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Chapter 4 Chapter 4 –– Finite FieldsFinite Fields
The next morning at daybreak, Star flew indoors, The next morning at daybreak, Star flew indoors, 
seemingly keen for a lesson. I said, "Tap eight." She seemingly keen for a lesson. I said, "Tap eight." She 
did a brilliant exhibition, first tapping it in 4, 4, then did a brilliant exhibition, first tapping it in 4, 4, then 
giving me a hasty glance and doing it in 2, 2, 2, 2, giving me a hasty glance and doing it in 2, 2, 2, 2, 
before coming for her nut.  It is astonishing that Star before coming for her nut.  It is astonishing that Star 
learned to count up to 8 with no difficulty, and of her learned to count up to 8 with no difficulty, and of her 
own accord discovered that each number could be own accord discovered that each number could be 
given with various different divisions, this leaving no given with various different divisions, this leaving no 
doubt that she was consciously thinking each number. doubt that she was consciously thinking each number. 
In fact, she did mental arithmetic, although unable, In fact, she did mental arithmetic, although unable, 
like humans, to name the numbers. But she learned like humans, to name the numbers. But she learned 
to recognize their spoken names almost immediately to recognize their spoken names almost immediately 
and was able to remember the sounds of the names. and was able to remember the sounds of the names. 
Star is unique as a wild bird, who of her own free will Star is unique as a wild bird, who of her own free will 
pursued the science of numbers with keen interest pursued the science of numbers with keen interest 
and astonishing intelligence.and astonishing intelligence.

—— Living with BirdsLiving with BirdsLiving with BirdsLiving with BirdsLiving with BirdsLiving with BirdsLiving with BirdsLiving with Birds, Len Howard, Len Howard, Len Howard, Len Howard, Len Howard, Len Howard, Len Howard, Len Howard



2

IntroductionIntroduction

•• will now introduce finite fieldswill now introduce finite fields

•• of increasing importance in cryptographyof increasing importance in cryptography

–– AES, Elliptic Curve, IDEA, Public KeyAES, Elliptic Curve, IDEA, Public Key

•• concern operations on concern operations on ““numbersnumbers””
–– where what constitutes a where what constitutes a ““numbernumber”” and the typand the typ

e of operations varies considerablye of operations varies considerably

•• start with concepts of groups, rings, fields start with concepts of groups, rings, fields 
from abstract algebrafrom abstract algebra

GroupGroup

•• a set of elements or a set of elements or ““numbersnumbers””
•• with some operation whose result is with some operation whose result is 
also in the set (closure) also in the set (closure) 

•• obeys:obeys:
–– associative law:associative law: ((a.b).ca.b).c = = a.(b.ca.(b.c))

–– has identity has identity ee:: e.ae.a = = a.ea.e = a= a

–– has inverses has inverses aa--11:: a.aa.a--11 = e= e

•• if commutative if commutative a.ba.b = = b.ab.a

–– then forms an then forms an abelianabelianabelianabelianabelianabelianabelianabelian groupgroupgroupgroupgroupgroupgroupgroup
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Cyclic GroupCyclic Group

•• define define exponentiationexponentiationexponentiationexponentiationexponentiationexponentiationexponentiationexponentiation as repeated applicatas repeated applicat
ion of operatorion of operator
–– example:example: aa--33 = = a.a.aa.a.a

•• and let identity be:and let identity be: e=e=aa00

•• a group is cyclic if every element is a powa group is cyclic if every element is a pow
er of some fixed elementer of some fixed element
–– ieie b =b = aakk for some for some aa and every and every bb in groupin group

•• aa is said to be a generator of the groupis said to be a generator of the group

RingRing

•• a set of a set of ““numbersnumbers”” with two operations (addition with two operations (addition 
and multiplication) which are:and multiplication) which are:

•• an an abelianabelian group with addition operation group with addition operation 
•• multiplication:multiplication:

–– has closurehas closure
–– is associativeis associative
–– distributive over addition:distributive over addition: a(b+ca(b+c) = ) = abab + ac+ ac

•• if multiplication operation is commutative, it if multiplication operation is commutative, it 
forms a forms a commutative ringcommutative ringcommutative ringcommutative ringcommutative ringcommutative ringcommutative ringcommutative ring

•• if if multiplication operation has inverses and no multiplication operation has inverses and no 
zero divisors, it forms an zero divisors, it forms an integral domainintegral domainintegral domainintegral domainintegral domainintegral domainintegral domainintegral domain
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FieldField

•• a set of numbers with two operations:a set of numbers with two operations:

–– abelianabelian group for addition group for addition 

–– abelianabelian group for multiplication (ignoring 0) group for multiplication (ignoring 0) 

–– ring ring 

Modular ArithmeticModular Arithmetic

•• define define modulo operatormodulo operatormodulo operatormodulo operatormodulo operatormodulo operatormodulo operatormodulo operator a mod na mod n to be remaindeto be remainde

r when a is divided by nr when a is divided by n

•• use the term use the term congruencecongruencecongruencecongruencecongruencecongruencecongruencecongruence for: for: a a ≡≡ b mod nb mod n

–– when divided by when divided by n,n, a & b have same remainder a & b have same remainder 

–– eg. 100 = 34 mod 11 eg. 100 = 34 mod 11 

•• b is called the b is called the residueresidueresidueresidueresidueresidueresidueresidue of a mod nof a mod n
–– since with integers can always write: since with integers can always write: a = a = qnqn + b+ b

•• usually have usually have 0 <= b <= n0 <= b <= n--11
--12 mod 7 12 mod 7 ≡≡ --5 mod 7 5 mod 7 ≡≡ 2 mod 7 2 mod 7 ≡≡ 9 mod 79 mod 7
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Modulo 7 ExampleModulo 7 Example

... ... 
--21 21 --20 20 --19 19 --18 18 --17 17 --16 16 --15 15 
--14 14 --13 13 --12 12 --11 11 --10  10  --9  9  --88
--7  7  --6  6  --5  5  --4  4  --3  3  --2  2  --1 1 
0   1   2   3   4   5   60   1   2   3   4   5   6
7   8   9  10  11  12  13 7   8   9  10  11  12  13 
14  15  16  17  18  19  20 14  15  16  17  18  19  20 
21  22  23  24  25  26  27 21  22  23  24  25  26  27 
28  29  30  31  32  33  34 28  29  30  31  32  33  34 
... ... 

DivisorsDivisors

•• say a nonsay a non--zero number zero number bb dividesdividesdividesdividesdividesdividesdividesdivides aa if if 
for some for some mm have have a=a=mbmb ((a,b,ma,b,m all all 

integers) integers) 

•• that is that is bb divides into divides into aa with no with no 

remainder remainder 

•• denote this denote this b|ab|a

•• and say that and say that bb is a is a divisordivisordivisordivisordivisordivisordivisordivisor of of aa

•• eg. all of 1,2,3,4,6,8,12,24 divide 24 eg. all of 1,2,3,4,6,8,12,24 divide 24 
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Modular Arithmetic OperationsModular Arithmetic Operations

•• is 'clock arithmetic'is 'clock arithmetic'

•• uses a finite number of values, and loops uses a finite number of values, and loops 
back from either endback from either end

•• modular arithmetic is when do addition & modular arithmetic is when do addition & 
multiplication and modulo reduce answermultiplication and modulo reduce answer

•• can do reduction at any point, can do reduction at any point, ieie
–– a+ba+b mod n = [a mod n + b mod n] mod nmod n = [a mod n + b mod n] mod n

Modular ArithmeticModular Arithmetic

•• can do modular arithmetic with any groucan do modular arithmetic with any grou
p of integers: p of integers: ZZnn = {0, 1, = {0, 1, …… , , 
nn--1}1}

