


## **Principles**

- Circuit switching designed for voice
  - Resources dedicated to a particular call
  - Much of the time a data connection is idle
  - Data rate is fixed
    - Both ends must operate at the same rate
- What characteristics does data have that make packet switching attractive?

## **Basic Operation**

- Data transmitted in small packets
  - Typically 1000 octets (or less Why?)
  - Longer messages split into series of packets (fragmentation)
  - Each packet contains a portion of user data plus some control info
- Control info
  - Routing (addressing) info
- Packets are received, stored briefly (buffered) and past on to the next node
  - Store and forward



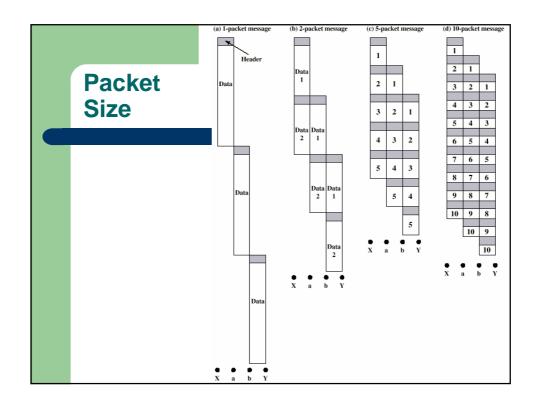
#### **Advantages**

- Line efficiency
  - Single node to node link can be shared by many packets over time
  - Packets queued and transmitted as fast as possible
- Data rate conversion
  - Each station connects to the local node at its own speed
  - Nodes buffer data if required to equalize rates
- Packets are accepted even when network is busy
  - Delivery may slow down
- Priorities can be used

## **Switching Technique**

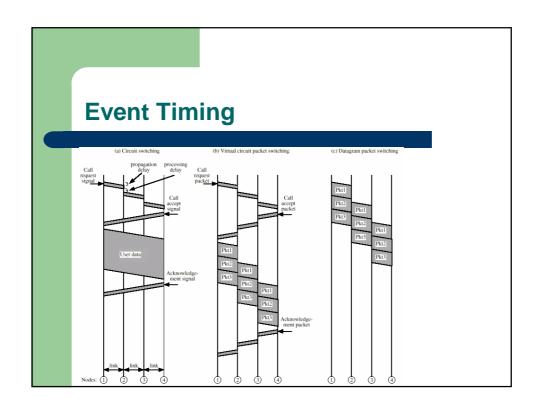
- Station breaks long message into packets
- Packets sent one at a time to the network
- Packets handled in two ways
  - Datagram
  - Virtual circuit

#### **Datagram**


- Each packet treated independently
- Packets can take any practical route
- Packets may arrive out of order
- Packets may go missing
- Up to receiver to re-order packets and recover from missing packets

#### **Virtual Circuit**

- Preplanned route established before any packets sent
- Call request and call accept packets establish connection (handshake)
- Each packet contains a virtual circuit identifier instead of destination address
- No routing decisions required for each packet
- Clear request to drop circuit
- Not a dedicated path


## **Virtual Circuits v Datagram**

- Virtual circuits
  - Network can provide sequencing and error control
  - Packets are forwarded more quickly
    - No routing decisions to make
  - Less reliable
    - Loss of a node looses all circuits through that node
- Datagram
  - No call setup phase
    - Better if few packets
  - More flexible
    - Routing can be used to avoid congested parts of the network

