
Implementation of UDP and TCP

CS587x Lecture 2CS587x Lecture 2
Department of Computer Science

Iowa State University

A typical message as it appears on the network.

2-2

OSI 7-Layer Model

IP Header

0 1 3 4
0 1 2 3 4 5 6 7 8 9 A B C D E F 0 1 2 3 4 5 6 7 8 9 A B C D E F
+-+
|Version| HL |Type of Service| Total Length |
+-+
| Identification |Flags| Fragment Offset |
+-++-+
| Time to Live | Protocol | Header Checksum |
+-+
| Source Address |
+-+
| Destination Address |
+-+
| Options | Padding |
+-+

Internet Protocol (IP)

Service
n Send/receive a packet to/from a remote machine

Interface 1: IP_Send(dest, buf)
n Create a packet (IP header + buf)
n Find a routing path to host dest
n Send the data in buf to host dest
Interface 2: IP_Recv(buf)
n Receive an IP packet
n Deposit the packet into buf
n Return the packet size

Service
n Send/receive a packet to/from a remote machine

Interface 1: IP_Send(dest, buf)
n Create a packet (IP header + buf)
n Find a routing path to host dest
n Send the data in buf to host dest
Interface 2: IP_Recv(buf)
n Receive an IP packet
n Deposit the packet into buf
n Return the packet size

Problems of IP

The interface is called by all applications in
the same machine
n How to decide which application gets which

packets?
IP Packets have limited size
n Each packet can be no more than 64K bytes

IP is connectionless and does not guarantee
packet delivery
n Packets can be delayed, dropped, reordered,

duplicated
No congestion control

The interface is called by all applications in
the same machine
n How to decide which application gets which

packets?
IP Packets have limited size
n Each packet can be no more than 64K bytes

IP is connectionless and does not guarantee
packet delivery
n Packets can be delayed, dropped, reordered,

duplicated
No congestion control

Concept of Port

Each connection links to a specific port
n (srcIP, srcPort, dstIP, dstPort) uniquely identifies
each connection

Totally there are 65535 ports
n Well known ports (0-1023): everyone agrees which

services run on these ports
w e.g., ssh:22, http:80, snmp: 24
wAccess to these ports needs administrator privilege

n Ephemeral ports (most 1024-65535): given to clients
w e.g. chatclient gets one of these
w Port contention rises

Each connection links to a specific port
n (srcIP, srcPort, dstIP, dstPort) uniquely identifies
each connection

Totally there are 65535 ports
n Well known ports (0-1023): everyone agrees which

services run on these ports
w e.g., ssh:22, http:80, snmp: 24
wAccess to these ports needs administrator privilege

n Ephemeral ports (most 1024-65535): given to clients
w e.g. chatclient gets one of these
w Port contention rises

UDP Implementation
Service

n Send datagram from (srcIP, srcPort) to (dstIP, dstPort)
n Service is unreliable, but error detection possible

Interface
n UDP_Send(dstIP, buf, port)
n UDP_Recv(buf, port)

Header

Service
n Send datagram from (srcIP, srcPort) to (dstIP, dstPort)
n Service is unreliable, but error detection possible

Interface
n UDP_Send(dstIP, buf, port)
n UDP_Recv(buf, port)

Header

Source Port

0 15 16 31

UDP length UDP checksum

Payload (variable)

Destination Port

v UDP includes UDP header and payload, but not IP header

payloadUPD HeaderIP Header

UDP Implementation

payloadUPD HeaderIP Header

Port List

p1 p2 n UDP_Recv(buf, port)
1. IP_recv(buf)

p1

1. IP_recv(buf)
2. Get port information from the udp

header encoded in buf
3. Any listener on port?

a) Yes, drop the payload to the
message queue of the listener
and wake it up (if it is waiting)

b) No, discard the packet

TCP Design Goals

Provide multiplexing/demultiplexing to IP
Messages can be of arbitrary length
Provide reliable and in-order delivery
Provide congestion control and avoidance

Provide multiplexing/demultiplexing to IP
Messages can be of arbitrary length
Provide reliable and in-order delivery
Provide congestion control and avoidance

TCP Implementation

Start a connection

Reliable byte stream delivery from
(srcIP, srcPort) to (dstIP, dstPort)

Indication if connection fails: Reset

Terminate connection

Start a connection

Reliable byte stream delivery from
(srcIP, srcPort) to (dstIP, dstPort)

Indication if connection fails: Reset

Terminate connection

TCP Header
Source port Destination port

Options (variable)

Sequence number
Acknowledgement

Advertised window
Checksum Urgent pointer

FlagsHdrLen

0 4 10 16 31

Payload (variable)

