Remote Procedure Calls
(RPC)

Architecture

Diskless Support
Service

Services (Future)

Distributed File Service

‘ Other Distributed

Remote Procedure Calls

‘ Threads ‘

Local Procedures

Application ————

Procedure

Main
Body

Procedure

Remote Procedures

Applicaton —————————*

Why RPC?

Extend familiar local procedure call paradigm
Hide underlying networking technologies
Mask differences in data representations

A useful mechanism for distributing
processing at a high level

- Easier to use and more powerful than
sockets

7 Procedure
Main
Body
T Procedure
Client Network Server
DCE RPC

* Provides interoperability for heterogeneous
systems

* Works consistently with different types of
transports

¢ Includes application development tools and
runtime support

* Integrated with other DCE services:
- Threads
- Directory services
- Security

Interfacing Local and Remote Procedures

RPC interface,
specified in IDL

An Example Interface Definition in IDL

[uuid(a01d0280-2d27-11c9-9fd3-08002b0ecefl),
version(1.0)]

interface math{
const long ARRAY_SIZE = 10;
typedef long array_type[ARRAY_SIZE];
long get_sum([in] long first, [in] long second);
void get_sums([in] array_type a,
[in] array_type b,
[out] array_type c);

MAIN BODY
A() A(l) Procedure A()
Procedure B()
()
cql) Procedure C()
Client Server
Stubs
/// i Procedure
Main . Client N Server
Body . — Stubs / Stubs
T E Procedure
Client Network Server

Overview of RPC Operation

Where Stubs Come From

Interface

definition
in IDL

Picc=n

IDL
Compiler

— | Header File

" [senerswp)

Calling @ o o Remote
Program Procedure
RPC Interface RPC Interface
Client Server
sup (2 ® Stub
RPC RPC
Runtime @ @ Runtime
Network
Client Server
More on IDL

* IDL is a purely declarative language
- Defines only types and procedure headers
* Its syntax is similar to C
It supports:
- Interface definition files (.idl)
- Attribute configuration files (.acf)
« Familiar programming language data typing

- Extensions for distributed programming are
added

Interface Identification: UUIDs

Interf;
AN .

in IDL
Defines RPC
interface IDL -
T Compiler — | Header File
uuID

\ Server Stub

RPC Application Development: A Diagram

Client Source | ————————————— Client
Executable

\<Ii b Source
Interface RPC

ient Stul
Definition | (. 'PL Header File i
Compiler l Runtime

File Library

Attribute / Server Stub Source

Configuration
File \
Server Source Executable

Reguirements for Effective RPC

* Resolve differences in data representation

» Support a variety of execution semantics

* Support multi-threaded programming

» Provide good reliability

* Provide independence from transport protocols
« Ensure high degree of security

» Locate required services across networks

DCE RPC Runtime Library

Application Code

Communication Directory Security
Service Service Service

Resolution of Data Representation Differences

* RPC automatically resolves data representation
differences between heterogeneous systems

« Support is implemented in stubs generated by the IDL
compiler

* DCE uses a receiver makes right scheme

» DCE's approach maximizes RPC performance
between homogeneous systems

RPC Execution Semantics (1)

« If arequestis sent, but no response is received, what
should the requestor do?
— If the request is blindly retransmitted, the remote procedure might
be executed twice (or more)
— If the request is not retransmitted, the remote procedure might not
be executed at all
« Some remote procedures can safely be executed twice
— Such procedures are said toi de@mpotent

RPC Execution Semantics (2)

* Remote procedures must execute with desired behavior

» Execution semantics in DCE RPC:
— At most once (Default)
— ldempotent: at least once, possibly many times
— Broadcast: a special case of idempotent semantics

— Maybe: no response is expected, and the request might not get
through, either

Integration of RPC with Threads

. g Clients can make Servers can service
Client Server = plereq pl
> =
caling Caled | = R | i
Code Remote | = —] |
Procedure| = " v
= Client /8{_'_
= ver
+
/ RPCThread = —
Calling thread (blocks z ‘
& waits for RPC thread) z Client ¥ v
B Server

DCE RPC Protocols

RPC
DG RPC CNRPC Protocols

Network
Protocols

| uopip || TCPIP |

Specifying Protocols

« Client and server must specify a protocol sequence (called
a protseq)
» A protseq contains:
— RPC protocol
— Network address family
— Transport protocol
« Server has a choice with protocol sequences:
— Support all available protocol sequences
— Select the protocol sequence(s) to support

Daemons: rpcd and dced

* In DCE 1.0, a daemon calledcd runs on every system
that supports RPC servers
— It stores transport endpoints (ports) in an endpoint map
— Clients contact it to learn server endpoints
e In DCE 1.1, rpcd is replaced loiged
— It performs the functions of rpcd
— It improves the security of the endpoint map
— It starts servers on demand

RPC Security (1)

« Distributed applications may require a number of security
measures, including:
— Authentication
— Authorization (access control)
— Data integrity
— Data privacy
» DCE Security provides high level of security
* RPC is integrated with DCE Security

RPC Security (2)

RPC = Authentication < p Autheniication = rec
Runtime = Runtime Runtime = Runtime
Client Server
Clients request services

viaauthenticated RPC E = E
RPCs can use checksums
for dataintegrity and Servers make access decisions
encryption for data privacy using Access Control Lists

attached to objects

Location of Services (1)

 In adistributed environment
— Servers need to advertise their services
— Clients need to identify compatible servers
» The DCE Directory Service is used for this
* The RPC runtime can access the Directory Service

— The Directory Service APl used by RPC applications is called the
Name Service Interface (NSI)

Location of Services (2)

-‘m

Cell
Directory
Service

Summary

* DCE RPC is a commercial-strength offering
» DCE RPC service provides:
— Runtime facility
— Development tools
* Itis an integrated package
— Integrated with directory service
— Integrated with threads
— Integrated with security
A flexible tool for developers