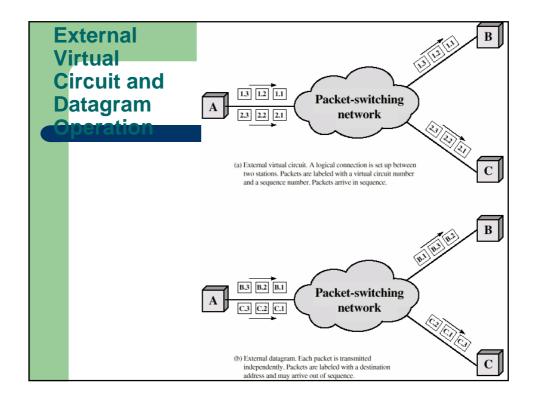


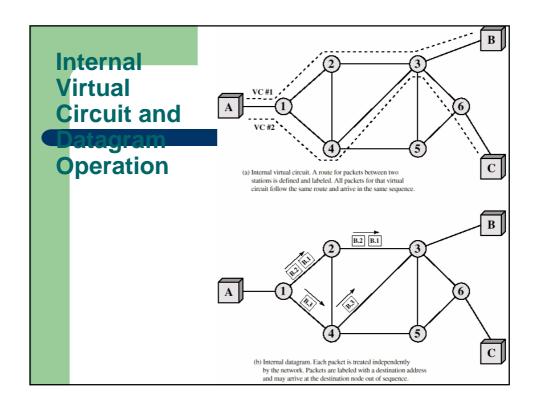
## **Circuit v Packet Switching**

- Performance
  - Propagation delay
  - Transmission time
  - Node delay



#### **External and Internal Operation**


- · Packet switching datagrams or virtual circuits
- Interface between station and network node
  - Connection oriented
    - Station requests logical connection (virtual circuit)
    - All packets identified as belonging to that connection & sequentially numbered
    - Network delivers packets in sequence
    - External virtual circuit service
    - e.g. X.25
    - Different from internal virtual circuit operation
  - Connectionless
    - Packets handled independently
    - External datagram service
    - Different from internal datagram operation

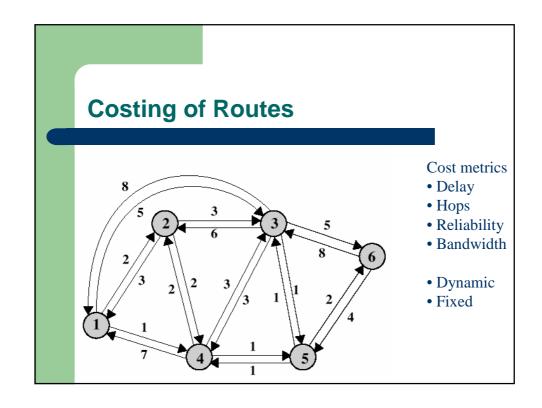

#### **Combinations (1)**

- External virtual circuit, internal virtual circuit
  - Dedicated route through network
- External virtual circuit, internal datagram
  - Network handles each packet separately
  - Different packets for the same external virtual circuit may take different internal routes
  - Network buffers at destination node for re-ordering

## **Combinations (2)**

- External datagram, internal datagram
  - Packets treated independently by both network and user
- External datagram, internal virtual circuit
  - External user does not see any connections
  - External user sends one packet at a time
  - Network sets up logical connections






## Routing

- Complex, crucial aspect of packet switched networks
- Characteristics required
  - Correctness
  - Simplicity
  - Robustness
  - Stability
  - Fairness
  - Optimality
  - Efficiency

#### **Performance Criteria**

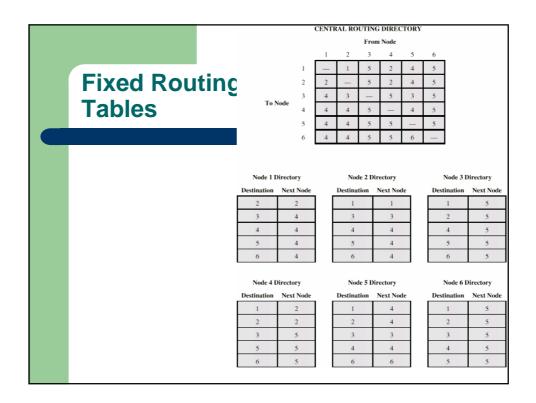
- Used for selection of route
- Minimum hop
- Least cost
  - See Stallings appendix 10A for routing algorithms



#### **Decision Time and Place**

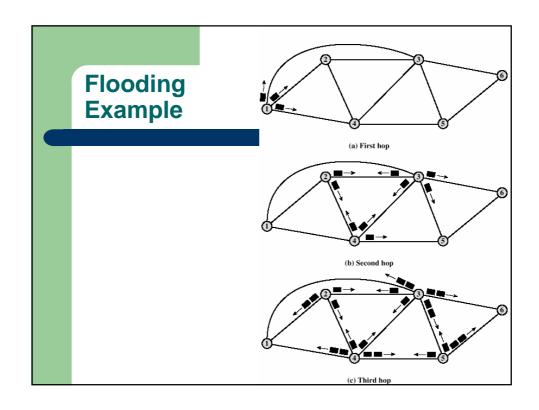
- Time
  - Packet or virtual circuit basis
- Place
  - Distributed
    - Made by each node
  - Centralized
  - Source

