
1

Threads

Address Space

T
H
R
E
A
D

T
H
R
E
A
D

T
H
R
E
A
D

T
H
R
E
A
D

Address Space

Single-threaded process Multi-threaded process

Why Threads?

• Means of effectively exploiting inherent
parallelism in a distributed environment

• Different parts of an application can run in
parallel

• Less overhead than processes: multiple threads
share heap storage, static storage, and code, but
each thread has its own registers and stack

• In multi-processor systems, threads can run
concurrently on different processors

Threads in a Client/Server Environment

Servers can service
multiple clients
simultaneously

Clients can make
multiple requests
simultaneously

Clients Servers

DCE Threads
• Threads are available on every DCE

platform

• Other DCE services use threads for their
operation

• Based on POSIX 1003.4a threads interface
specification (known as pthreads)
– The POSIX standard is now available on HP-

UX, ULTRIX, OSF/1, etc.

– DCE threads are based on pthreads.

Library Threads vs. Kernel Threads

T
H
R
E
A
D

T
H
R
E
A
D

T
H
R
E
A
D

Common Address Space

Thread scheduling, etc.

Kernel without Threads support

T
H
R
E
A
D

T
H
R
E
A
D

T
H
R
E
A
D

Common Address Space

Thread scheduling, etc.

Kernel with Threads support

pthreads API

Concepts of Thread Operation
• Threads progress independently

• Threads within a process share same
address space

• Threads can synchronize with one another

• Adding threads to a system may require
changes
– The process using threads must be reentrant

– The system libraries must be thread-safe

2

Basic pthreads Routines

• pthread_create()

• pthread_exit()

• pthread_join()

• pthread_yield()

A Simple Example
Thread 1

pthread_create()

Thread 2
pthread_create()

pthread_exit()

pthread_join()

pthread_exit()

Executing Waiting

Time

Thread Synchronization: Mutexes

• A mutex (mutual exclusion) is used to
ensure integrity of shared resources

• Before using a shared resource each thread
locks the mutex; it unlocks it after use
– A thread attempting to lock an already locked

mutex may block

• Mutexes are purely advisory; all threads
must follow the rules

Some pthreads Routines for Mutexes

• pthread_mutex_init()

• pthread_mutex_destroy()

• pthread_mutex_lock()

• pthread_mutex_trylock()

• pthread_mutex_unlock()

A Mutex Example
int count = 1;
pthread_mutex_t count_mutex;

Thread 1 Thread 2

pthread_mutex_lock(&count_mutex);
count++;
printf(“count is=%d”, count);
pthread_mutex_unlock(&count_mutex);

pthread_mutex_lock(&count_mutex);

count++;
printf(“count is=%d”,count);
pthread_mutex_unlock(&count_mutex);

Executing Waiting

Thread Synchronization:
Condition Variables

• A condition variable allows a thread to
block its own execution until it is signaled
by another thread that some shared data is
in a specific state.

• A condition variable is used for thread
synchronization

3

Some pthreads Routines for Condition
Variables

• pthread_cond_init()

• pthread_cond_destroy()

• pthread_cond_wait()

• pthread_cond_timedwait()

• pthread_cond_signal()

• pthread_cond_broadcast()

A Condition Variable Example
pthread_cond_t queue_cond;
pthread_mutex_t queue_mutex;

Adding a queue entry

pthread_mutex_lock(&count_mutex);
while(queue_length == 0)
pthread_cond_wait(&queue_cond,&queue_mutex);

pthread_mutex_lock(&count_mutex);

enqueue();
queue_length++;
pthread_cond_signal(&queue_cond);
pthread_mutex_unlock(&queue_mutex);

Executing Waiting

int queue_length;

Removing a queue entry

dequeue();
queue_length--;
pthread_mutex_unlock(&queue_mutex);

Thread-safe System Calls
• System calls can cause problems without

kernel threads
– If a call blocks, it might block the entire process

instead of just the thread

• DCE provides wrapper routines for I/O
– When a thread invokes a system call that could

block, the wrapper is called

– The wrapper ensures that the entire process is
not blocked

Summary
• Threads are a modern concurrency

mechanism

• General purpose, well-suited for distributed
environment

• Comprehensive support for application
development

• Integrated with an used by other DCE
components

• Based on POSIX draft

