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Overview
♦ History of Cryptography (and Steganography)
♦ Modern Encryption and Decryption Principles
♦ Symmetric Key (Conventional) Cryptography
♦ Cipher Block Modes
♦ Key Management for Conventional Cryptography
♦ Message Authentication
♦ Public Key Cryptography
♦ Digital Signatures 
♦ Key Management for Public-Key Cryptography
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History of Steganography and 
Cryptography

Steganography
♦ Being able to communicate secretly has always been 

considered an advantage
– Secret messages were often not written down, but rather 

memorized by sworn messengers
♦ Or hidden

– Demaratus, a Greek immigrant to Persia, reveals Persia’s intention 
to attack Athens. Write the secret message on a tablet, and covers it 
with wax.

– Histaiaeus encourages Aristagoras of Miletus to revolt against the 
Persian King. Writes message on shaved head of the messenger, 
and sends him after his hair grew

– Chinese wrote on silk, turned into wax-covered ball that was 
swallowed by the messenger

♦ Steganography
– Steganos = “covered” in Greek, Graphein = “to write”
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Steganography (cont.)

♦ Invisible Ink
– Certain organic fluids are transparent when dried but 

the deposit can be charred and is then visible
– A mixture of alum and vinegar may be used to write on 

hardboiled eggs, so that can only be read once shell is 
broken

♦ Embedded information
– Germans used “microdots” - documents shrunk to the 

size of a dot, and embedded within innocent letters
– Secret messages within music (Beatles)

Steganography (cont.)
♦ Steganography is also used to foil piracy in digital content

– Watermarking copyright information into images, music
– Programmers sometime embed “easter eggs”

♦ Steganography has been used by spies and children alike
– Most recently, US argued that Bin Laden implanted instructions 

within taped interviews

♦ Steganography is weaker than cryptography because the 
information is revealed once the message is intercepted

♦ However, steganography can be used in conjunction with 
cryptography
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Cryptography
♦ In Cryptography, the meaning of the message is 

hidden, not its existence
– Kryptos = “hidden” in Greek

♦ Historically, and also today, encryption involves
– transposition of letters

• Sparta’s scytale is first cryptographic device (5th Century BC)
– Message written on a leather strip, which is then unwound to 

scramble the message

– substitution
• Kama-Sutra suggests that women learn to encrypt their love 

messages by substituting pre-paired letters (4th Century AD)
– Cipher – replace letters
– Code – replace words

Historical Cryptographic Exemplars
♦ Julius Caesar liked encrypting messages

– Replaced Greek letters for Roman letters
♦ Caesar Shift Cipher

– Each letter substituted by shifting n places
• E X A M P L E
• H A D P  S O H

– Only 25 such ciphers
♦ Substitution based on key phrase

– Substitution key consists of phrase’s letters (uniquely) 
followed by rest of the alphabet

• THIS IS ALICE AND BOB’S KEY
• THISALCENDBOKY-FGJMPQRUVWXZ

– 26! (roughly 1026) monoalphabetic substitution ciphers
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Historical Cryptographic Exemplars
♦ The Arabs broke monoalphabetic substitution using 

frequency analysis
– In English (Beker&Piper)

– Thus, letters ciphering e, t, and a are easily discovered
– Subsequently can look for the rest of the letters and letter pairs

6.0r7.0i
0.1z0.1q6.1h

2.0y1.9p2.0g
0.2x7.5o2.2f
2.4w6.7n12.7e
1.0v2.4m4.3d
2.8u4.0l2.8c
9.1t0.8k1.5b
6.3s0.2j8.2%a

Historical Cryptographic Exemplars
♦ Homophonic substitution cipher can be used to 

foil frequency analysis
– Keyed 2-digit substitution

– Reverse frequency

A B C D E F G H I J K L M N O P Q R S T U V W X Y/Z

T 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 00 01 02 03 04 05
H 43 44 45 46 47 48 49 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
E 71 72 73 74 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
K 90 91 92 93 94 95 96 97 98 99 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 00 01 02 03 04 68 05
43 44 45 46 47 48 49 25 26 29 30 31 32 33 35 36 37 38 40 87
71 73 74 50 53 54 57 59 60 63 64 65 66
90 93 94 97 98 76 78 79 82 83 84
72 51 56 58 61 34 39 86 42
91 95 81 77 80 62 67 88 70
92 52 85 89
75 96 41

27 69
55
99
28
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Historical Cryptographic Exemplars
♦ Vigenere’s polyalphabetic cipher (16th century) 

generalizes Caesar’s shift cipher
– Can alternate between lines; or
– Use keyword A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