•• form a commutative ring for additionform a commutative ring for addition

•• with a multiplicative identitywith a multiplicative identity

•• note some peculiaritiesnote some peculiarities
–– if if ((a+ba+b))≡≡((a+ca+c) mod n ) mod n thenthen bb≡≡cc mod nmod n

–– but but ((abab))≡≡(ac) mod n (ac) mod n thenthen bb≡≡cc mod n mod n 
only ifonly if a a is relatively prime tois relatively prime to nn
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Modulo 8 ExampleModulo 8 Example

Greatest Common Divisor (GCD)Greatest Common Divisor (GCD)

•• a common problem in number theorya common problem in number theory

•• GCD (GCD (a,ba,b) of a and b is the largest ) of a and b is the largest 
number that divides evenly into both a number that divides evenly into both a 
and b and b 

–– egeg GCD(60,24) = 12GCD(60,24) = 12

•• often want often want no common factorsno common factorsno common factorsno common factorsno common factorsno common factorsno common factorsno common factors (except 1) (except 1) 
and hence numbers are and hence numbers are relatively primerelatively primerelatively primerelatively primerelatively primerelatively primerelatively primerelatively prime

–– eg GCD(8,15) = 1eg GCD(8,15) = 1

–– hence 8 & 15 are relatively prime hence 8 & 15 are relatively prime 
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Euclid's GCD AlgorithmEuclid's GCD Algorithm

•• an efficient way to find the an efficient way to find the GCD(a,bGCD(a,b))

•• uses theorem that: uses theorem that: 
–– GCD(a,bGCD(a,b) = ) = GCD(bGCD(b, a mod b), a mod b)

•• Euclid's AlgorithmEuclid's AlgorithmEuclid's AlgorithmEuclid's AlgorithmEuclid's AlgorithmEuclid's AlgorithmEuclid's AlgorithmEuclid's Algorithm to compute to compute 
GCD(a,bGCD(a,b): ): 
–– A=a, B=bA=a, B=b

–– while B>0while B>0
•• R = A mod BR = A mod B

•• A = B, B = RA = B, B = R

–– return Areturn A

Example GCD(1970,1066)Example GCD(1970,1066)

1970 = 1 x 1066 + 904 1970 = 1 x 1066 + 904 gcd(1066, 904)gcd(1066, 904)

1066 = 1 x 904 + 162 1066 = 1 x 904 + 162 gcd(904, 162)gcd(904, 162)

904 = 5 x 162 + 94 904 = 5 x 162 + 94 gcd(162, 94)gcd(162, 94)

162 = 1 x 94 + 68 162 = 1 x 94 + 68 gcd(94, 68)gcd(94, 68)

94 = 1 x 68 + 26 94 = 1 x 68 + 26 gcd(68, 26)gcd(68, 26)

68 = 2 x 26 + 16 68 = 2 x 26 + 16 gcd(26, 16)gcd(26, 16)

26 = 1 x 16 + 10 26 = 1 x 16 + 10 gcd(16, 10)gcd(16, 10)

16 = 1 x 10 + 6 16 = 1 x 10 + 6 gcd(10, 6)gcd(10, 6)

10 = 1 x 6 + 4 10 = 1 x 6 + 4 gcd(6, 4)gcd(6, 4)

6 = 1 x 4 + 2 6 = 1 x 4 + 2 gcd(4, 2)gcd(4, 2)

4 = 2 x 2 + 0 4 = 2 x 2 + 0 gcd(2, 0)gcd(2, 0)
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Galois FieldsGalois Fields

•• finite fields play a key role in cryptographyfinite fields play a key role in cryptography

•• can show number of elements in a finite can show number of elements in a finite 
field field mustmustmustmustmustmustmustmust be a power of a prime be a power of a prime ppnn

•• known as Galois fieldsknown as Galois fields

•• denoted denoted GF(pGF(pnn))

•• in particular often use the fields:in particular often use the fields:

–– GF(pGF(p))