Sequence number, acknowledgement, and advertised window
– used by sliding-window based flow control
Flags:

n SYN – establishing a TCP connection
n FIN – terminating a TCP connection
n ACK – set when Acknowledgement field is valid
n URG – urgent data; Urgent Pointer says where non-urgent data

starts (not defined by standard, but specific to implementation)
n PUSH – don’t wait to fill segment
n RESET – abort connection

Payload (variable)

SYN k

SYN n; ACK k+1
DATA k+1; ACK n+1

ACK k+n+1
data exchange

Connect/Exchange/Terminate
3-way handshake

data exchange

FIN

FIN ACK
½ close

FIN

FIN ACK ½ close

Connection: 3-Way Handshake
Three messages (i.e., syn, syn, ack) are exchanged
before data transmission
Exchange sequence number, total buffer size and the size
of the largest segment that can be handled at each side

Client (initiator) Server
Active
Openconnect() listen()Active
Open

Passive
Open

connect() listen()

accept()

allocate
buffer space

Why 3WH?

Three-way handshake adds 1 RTT delay
nExpensive for small connections such as RPC

Why?
nCongestion control: SYN (40 byte) acts as
cheap probe

nProtects against delayed packets from other
connection (would confuse receiver)

Three-way handshake adds 1 RTT delay
nExpensive for small connections such as RPC

Why?
nCongestion control: SYN (40 byte) acts as
cheap probe

nProtects against delayed packets from other
connection (would confuse receiver)

DoS: TCP SYN Flooding
How it works: exhausting system resources

n Using a faked IP address
n Initiates a TCP connection to a server with a faked IP address

w Sends a SYN message
w The server responses with a SYN-ACK
w Since the address does not exist, the server needs to wait until time out

n The server never receives the ACK (the final stage of the TCP connection)
n Repeat with a new faked IP address

w Repeat at a pace faster than the TCP timeouts release the resources
w All resources will be in use and no more incoming connection requests

can be accepted.
Some common ways to present

n Install firewall
w choose deny instead of reject, which sends a message back to the sender

n Close all ports that are not in using
n Deny requests from unusual IP addresses

w Private address
w Mulitcast address, etc.

How it works: exhausting system resources
n Using a faked IP address
n Initiates a TCP connection to a server with a faked IP address

w Sends a SYN message
w The server responses with a SYN-ACK
w Since the address does not exist, the server needs to wait until time out

n The server never receives the ACK (the final stage of the TCP connection)
n Repeat with a new faked IP address

w Repeat at a pace faster than the TCP timeouts release the resources
w All resources will be in use and no more incoming connection requests

can be accepted.
Some common ways to present

n Install firewall
w choose deny instead of reject, which sends a message back to the sender

n Close all ports that are not in using
n Deny requests from unusual IP addresses

w Private address
w Mulitcast address, etc.

Termination: 4-Way Handshake

Four messages (FIN, ACK, FIN, ACK) are
exchanged to terminate a connection
n FIN from B to A

w B does not transmit any new data, but is still
responsible for any corrupted data

n ACK from A to B
n FIN from A to B

w After reading all of the bytes from B, A sends FIN to B

n ACK from B to A
w The connection is formally closed

Four messages (FIN, ACK, FIN, ACK) are
exchanged to terminate a connection
n FIN from B to A

w B does not transmit any new data, but is still
responsible for any corrupted data

n ACK from A to B
n FIN from A to B

w After reading all of the bytes from B, A sends FIN to B

n ACK from B to A
w The connection is formally closed

Exchange: Stop & Wait

DATA

Sender

Receiver

Send; wait for ack
If timeout, retransmit; else repeat

TRANS

ACK

Time

RTT Inefficient if
TRANS << RTT
Inefficient if
TRANS << RTT

Sliding Window Protocol
n Transmit up to n unacknowledged packets/bytes
n If timeout for ACK(k), retransmit k, k+1, …

Exchange: Go-Back-n (GBN)

Example without errors
n = 9 packets in one
RTT instead of 1

à Fully efficient

Time

Example with errors
Window size = 3 packets

1
2
3
4
5
6

Time

Sender Receiver

5
6

7
Timeout
Packet 5

5
6
7

Observations

Pros:
n It is possible to fully utilize a link, provided the

sliding window size is large enough. Throughput
is ~ (w/RTT)

n Stop & Wait is like w = 1.

Cons:
n Sender has to buffer all unacknowledged packets,

because they may require retransmission
n Receiver may be able to accept out-of-order

packets, but only up to its buffer limits

Pros:
n It is possible to fully utilize a link, provided the

sliding window size is large enough. Throughput
is ~ (w/RTT)

n Stop & Wait is like w = 1.