A A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
B B C D E F G H I J K L M N O P Q R S T U V W X Y Z A
C C D E F G H I J K L M N O P Q R S T U V W X Y Z A B
D D E F G H I J K L M N O P Q R S T U V W X Y Z A B C
E E F G H I J K L M N O P Q R S T U V W X Y Z A B C D
F F G H I J K L M N O P Q R S T U V W X Y Z A B C D E
G G H I J K L M N O P Q R S T U V W X Y Z A B C D E F
H H I J K L M N O P Q R S T U V W X Y Z A B C D E F G
I I J K L M N O P Q R S T U V W X Y Z A B C D E F G H
J J K L M N O P Q R S T U V W X Y Z A B C D E F G H I
K K L M N O P Q R S T U V W X Y Z A B C D E F G H I J
L L M N O P Q R S T U V W X Y Z A B C D E F G H I J K
M M N O P Q R S T U V W X Y Z A B C D E F G H I J K L
N N O P Q R S T U V W X Y Z A B C D E F G H I J K L M
O O P Q R S T U V W X Y Z A B C D E F G H I J K L M N
P P Q R S T U V W X Y Z A B C D E F G H I J K L M N O
Q Q R S T U V W X Y Z A B C D E F G H I J K L M N O P
R R S T U V W X Y Z A B C D E F G H I J K L M N O P S
S S T U V W X Y Z A B C D E F G H I J K L M N O P Q R
T T U V W X Y Z A B C D E F G H I J K L M N O P Q R S
U U V W X Y Z A B C D E F G H I J K L M N O P Q R S T
V V W X Y Z A B C D E F G H I J K L M N O P Q R S T U
W W X Y Z A B C D E F G H I J K L M N O P Q R S T U V
X X Y Z A B C D E F G H I J K L M N O P Q R S T U V W
Y Y Z A B C D E F G H I J K L M N O P Q R S T U V W X
Z Z A B C D E F G H I J K L M N O P Q R S T U V W X Y

Vigenere Square

♦ The Vigenere cipher 
is not amenable to 
simple frequency 
analysis

Historical Cryptographic Exemplars

♦ Babbage broke Vigenere’s Cipher (19th century)
– Stage 1: Discover key length

• Look for repeated sequences, and measure the distance 
between them

• The key length is a factor of these distances

– Stage 2: Identify the key itself
• Compare distributions for each of the key letters with the 

standard distribution, to identify the shift
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Historical Cryptographic Exemplars
♦ Coding

– Louis XIV’s Great Cipher (Rossignols) used one 
symbol (3-digit number) per syllable (held 200 years)

– Mary Queen of Scots used a combination of cipher and 
coded words (nomenclator)

– e.g,

– US Army used Navajo language as code in WWII

Transposition Ciphers

♦ Railfence:   TRHCEEIETGSSMAIAEASS

♦ Redfence (by key):   IETGIAESHCEESSMATRSS

♦ Columnar
– IEEIRSHSMESCSTATGSEA

T 5 T R
H 3 H C E E
E 1 I E T G
K 4 S S M A
E 2 I A E S
Y 6 S S

T H E K E Y
5 3 1 4 2 6

T H I S I S
A S E C R E
T M E S S A
G E
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The German Enigma Machine 
(Scherbius)
♦ Electrical encryption machine, performing 8 substitutions

– uses n=3 rotating scramblers (26n orientations)
– scramblers can be configured in n! orders
– pre-keyboard k=6 swapped letter-pairs

♦ Encryption consists of
– optional letter pair switch
– compounded scrambling, with shifts
– reflector swaps letter pairs
– and backward scrambling

♦ Scrambles rotate in tandem
♦ Total of 1017 possible configurations

– changed daily according to a codebook
– each message has own orientation (message key)
– later added 4th scrambler

♦ Used extensively by Germany in WW2
♦ Hitler used a more complex version of Enigma called Lorenz cipher

Poles Crack the Enigma
♦ Polish cryptanalysts obtained information about the 

encryption procedure from commercial Enigmas
♦ Obtained information on its usage

– the Germans used a different orientation key for each message, 
encrypted twice in the message header (using the day key)

♦ Rejewski focused on the repetitions
– Formalized relationships between 1st-4th ,2nd-5th, and 3rd-6th letters

• ABCDEFGHIJKLMNOPQRSTUVWXYZ
• FQHPLWOGBMVRXUYCZITNJEASDK

– Built chains
• (AFW), (BQZKVELRIB), (CHGOYDPC), (JMXSTNUJ)

– Chains depend only on scrambler orientation, not pair swaps
• Thus need to consider only 6 x 263 = 105456 configurations

– Built a catalog of characteristic chains for all configurations
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Poles Crack the Enigma
♦ Rejewski’s algorithm to discover the day key

– First, use catalog to identify the scrambler setting and orientation
– Then, run the ciphertext through an Enigma and look at the text to 

identify swapped letter pairs

♦ Bombe machines were constructed to mechanize 
the search

British Crack Improved Enigma
♦ In 1939, Germans increased Enigma security

– added 2 extra scramblers to choose – 10x arrangements
– increased to 10 letter pair swaps

♦ British Cryptanalysts (Bletchley Park) took from the Polish
– Recruited best Mathematicians (Turing) and large staff (7000)
– Received Bombes from Polish

♦ Used human weaknesses provided hints and cribs
– Trivial message keys (key sequences, names initials)
– Artificial “intelligent” restrictions on scramblers arrangements and pair 

swaps restricted the search space
– Standard message formats, e.g., weather
– Some German codebooks were captured

♦ Turing constructed swap-independent chains similar to Rejewski
– First British Bombe (Victory) delivered in 1940
– Search still required significant human help 

♦ The British ULTRA – broken German, Italian and Japanese 
communications were crucial to winning the war 
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Unbreakable Encryption
♦ One-time pads

– Sender and receiver use a pre-arranged random stream 
of letters

– Encryption=addition modulo 26
– Every letter in the key used once

♦ Perfectly secure encryption (Shannon)
– Used by Soviet spies, and also for US-Soviet hotline