# **Network Information Source and Update Timing**


- Routing decisions usually based on knowledge of network (not always)
- Distributed routing
  - Nodes use local knowledge
  - May collect info from adjacent nodes
  - May collect info from all nodes on a potential route
- Central routing
  - Collect info from all nodes
- Update timing
  - When is network info held by nodes updated
  - Fixed never updated
  - Adaptive regular updates

## **Routing Strategies**

- Fixed
- Flooding
- Random
- Adaptive


## **Fixed Routing**

- Single permanent route for each source to destination pair
- Determine routes using a least cost algorithm (appendix 10A)
- Route fixed, at least until a change in network topology



#### **Flooding**

- No network info required
- Packet sent by node to every neighbor
- Incoming packets retransmitted on every link except incoming link
- Eventually a number of copies will arrive at destination
- Each packet is uniquely numbered so duplicates can be discarded
- Nodes can remember packets already forwarded to keep network load in bounds
- Can include a hop count in packets



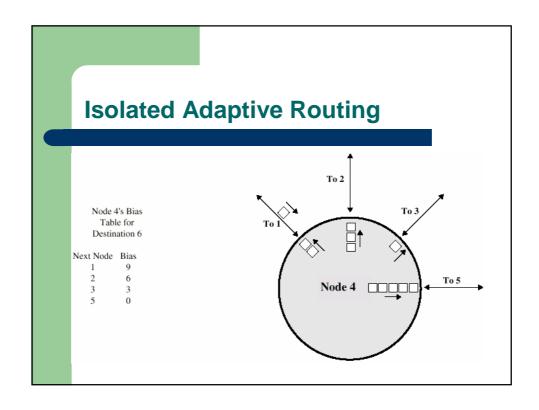
## **Properties of Flooding**

- All possible routes are tried
  - Very robust
- At least one packet will have taken minimum hop count route
  - Can be used to set up virtual circuit
- All nodes are visited
  - Useful to distribute information (e.g. routing)

#### **Random Routing**

- Node selects one outgoing path for retransmission of incoming packet
- Selection can be random or round robin
- Can select outgoing path based on probability calculation
- No network info needed
- Route is typically not least cost nor minimum hop

#### **Adaptive Routing**


- Used by almost all packet switching networks
- Routing decisions change as conditions on the network change
  - Failure
  - Congestion
- Requires info about network
- Decisions more complex
- Tradeoff between quality of network info and overhead
- Reacting too quickly can cause oscillation
- Too slowly to be relevant

## **Adaptive Routing - Advantages**

- Improved performance
- Aid congestion control (See chapter 12)
- Complex system
  - May not realize theoretical benefits

#### Classification

- Based on information sources
  - Local (isolated)
    - Route to outgoing link with shortest queue
    - Can include bias for each destination
    - Rarely used do not make use of easily available info
  - Adjacent nodes
  - All nodes



## **ARPANET Routing Strategies(1)**

- First Generation
  - 1969
  - Distributed adaptive
  - Estimated delay as performance criterion
  - Bellman-Ford algorithm (appendix 10a)
  - Node exchanges delay vector with neighbors
  - Update routing table based on incoming info
  - Doesn't consider line speed, just queue length
  - Queue length not a good measurement of delay
  - Responds slowly to congestion

#### **ARPANET Routing Strategies(2)**

- Second Generation
  - -1979
  - Uses delay as performance criterion
  - Delay measured directly
  - Uses Dijkstra's algorithm (appendix 10a)
  - Good under light and medium loads
  - Under heavy loads, little correlation between reported delays and those experienced

## **ARPANET Routing Strategies(3)**

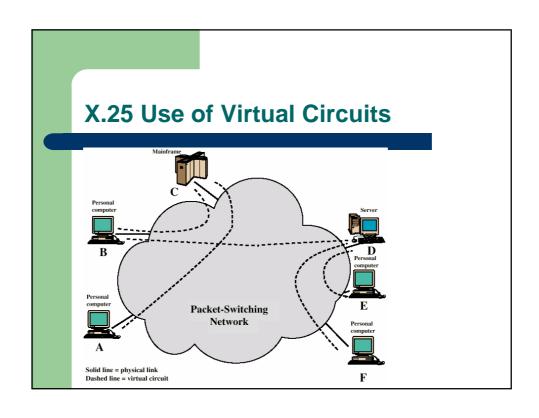
- Third Generation
  - 1987
  - Link cost calculations changed
  - Measure average delay over last 10 seconds
  - Normalize based on current value and previous results