–– GF(2GF(2nn))

Galois Fields Galois Fields GF(pGF(p))

•• GF(pGF(p) is the set of integers {0,1, ) is the set of integers {0,1, …… , p, p--1} 1} 

with arithmetic operations modulo prime pwith arithmetic operations modulo prime p

•• these form a finite fieldthese form a finite field

–– since have multiplicative inversessince have multiplicative inverses

•• hence arithmetic is hence arithmetic is ““wellwell--behavedbehaved”” and caand ca

n do addition, subtraction, multiplication, n do addition, subtraction, multiplication, 
and division without leaving the field and division without leaving the field GF(pGF(p))
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Example GF(7)Example GF(7)

Finding InversesFinding Inverses

•• can extend Euclidcan extend Euclid’’s algorithm:s algorithm:
EXTENDED EXTENDED EUCLID(EUCLID(mm, , bb))

1.1. (A1, A2, A3)=(1, 0, (A1, A2, A3)=(1, 0, mm); ); 

(B1, B2, B3)=(0, 1, (B1, B2, B3)=(0, 1, bb))

2. if 2. if B3 = 0B3 = 0

return return A3 = A3 = gcd(gcd(mm, , bb); no inverse); no inverse

3. if 3. if B3 = 1 B3 = 1 

return return B3 = B3 = gcd(gcd(mm, , bb); B2 = ); B2 = bb––11 mod mod mm

4. 4. Q = A3 div B3Q = A3 div B3

5. 5. (T1, T2, T3)=(A1 (T1, T2, T3)=(A1 –– Q B1, A2 Q B1, A2 –– Q B2, A3 Q B2, A3 –– Q B3)Q B3)

6. 6. (A1, A2, A3)=(B1, B2, B3)(A1, A2, A3)=(B1, B2, B3)

7. 7. (B1, B2, B3)=(T1, T2, T3)(B1, B2, B3)=(T1, T2, T3)

8. 8. gotogoto 22
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Inverse of 550 in GF(1759)Inverse of 550 in GF(1759)

Polynomial ArithmeticPolynomial Arithmetic

•• can compute using polynomialscan compute using polynomials

•• several alternatives availableseveral alternatives available
–– ordinary polynomial arithmeticordinary polynomial arithmetic

–– poly arithmetic with poly arithmetic with coordscoords mod pmod p

–– poly arithmetic with poly arithmetic with coordscoords mod p and polymod p and poly
nomials mod nomials mod M(xM(x))
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Ordinary Polynomial ArithmeticOrdinary Polynomial Arithmetic

•• add or subtract corresponding coefficientsadd or subtract corresponding coefficients

•• multiply all terms by each othermultiply all terms by each other

•• egeg
–– let let ff((xx) = ) = xx33 + + xx22 + 2 and + 2 and gg((xx) = ) = xx22 –– x x + 1+ 1
ff((xx) + ) + gg((xx) = ) = xx33 + 2+ 2xx22 –– x x + 3+ 3
ff((xx) ) –– gg((xx) = ) = xx33 + + x x + 1+ 1
ff((xx) x ) x gg((xx) = ) = xx55 + 3+ 3xx22 –– 22x x + 2+ 2

Polynomial Arithmetic with ModulPolynomial Arithmetic with Modul
o Coefficientso Coefficients

•• when computing value of each coefficient when computing value of each coefficient 
do calculation modulo some valuedo calculation modulo some value

•• could be modulo any primecould be modulo any prime

•• but we are most interested in mod 2but we are most interested in mod 2

–– ieie all coefficients are 0 or 1all coefficients are 0 or 1

–– eg. let eg. let ff((xx) = ) = xx33 + + xx22 and and gg((xx) = ) = xx22 + + x x + 1+ 1

ff((xx) + ) + gg((xx) = ) = xx33 + + x x + 1+ 1

ff((xx) x ) x gg((xx) = ) = xx55 + + xx22
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Modular Polynomial ArithmeticModular Polynomial Arithmetic