♦ Requires significant logistical effort and 
coordination

♦ Relies on randomness of key

M E S S A G E
T H I S K E Y

F L A K K K C

Summary
♦ Encryption Algorithms and Keys

– Substitution : bits, letters, words
– Transposition

♦ Decryption Algorithms
– Reversed process
– Knowledge of the algorithm and the key

♦ Cryptanalysis
– Identify algorithm
– Obtain as many plaintext-ciphertext pairs
– Use systematicity (patterns)
– Use cribs
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Modern Encryption and 
Cryptanalysis Principles

Main source: Network Security Essentials / Stallings

Modern Encryption Principles
♦ Encryption scheme has 5 ingredients

– Plaintext, Encryption Algorithm, Key, Ciphertext, and 
Decryption Algorithm

– Security depends on secrecy of the key, not algorithm
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Notation
♦ M, or P will usually denote the plaintext message
♦ C will usually denote the ciphertext
♦ K will usually denote a key
♦ Ek(M)=C is the encryption function
♦ Dk(C)=M is the decryption function

♦ Dk(Ek(M))=M represents the typical flow

Cryptographic Protocols

♦ Self enforcing protocols
♦ Arbitrated protocols

– Trusted third party helps in real time

♦ Adjudicated protocols
– Trusted third party, but only if needed and after the fact

♦ Self enforcing protocols♦ Self enforcing protocols
♦ Arbitrated protocols

– Trusted third party helps in real time
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Attacks Against Cryptographic 
Protocol
♦ Passive attacks (eavesdropping)

– Cryptanalysis
– Traffic analysis

♦ Active attacks
– Impersonation
– Interruption / denial
– Modification of messages
– Fabrication of new messages
– Replay / Reflect messages

Cryptographic Algorithms
♦ Type of operations applies to plaintext

– Substitution and transposition
♦ Type of key(s)

– Symmetric : same key
– Asymmetric, Public-Key : Dk2(Ek1(M))=M 

♦ How plaintext is processed into ciphertext
– How many and which operations
– How the operations are combined
– Block ciphers, Stream ciphers
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Cryptanalysis (attacks against 
cryptographic algorithm)
♦ Ciphertext only

– Uses only knowledge of algorithm and ciphertext

♦ Known plaintext
– Also one or more plain-ciphertext pairs
– Or, probable words: dictionary, known formats, etc.

♦ Chosen text
– Chosen to reveal information about the key
– Chosen plaintext and its ciphertext

• Differential chosen plaintext
• Adaptive chosen plaintext

– Chosen ciphertext and its original plaintext
• Mostly against public-keys

Computationally Secure 
Encryption
♦ Encryption scheme is computationally secure if

– The cost of breaking the cipher exceeds the value of the encrypted 
information; or

– The time required to break the cipher exceeds the useful lifetime of 
the information

♦ Most schemes that we will discuss are not unbreakable in 
principle, but are computationally secure
– Usually rely on very large key-space, impregnable to brute force

♦ Moreover, the most advanced schemes rely on lack of 
knowledge of effective algorithms for certain hard 
problems, not on a proven inexistence of such algorithms
– Usually factorization, discrete logarithms, or square roots mod p
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Shannon’s Theory of Secrecy
♦ Message entropy = minimum number of bits needed to 

express all possible messages
– English entropy is 1.3 bits per letter

♦ Cryptanalysts try to modify the a priori probabilities of 
alternative messages until one emerges

♦ A cryptographic scheme is perfectly secure if knowledge 
of the ciphertext does not change the odds in favor of any 
of the possible plaintexts

♦ Shannon’s Theory: the key must be at least as large as the 
message (entropy) and cannot be reused
– Therefore, the secrecy of a cryptographic scheme depends on its 

entropy, i.e. the number of key bits, or the size of the key space
– Only the one-time pad achieves perfect secrecy

Symmetric Key (Conventional) 
Cryptography

Main sources: Network Security Essential / Stallings
Applied Cryptography / Schneier
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Protocol
♦ Typical protocol

– Alice and Bob agree on cryptosystem
– Alice and Bob agree on a key
– Alice encrypts her message with the key
– Alice sends the message to Bob
– Bob decrypts the messages using same key

♦ Variation
– Alice selects a new key for each message and encrypts it using the 

agreed key
– Alice sends the message key to Bob who decrypts it using the 

agreed key
– Thereafter, Alice uses the message key to encrypt the actual 

message

Feistel Networks
♦ Most block encryption algorithms use this general 

structure, due to Horst Feistel (1973)

♦ Inputs: Plaintext (halved) , Key, Round function F
♦ Uses n rounds, in each

– Inputs: Li and Ri
– Li+1=Ri
– Ri+1=Li⊕ F(Ri,Ki)
– F is a function that selects certain bits, duplicates some, 

and permutes them. Ki is derived from K
♦ Final ciphertext is combination of Ln and Rn

♦ At IBM, Feistel built Lucifer, the first such system
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Notes on Feistel Cipher Structure
♦ Process is reversible

– Ri-1=Li
– Li-1=Ri⊕ F(Ri-1,Ki-1)
– Same algorithm can be used but with keys reversed

