

♦ Check to see that p is not divisible by small primes
– Usually, check against all primes <2000

♦ Use the Rabin-Miller test on a few a’s

♦ Note: Primes are actually quite dense within the 
natural numbers (about 1:k among k-bit numbers)

Factoring
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Factoring
♦ Factoring a number means to find its prime factors

– e.g., 60=2*2*3*5

♦ In general, this can be a hard problem, especially if the 
number has few factors, and these factors are large
– e.g., 2113-1=3391*23279*65993*1868569*1066818132868207

♦ Factoring is an old problem, and is not difficult, but it can 
be time consuming
– The Number Field Sieve (NFS) algorithm is considered the fastest

for very large numbers
– Has exponential run-time !!

How Hard Is It
♦ Number of decimal digits factored using Quadratic 

Number Sieve algorithm
– 1983 – 71 digits
– 1989 – 100 digits
– 1993 – 129 digits

♦ QS is based on an observation of Fermat
– Every odd composite number can be written as difference of two 

squares: X2 – Y2 (hence (X+Y),(X-Y) are factors)
♦ NFS is faster than QS, and is getting better with new 

optimizations
– Uses non-integers also (roots)
– RSA-211 = (10211-1)/9 factored in 1999
– RSA-155 (512 bits) is more difficult and was also factored in 1999

• 35 computing years on Unix/Pentium machines, over the course of 7 
calendar months
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Strong Primes
♦ In many cryptographic algorithms, the key is made of a 

product of two primes p,q

♦ It is desirable that p,q be hard to discover (strong primes):
– GCD(p-1,q-1) is small
– Both p-1 and q-1 have large prime factors p’, q’
– Also p’-1 and q’-1 have large prime factors
– (p-1)/2 and (q-1)/2 are both prime

♦ This is not a formal definition, only a wishlist