•• can write any polynomial in the form:can write any polynomial in the form:
–– ff((xx) = ) = qq((xx) ) gg((xx) + ) + rr((xx))
–– can interpret can interpret rr((xx) ) as being a remainderas being a remainder

–– rr((xx) = ) = ff((xx) mod ) mod gg((xx))

•• if have no remainder say if have no remainder say gg((xx) divides ) divides ff((xx))

•• if if gg((xx) has no divisors other than itself & 1 ) has no divisors other than itself & 1 
say it is say it is irreducibleirreducibleirreducibleirreducibleirreducibleirreducibleirreducibleirreducible (or prime) polynomial(or prime) polynomial

•• arithmetic modulo an irreducible polynomiaarithmetic modulo an irreducible polynomia
l forms a fieldl forms a field

Polynomial GCDPolynomial GCD

•• can find greatest common divisor for can find greatest common divisor for polyspolys
–– c(xc(x)) = = GCD(GCD(a(xa(x), ), b(xb(x))) if ) if c(xc(x)) is the poly of greateis the poly of greate
st degree which divides both st degree which divides both a(xa(x), ), b(xb(x))

–– can adapt Euclidcan adapt Euclid’’s Algorithm to find it:s Algorithm to find it:

–– EUCLID[EUCLID[aa((xx)), , bb((xx)])]

1.1. A(A(xx) = ) = aa((xx); ); B(B(xx) = ) = bb((xx))

2.2.2.2.2.2.2.2. 2. if 2. if 2. if 2. if 2. if 2. if 2. if 2. if B(B(xx) = 0 ) = 0 return return return return return return return return A(A(xx) = ) = gcd[gcd[aa((xx)), , bb((xx)])]

3. 3. 3. 3. 3. 3. 3. 3. R(R(xx) = ) = A(A(xx) mod ) mod B(B(xx))

4. 4. 4. 4. 4. 4. 4. 4. A(A(xx) ) ¨̈B(B(xx))

5. 5. 5. 5. 5. 5. 5. 5. B(B(xx) ) ¨̈R(R(xx))

6. 6. 6. 6. 6. 6. 6. 6. gotogotogotogotogotogotogotogoto 22
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Modular Polynomial ArithmeticModular Polynomial Arithmetic

•• can compute in field GF(2can compute in field GF(2nn) ) 

–– polynomials with coefficients modulo 2polynomials with coefficients modulo 2

–– whose degree is less than nwhose degree is less than n

–– hence must reduce modulo an irreducible poly hence must reduce modulo an irreducible poly 
of degree n (for multiplication only)of degree n (for multiplication only)

•• form a finite fieldform a finite field

•• can always find an inversecan always find an inverse
–– can extend Euclidcan extend Euclid’’s Inverse algorithm to finds Inverse algorithm to find

Example GF(2Example GF(233))
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Computational ConsiderationsComputational Considerations

•• since coefficients are 0 or 1, can represent since coefficients are 0 or 1, can represent 
any such polynomial as a bit stringany such polynomial as a bit string

•• addition becomes XOR of these bit stringsaddition becomes XOR of these bit strings

•• multiplication is shift & XORmultiplication is shift & XOR

–– cfcf longlong--hand multiplicationhand multiplication

•• modulo reduction done by repeatedly subsmodulo reduction done by repeatedly subs
tituting highest power with remainder of irrtituting highest power with remainder of irr
educible poly (also shift & XOR)educible poly (also shift & XOR)

SummarySummary

•• have considered:have considered:

–– concept of groups, rings, fieldsconcept of groups, rings, fields

–– modular arithmetic with integersmodular arithmetic with integers

–– EuclidEuclid’’s algorithm for GCDs algorithm for GCD

–– finite fields finite fields GF(pGF(p))

–– polynomial arithmetic in general and in GF(polynomial arithmetic in general and in GF(
22nn) ) 