♦ Security Considerations
– Larger block size means fewer blocks and greater security
– Larger key size means greater security
– More rounds considered to offer better security (?)
– Greater complexity of subkey generation may help security
– Greater complexity of round function may increase security
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Block Cipher Design Issues
♦ Easy to design a secure block cipher

– By increasing the complexity of F (e.g., more complex S-boxes)
– By iterating 1000 rounds

♦ Goals
– Fast – few rounds, use simple operations

• Low communication overheads
• Low battery consumption in hand-helds

– Easy to implement in hardware
• Simple, ubiquitous operations

– Efficient in memory usage
• Can run on a smart card

– Does not require too much secret material (keys, boxes)
• Sometimes put on expensive tamper-proof memory

Data Encryption Standard (DES)
♦ Without a standard, software and hardware cannot 

interoperate, or at least it is very expensive

♦ In 1973, National Institute for Standards and Technology 
(NIST) issued RFP for Data Encryption Algorithm (DEA)
– provide high level of security
– completely specified and easy to understand
– the security must reside in the ky
– available to all users
– adaptable to diverse applications
– economically implementable in hardware
– efficient to use
– validated
– exportable
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Data Encryption Standard (DES)
♦ NIST (NBS) issued a Request For Proposal (RFC)
♦ IBM had only serious proposal

– Patented and based on Lucifer (Feistel et al)
♦ NIST issued a Request For Comments (RFC)

– Quite a few were concerned about NSA backdoor
– NSA reduced the key size from 112 to 56 bits

• Diffie and Helman presented a $20MM 1-day DES cracking machine
– NSA had also changed the original S-boxes design

• There were some claims of linearity in the new design

♦ DES was adopted in 1977

♦ In 1987, under NSA pressure, DES almost not recertified
♦ Until 1994, only hardware implementations of DES were 

permitted

Data Encryption Standard (DES)

♦ A Feistel block cipher 
structure
– 64-bit blocks
– 56-bit keys
– 16 rounds
– Adds initial and final 

permutation of the text 
(irrelevant to security)

– Key shifted circularly for 
next round, and 48 bits are 
selected for Ki
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One Round of DES

One Round of DES
♦ Key Transformation

– Each key-half is shifted 1 or 2 bits in each round (per given table)
– The 56 key bits are permuted and 48 bits are chosen (per table)

♦ Text transformations
– Expansion of Ri from 32 to 48 bits (size of key)

• Avalanche effect – some bits are duplicated
– 48 bits are XORed with Ki

– Substitution, using 8 S-Boxes with 6-bit input and 4-bit output
• S-boxes are well chosen to introduce non-linearity

– 32 bits are permuted according to specified P-Box
– 32 bits are XORed with Li  to create Ri+1
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Data Encryption Standard (DES)
♦ Software implementations are slow

– On IBM Mainframe 32,000 blocks / second
♦ Hardware implementations are very fast

– VLSI Technology 6868 (“Gatekeeper”) DESes in 8 clock cycles
– DEC built GaAs gate array that DESes 16.8 million blocks / second

♦ Weak keys
– All 0’s, or all 1’s in each half would result in same subkeys
– Note: if K’=complement of K, then Ek’(P’) =complement of Ek(P)

♦ There were also claims that the S-boxes were weakened by the NSA
♦ Notable DES Attacks

– In 1990, Eli Biham and Adi Shamir presented differential cryptanalysis
• A chosen-plaintext attack that uses two plaintexts with specific difference. Then, 

based on the difference in the ciphertext (and also internal rounds), one can 
update the a priori probability of keys

– In 1993, Mitsuru Matsui showed linear cryptanalysis attack
• Certain XORs of plaintext and ciphertext bits will result in a certain XOR of key 

bits with some probability p≠1/2

RC5
♦ Invented by Ron Rivest (Ron’s Code 5), and developed by 

RSA Technology into a number of their products
♦ A block cipher that uses only XORs, Additions, and 

Rotations
♦ Variable length blocks, keys, and number of rounds
♦ A,B are two halves of text; Si are key-based

– A=((A ⊕ B)<<<B) + S2i

– B=((A ⊕ B)<<<A) + S2i+1

♦ With 16+ rounds, it resists differential attack
♦ Uses low-cycles operations, and is very fast
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Other Block Ciphers
♦ Blowfish (Schneier)

– Simple: additions, XORs, and table lookups
– Table lookups may require large memory
– Variable key length

♦ CAST
– The round function differs from one round to next

♦ Int’l Data Encryption Alg (IDEA), Lai and Masey
– Plaintext, key, and ciphertext are divided to 4 parts
– Uses XORs, additions, and multiplications in 8 rounds
– 128-bit key, 52 16-bit subkeys (can be independent)
– Resists differential cryptanalysis
– Used in PGP

Triple DES (3DES)

♦ 3DES uses three 56-bit keys
– C=Ek1(Dk2(Ek3(P)))
– P=Dk1(Ek2(Dk3(P)))

♦ Note: if K1=K2 then 
3DES=DES

♦ Double encryption doesn’t 
work well
– Merkle-Hellman chosen plaintext 

men-in-the-middle attack requires 
only 2n+1 trials



23

Advanced Encryption Standard 
(AES)
♦ NIST put out the RFP in 1997
♦ Five finalists:

♦ In October 2000, NIST recommended Rijndael

MARS RC6 Rijndael Serpent Twofish

General Security 3 2 2 3 3
Implementation of Security 1 1 3 3 2
Software Performance 2 2 3 1 1
Smart Card Performance 1 1 3 3 2
Hardware Performance 1 2 3 3 2
Design Features 2 1 2 1 3

Rijndael Block Cipher
♦ By Belgians Joan Daemen, and Vincent Rijmen
♦ Basic operations use bit-coefficient polynomials, in GF(28)
♦ Does not use Feistel structure
♦ Instead uses 3 types of layers and a state

– Non-linear layer, using optimized S-boxes
– Linear mixing layer for diffusion of all bits throughout the rounds
– Key addition layer, using a simple XOR

♦ Each round
– Byte substitution (S-box from state matrix, with index (i,j) based on 

previous state)
– Row shift (to the matrix of states)
– Column mix (also to the matrix of states)
– Key XOR with the current state
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Cipher Block Modes of 
Operation

Main sources: Network Security Essential / Stallings
Applied Cryptography / Schneier

Stream Ciphers

♦ Stream ciphers work on a stream of blocks (sometimes 
bits), altering the encryption from one block to the next
– Keystream may change according to original key, previous 

encryptions, and block index
• In synchronous stream ciphers, keystream does not depend on text

– Other encryption parameters may also change, e.g., S-boxes
♦ E.g. RC4 

– Uses 8x8 S-box, with all possible 8-bit key-entries
– Keys are selected randomly, and XORed with plaintext to produce 

ciphertext
– In each iteration, key entries are switched
– RC4 is used in Lotus Notes, CDPD, and SSL

Keystream
Generator

Ki

CiPi
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Cipher Block Modes of Operation
♦ Stream ciphers can be implemented from block 

cipher building blocks

♦ Requirements:
– Should be efficient, without significant overhead
– Shouldn’t allow chosen plaintext attacks to interfere 

with the encryption
– Should be fault tolerant, not crashing in case of bit 

errors
♦ Note that the secrecy depends on the underlying 

cipher block algorithm

Electronic Codebook (ECB) Mode
♦ Simplest form

– Each block (typically 64 bits) encrypted separately
– As if there is a codebook of 264 entries (per key)

♦ Fast, easy to parallelize
♦ Relatively fault tolerant
♦ Easy target to known-plaintext attack

– cryptanalyst can rebuild the code book
– Also susceptible to stereotypical beginning and ending 

of messages and statistical attacks
♦ Also easy target to modification attack

– E.g., replacing the target-account block in a bank 
money wiring communication
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Cipher Block Chaining (CBC) Mode

Cipher Block Chaining (CBC) Mode

♦ Initialization vector modifies encryption of identical blocks 
– Can be chosen by source and sent in the clear
– Or, encrypt random data in the first block

♦ Errors
– A bit of error in the plaintext will not extend the error
– A bit of error in the ciphertext will garble that block, and will alter 

same bit in the next block, but then CBC self-recovers completely 

♦ Security
– A man-in-the-middle can easily append blocks in the end
– Can change a bit, knowing which bit will be affected in 2nd block

♦ Encryption
– Ci=Ek(Pi⊕ Ci-1)
– C0=IV

♦ Decryption
– Pi=Dk(Ci)⊕ Ci-1



27

Cipher Feedback Mode (CFB)

EK

IV

P1

C1

EK

P2

C2

K1 K2
EK

Pn

Cn

Kn

♦ Errors
– A bit of error in plaintext affects all subsequent blocks but does not 

extend the error when decrypted
– A bit of error in ciphertext affects same bit and next block, after 

which CFB self synchronizes

…

Output Feedback Mode (OFB)

♦ Output of Encryption serves as feedback

EK

IV

P1

C1

EK

P2

C2

K1 K2
EK

Pn

Cn

Kn…
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Key Management for 
Conventional Cryptography

Main sources: Network Security Essential / Stallings
Applied Cryptography / Schneier

Key Generation, Distribution and 
Management
♦ The security of any cryptographic system depends on safe 

and effective key distribution and management
– frequent changes
– low computational and communication overhead

♦ Key Distribution Centers (KDCs) are the single most 
critical point of failure, and are the toughest to implement

♦ Key Generation
– Cryptanalyst may attack the key generation algorithm

♦ Distribution
– Opponent may impersonate or attack the communication

♦ Management
– Adversary may attack KDC systems, or simply exploit human 

weaknesses
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Key Generation
♦ Key space should be large enough
♦ Selection from key space shall be random

– Humans select poor keys prone to dictionary attack
– Some algorithms have weak keys that should be 

avoided (DES has 16 such weak keys)

♦ ANSI X9.17 Key Generation Algorithm
– Key is generated from previous key, through some encryption 

process that also takes into account a kept state information
– Seeds generated from low-order bits of time stamps, time between 

keystrokes of administrator, etc.