#### X.25

- 1976
- Interface between host and packet switched network
- Almost universal on packet switched networks and packet switching in ISDN
- Defines three layers
  - Physical
  - Link
  - Packet

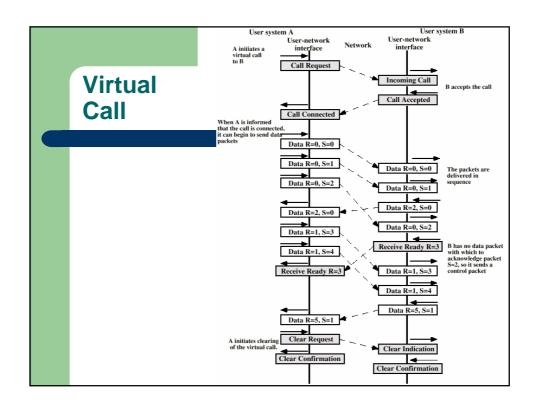
## 25 - Physical

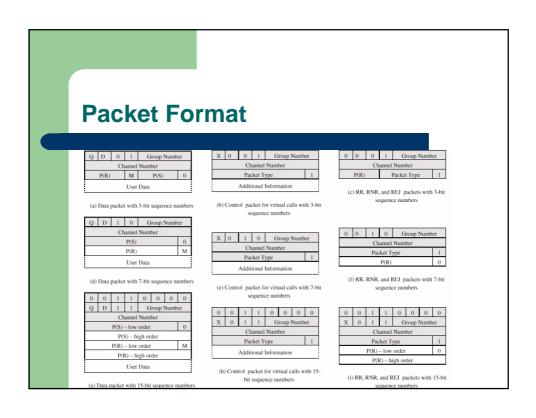
## X.25 - Physical


- **PAD**
- Interface between attached station and link to node
- Data terminal equipment DTE (user equipment)
- Data circuit terminating equipment DCE (node)
- Uses physical layer specification X.21
- Reliable transfer across physical link
- Sequence of frames

#### **X.25 - Link**

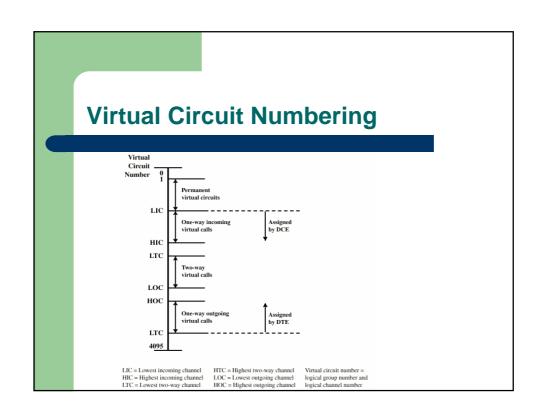
- Link Access Protocol Balanced (LAPB)
  - Subset of HDLC
  - see chapter 7


#### X.25 - Packet


- External virtual circuits
- Logical connections (virtual circuits) between subscribers



#### **Virtual Circuit Service**


- Virtual Call
  - Dynamically established
- Permanent virtual circuit
  - Fixed network assigned virtual circuit





## Multiplexing

- DTE can establish 4095 simultaneous virtual circuits with other DTEs over a single DTC-DCE link
- Packets contain 12 bit virtual circuit number



#### **Packet Sequences**

- Complete packet sequences
- Allows longer blocks of data across network with smaller packet size without loss of block integrity
- A packets
  - M bit 1, D bit 0
- B packets
  - The rest
- Zero or more A followed by B

#### **Reset and Restart**

- Reset
  - Reinitialize virtual circuit
  - Sequence numbers set to zero
  - Packets in transit lost
  - Up to higher level protocol to recover lost packets
  - Triggered by loss of packet, sequence number error, congestion, loss of network internal virtual circuit
- Restart
  - Equivalent to a clear request on all virtual circuits
  - E.g. temporary loss of network access