Key Distribution Alternatives
♦ Physical Delivery

– Alice can select the key and deliver to Bob
– Charles, a trusted third-party, can select the key and 

deliver to both Alice and Bob
♦ Encrypted direct communication

– From Alice to Bob using an earlier encrypted session

♦ Encrypted communication with trusted third-party
– From Charles to both Alice and Bob
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Key Distribution (cont.)
♦ Encryption location

– Link encryption
– End-to-end encryption

♦ Physical delivery
– best for link encryption, e.g., routers that link two sub-networks
– hard for end-to-end, esp. ad-hoc / many-to-one communication

♦ Encrypted direct key-delivery communication
– Dangerous: an attacked that gets one key, gets them all

♦ Conclusion:
– Security of link communication should not be compromised, and shall use 

manual delivery of keying material (especially key-encryption keys)
– End-to-end communication can use key-delivery by third party (data keys)

Session Key Distribution by KDC

♦ It is safer if KDC-host link encrypted using a physically delivered key
♦ KDC-host communication shall also be mutually authenticated
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Key Management Principles
♦ To reduce the risk of eavesdropping

– use different keys for different purposes
– generate new keys from old ones + hash function

♦ To reduce the risk of impersonation
– use mutual authentication when exchanging keys

♦ To reduce the risk of computer/physical break-in
– store most keys encrypted using master key
– save master keys in your memory, smart card, flash key, etc. 
– use tamper-proof hardware encryption, much safer than software
– destroy media on which keys were stored, even if were encrypted

♦ Replace keys frequently
♦ Report compromised keys to KDC with timestamp
♦ Backup keys shall be broken and spread

Message Authentication

Main sources: Network Security Essential / Stallings
Applied Cryptography / Schneier
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Message Authentication

♦ Goal: offer protection against active attacks
– Impersonation
– Modification of contents
– Replay
– Interruption and denial of service

♦ Requirements
– Message is authentic - has not been altered
– Message source is authentic
– Optional

• Message arrived in correct sequence
• Non-repudiation

Message Authentication Approaches

♦ Conventional encryption
– After all, only the parties should have access to 

key
♦ Message authentication without encryption

– Authentication tag is attached to message to 
verify its integrity and the integrity of the 
source

♦ Message Authentication Code (MAC)
– MAC=F(Message,Key)
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Message Authentication Code

MAC Properties
♦ Message is authentic

– If the attacker modified the message, the MAC will likely not 
match the one calculated by the receiver

♦ Source is authentic
– No one else has the key to generate same MAC
– Hence, also non-repudiation

♦ Message is in sequence
– Should add timestamp or other nonce to the message before 

calculating the MAC

♦ Any encryption algorithm can be used to generate MAC
– NIST recommended last n bits of DES-encryption of the message
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One-Way Hash Functions
♦ Note that for the purpose of authentication, MAC function 

need not be reversible
♦ A one-way hash function H, takes an input an arbitrary 

length message M, and produces a fixed-length hash value
– H must be easy to compute
– H is hard to reverse, i.e. given h, its hard to find M
– H(M) is hard to duplicate , i.e., it is possible that there exists M’

such that H(M)=H(M’), but given M it hard to find such M’
♦ For some applications, we may need collision resistance:

– It is hard to find arbitrary M and M’ such that H(M)=H(M’)

♦ H(M) is a fingerprint of the message M and is called 
message digest (MD)

Message Authentication Protocol 
Using a One-Way Hash Function
1. Using a symmetric secret / key

2. Using symmetric encryption
• Generate H(M), which is small in size
• Use EK(H(M)) as the MAC
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Construction of One-Way Hash 
Functions

♦ Hash functions are typically based on compression functions (f) that 
work on blocks (Mi)

♦ Works like a chained block cipher
– Produces a hash value for each fixed-size block based on its content and 

based on the hash value for the previous block

♦ In fact, can use symmetric encryption as f=E, and use Mi as the key

fIV

M1

f f
h1 h

M2 Mn

h2 hn-1…

Simple Hash Functions
♦ Bitwise-XOR

♦ Not very secure, e.g., for English text (ASCII<128) the high-order bit 
is almost always zero

♦ Can be improved by rotating the hash code after each block is XORed
into it

♦ Still, if the message itself is not encrypted, it is easy to modify the 
message and append one block that would set the hash code as needed
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Secure Hash Algorithm (SHA)

♦ Revised in 1995 as SHA-1
– Input: Up to 264 bits
– Output: 160 bit digest

♦ Pad with at least 64 bits to 
resist padding attack
– 1000…0<message length>

♦ Processes 512-bit block 
– Initiate 5x32bit MD registers
– Apply compression function

• 4 rounds of 20 steps each
• each round uses different 

non-linear fi
• registers are shifted and 

switched

♦ SHA was published by NIST as a standard in 1993

SHA-1
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Other Famous MD Algorithms

160 (5 paired 
rounds of 16)

64 (4 
rounds of 
16)

80 (4 rounds 
of 20)

Number of steps

unlimitedunlimited264-1 bitsMaximum 
message size

512 bits512 bits512 bitsBasic unit of 
processing

160 bits128 bits160 bitsDigest length

RIPEMD-
160

MD5 
(MD4+

SHA-1

Variable Length Hash Codes
♦ Some hash functions have good cryptographic qualities, 

but generate short hash codes
– If the message digest is short, the receiver can easily forge another 

message with same hash code
– Similarly, easy to find a (message,hashcode) pair that match

♦ Can use the following algorithm to enlarge hash code
– Start with M0=M, H0=H(M)
– Generate M1 by appending H0 to M0, and generate H1=H(M1)
– Append H1 to H0
– Repeat until generated enough hash codes
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Hash Function MAC (HMAC)
♦ HMAC Idea: Use a MAC derived from any 

cryptographic hash function
– Note that hash functions do not use a key, and therefore 

cannot serve directly as a MAC
♦ Motivations for HMAC:

– Cryptographic hash functions execute faster in software 
than encryption algorithms such as DES

– No need for the reverseability of encryption
– No export restrictions from the US

♦ Status: designated as mandatory for IP security
– Also used in Transport Layer Security (TLS), which 

will replace SSL, and in SET

HMAC Algorithm
♦ Compute H1= H of the 

concatenation of M and K1
♦ To prevent an “additional 

block” attack, compute again 
H2= H of the concatenation 
of H1 and K2

♦ K1 and K2 each use half the 
bits of K

♦ Notation:
– K+ =K padded with 0’s
– ipad=00110110 x b/8
– opad=01011100 x b/8

♦ Execution:
– Same as H(M), plus 2 

blocks
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Public-Key Cryptography

Main sources: Network Security Essential / Stallings
Applied Cryptography / Schneier

Motivation
♦ Until early 70s, cryptography was mostly owned by 

government and military

♦ Symmetric cryptography not ideal for commercialization
– Enormous key distribution problem; most parties may have never 

physically met
– Must ensure authentication, to avoid impersonation, fabrication

♦ Few researchers (Diffie, Hellman, Merkle), in addition to 
the IBM group, started exploring Cryptography because 
they realized it is critical to the forthcoming digital world
– Privacy
– Effective commercial relations
– Payment
– Voting
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Public-Key Cryptography
♦ First proposed by Diffie and Helllan, and independently by 

Merkle (1976)
– Idea: use separate keys to encrypt and decrypt
– Merkle proposed puzzles, and then knapsack problems

♦ Pair of keys is generated by each user
– Public key is advertised
– Private key is kept secret, and is computationally infeasible to

discover from the public key and ciphertexts
– Each key can decrypt messages encrypted using the other key

♦ Applications:
– Encryption
– Authentication (Digital Signature)
– Key Exchange (to establish Session Key)

Diffie-Hellman Key Exchange
♦ First public-key algorithm, based on the difficulty of 

computing discrete logarithms modulo n
♦ Protocol:

– Use key exchange protocol to establish session key
– Use session key to encrypt actual communication

♦ Algorithm:
– Choose a large prime n, and a primitive root g

Alice Bob
X=gx mod n

Y=gy mod n
select x

select y

Compute K=Xy mod nCompute K=Yx mod n K=gxy mod n
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Public-Key Encryption
♦ Sender uses the public key of the receiver to encrypt
♦ Receiver uses her private key to decrypt

Authentication Using Public-Key
♦ The sender encrypts the message with his own private key
♦ The receiver, by decrypting, verifies key possession
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Public-Key Algorithms: 
Requirements
♦ It is computationally easy to generate a pair of keys
♦ It is computationally easy to encrypt using the public key
♦ It is computationally easy to decrypt using the private key
♦ It is computationally infeasible to compute the private key 

from the public key
♦ It is computationally infeasible to recover the plaintext 

from the public key and ciphertext
♦ Either of the related keys can decrypt a message encrypted 

using the other key

♦ Note: it should be computationally infeasible to decrypt 
using same key used for encryption

RSA
♦ Developed by Rivest, Shamir, and Adleman (1977), and is most 

widely used
– Classified version of RSA developed by GCHQ (Ellis and Cocks) in 1973

♦ Gets its security from the difficulty of factoring large numbers
♦ Works as a block cipher, where each plaintext/ciphertext block is 

integer between 0 and n
♦ Algorithm:

– Receiver chooses e, d
– The values of e, and n are made public; d is kept secret
– Encryption: C=Me mod n
– Decryption: M=Cd mod n = Med mod n

♦ Requisite:
– Find e, d such that M=Med mod n, for all M<n
– Make sure that d cannot be computed from n and e, not even if a 

ciphertext is available
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RSA Key Generation
♦ Select primes p and q, n=pq
♦ Calculate Φ(n)=(p-1)(q-1)

– Euler totient of n – number of integers between 1 and n that are 
relatively prime to n, i.e., {m | gcd(m,n)=1}

♦ Select integer e<Φ(n) such that gcd(Φ(n),e)=1
♦ Calculate d such that d=e-1 mod Φ(n),

– i.e. ed=1 mod Φ(n)

♦ Note: 
– The message could have been encrypted with d and decrypted by e

RSA Key Generation: Why it Works
♦ Fermat’s Little Theorem

– For a prime p, ∀a such that 0<a<p, a(p-1)=1 mod p
♦ Euler’s extension

– For primes p,q, ∀a such that gcd(a,pq)=1, a(p-1)(q-1)=1 mod pq
– Hence, Med mod n = Mk(p-1)(q-1)+1 mod n=1xM=M

♦ To generate primes, use primality test
– For a non-prime, Fermat’s theorem will usually fail on a random a

• Carmichael numbers are very rare exception, and if chosen decryption wont 
work. Can reduce the probability by checking more a’s

– Primes are dense enough (almost one of every k k-bit numbers)
♦ GCD to select e takes O(log n) time
♦ Calculate d=e-1mod n using Euler extended GCD algorithm
♦ Exponentiation (Encrypt/Decrypt) takes O(log n) time

♦ RSA gets its security from the difficulty of factoring n=pq
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RSA Example
♦ Key Generation

– Select p=7, q=17, n=pq=119, Φ(119)=96
– Select e=5; Calculate d=77

Attacks on RSA Algorithm
♦ If one could factor n, which it available, into p and 

q, then d could be deduced, and then the message 
deciphered

♦ If one could guess the value of (p-1)(q-1), even 
without factoring n, then again d could be deduced
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Attacks on RSA Protocol
♦ Chosen ciphertext attack

– Attack: get sender to sign (decrypt) a chosen message
– Inputs: original ciphertext C=Me

– Construct
• X=Re mod n, for a random R
• Y=XC mod n
• T=R-1 mod n

– Ask sender to sign Y, obtaining U=Yd mod n
– Compute

• TU mod n = R-1Yd mod n = R-1 Xd Cd mod n = Cd mod n = M
– Exploits preservation of multiplication under mod

♦ Conclusion:
– never sign a random message
– sign only hashes
– use different keys for encryption and signature

Other precautions when 
implementing RSA protocol
♦ Do not use same n for multiple users

– Can decipher using two encryption (public) keys, 
without any decryption key

♦ Always pad messages with random numbers, 
making sure that M is about same size as n
– If e is small, there is an attack that uses e(e+1)/2

linearly dependent messages

♦ Do not choose low values for e and d
– For e, see above, and there is also attack on small d’s
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Other Public-Key Algorithms
♦ Merkle-Hellman Knapsack Algorithms

– First public-key cryptography algorithm (1976)
– Encode a message as as series of solutions to knapsack problems (NP-

Hard). Easy (superincreasing) knapsack serves as private key, and a hard 
knapsack as a public key.

– Broken by Shamir and Zippel in 1980, showing a reconstruction of 
superincreasing knapsacks from the normal knapsacks

♦ Rabin
– Based on difficulty of finding square roots modulo n
– Encryption is faster: C=M2 mod n
– Decryption is a bit complicated and the plaintext has to be selected from 4 

possibilities
♦ El Gamal

– Based on difficulty of calculating discrete logarithms in a finite field
♦ Elliptic Curves can be used to implement El Gamal and Diffie-

Hellman faster

Digital Signatures

Main sources: Network Security Essential / Stallings
Applied Cryptography / Schneier
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Public-Key Digital Signature
♦ The sender encrypts the message with his own private key
♦ The receiver, by decrypting, verifies key possession

Digital Signatures
♦ The entire message, encrypted with the private key, serves 

as the digital signature
– Computationally expensive
– Anyone can decrypt the original message

♦ Alternatively, a digest can be used
– Should be short
– Prevent decryption of the original message
– Prevent modification of original message
– Difficult to fake signature for

♦ A hash code of the message (e.g., SHA-1)
♦ If only source authentication is needed, a different message 

can be used
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Digital Signature Algorithm (DSA)
♦ Proposed in 1991 by NIST as a standard (DSS)
♦ Based on difficulty of computing discrete logarithms (like 

Diffie-Hellman and El Gamal)
♦ Encountered resistance because RSA was already de-facto 

standard
– Cannot be used for encryption or key distribution
– Faster than RSA in signature, but slower in verification
– Significant investment in RSA by large corporations
– Concerns about NSA backdoor

♦ Key size was increased from 512 to up-to 1024 bits 

Description of DSA
♦ Public parameters

– p is a prime number with up to 1024 bits
– q is a 160-bit factor of (p-1), and itself prime
– g=h(p-1)/q mod p
– x is the private key and is smaller than q
– y=gx mod p is the public key
– H(M) is the secure hash code of the message

♦ Signature
– Generate a random k<q
– Compute and send r=(gk mod p) mod q
– Compute and send s=k-1(H(M)+xr) mod q

♦ Verification
– Compute w=s-1 mod q
– Compute u1=H(M)w mod q; u2=rw mod q
– Compute v=(gu1*yu2 mod p) mod q
– If v=r then the signature is verified



49

Key Management
for Public-Key Cryptography

Main sources: Network Security Essential / Stallings
Applied Cryptography / Schneier

Certificate Authority: Verifying 
the Public Key
♦ How to ensure that Charles doesn’t pretend to be Bob by publishing a 

public-key for Bob. Then, using a Man-in-the-Middle attack, Charles 
can read the message and reencrypt-resend to Bob

♦ Bob prepares certificate 
with his identifying 
information and his 
public key (X.509)

♦ The Certificate Authority 
(CA) verifies the details 
and sign Bob’s certificate

♦ Bob can publish the 
signed certificate
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More on Key Management
♦ Alice may have more than one key

– e.g., personal key and work key
♦ Where shall Alice store her keys

– Alice may not want to trust her work administrator with her 
personal banking key

♦ Distributed certification V1.0
– CA certifies Agents who certify companies who certify employees

♦ Distributed Certification V2.0 (a la PGP)
– Alice will present her certificate with “introducers” who will vow 

for her
♦ Key Escrow

– US American Escrowed Encryption Standard suggests that private 
keys be broken in half and kept by two Government agencies

– Clipper – for cellular phone encryption
– Capstone – for computer communication