Cons:
n Sender has to buffer all unacknowledged packets,

because they may require retransmission
n Receiver may be able to accept out-of-order

packets, but only up to its buffer limits

Sliding Window Size
What size should the window be?
n Too small:

w Inefficient, degenerated to S&W when w=1
n Too large:

w more buffer required for both sender and receiver
w Transmitting too fast results in network congestion and packet lost

Congestion control
n Slow-start phase

w Initially set to be 1 or 2
w Increase the window by 1 for each ACK received (this results in

multiplicatively increase)
n Congestion-avoidance phase

w The window is increased by only 1 at a time after it is larger than the
slow-start threshold (i.e., half of the size that causes congestion)

n In the case some packet is lost, the window is decreased by half
(window / 2).

What size should the window be?
n Too small:

w Inefficient, degenerated to S&W when w=1
n Too large:

w more buffer required for both sender and receiver
w Transmitting too fast results in network congestion and packet lost

Congestion control
n Slow-start phase

w Initially set to be 1 or 2
w Increase the window by 1 for each ACK received (this results in

multiplicatively increase)
n Congestion-avoidance phase

w The window is increased by only 1 at a time after it is larger than the
slow-start threshold (i.e., half of the size that causes congestion)

n In the case some packet is lost, the window is decreased by half
(window / 2).

Timer

The sender needs to set timers in order to
know when to retransmit a packet that may
have been lost
How long to set the timer for?
n Too short: may retransmit before data or ACK has

arrived, creating duplicates
n Too long: if a packet is lost, will take a long time

to recover (inefficient)

The sender needs to set timers in order to
know when to retransmit a packet that may
have been lost
How long to set the timer for?
n Too short: may retransmit before data or ACK has

arrived, creating duplicates
n Too long: if a packet is lost, will take a long time

to recover (inefficient)

Illustrations

1 1

1

1
RTT

1

Timer too long Timer too short

Adaptation

The amount of time the sender should wait
is about the round-trip time (RTT) between
the sender and receiver
n For link-layer networks (LANs), this value is

essentially known
n For multi-hop WANS, rarely known
Must work in both environments, so protocol
should adapt to the path behavior
Measure successive ack delays T(n)
Set timeout = average + 4 deviations

The amount of time the sender should wait
is about the round-trip time (RTT) between
the sender and receiver
n For link-layer networks (LANs), this value is

essentially known
n For multi-hop WANS, rarely known
Must work in both environments, so protocol
should adapt to the path behavior
Measure successive ack delays T(n)
Set timeout = average + 4 deviations

Questions of ACKs

What exactly should the receiver ACK?
Some possibilities:
n ACK every packet, giving its sequence number
n use cumulative ACK, where an ACK for number n

implies ACKS for all k < n
n use negative ACKs (NACKs), indicating which

packet did not arrive
n use selective ACKs (SACKs), indicating those that

did arrive, even if not in order

What exactly should the receiver ACK?
Some possibilities:
n ACK every packet, giving its sequence number
n use cumulative ACK, where an ACK for number n

implies ACKS for all k < n
n use negative ACKs (NACKs), indicating which

packet did not arrive
n use selective ACKs (SACKs), indicating those that

did arrive, even if not in order

Parallel FTP?

Multi-Source Downloading
n A large file may be available on multiple servers

w The connections to these servers may not be reliable

n To speed up downloading, a client may download
the file from several servers
w Subject to the limitation of client download bandwidth

n What factors to consider?
w Which part of the file should be downloaded from a

server
w What happens if some server is down?
w How about disk I/O cost?

Multi-Source Downloading
n A large file may be available on multiple servers

w The connections to these servers may not be reliable

n To speed up downloading, a client may download
the file from several servers
w Subject to the limitation of client download bandwidth

n What factors to consider?
w Which part of the file should be downloaded from a

server
w What happens if some server is down?
w How about disk I/O cost?

Summary

UDP: Multiplex, detect errors
TCP: Reliable Byte Stream
n Connect (3WH); Exchange; Close (4WH)
n Reliable transmissions: ACKs…
n S&W not efficient à Go-Back-n
n What to ACK? (cumulative, …)
n Timer Value: based on measured RTT

UDP: Multiplex, detect errors
TCP: Reliable Byte Stream
n Connect (3WH); Exchange; Close (4WH)
n Reliable transmissions: ACKs…
n S&W not efficient à Go-Back-n
n What to ACK? (cumulative, …)
n Timer Value: based on measured RTT

Review of TCP/IP Suite
IP header à used for IP routing, fragmentation, error
detection, etc.
UDP header à used for multiplexing/demultiplexing, error
detection
TCP header à used for multiplexing/demultiplexing, data
streaming, flow and congestion control

IP header à used for IP routing, fragmentation, error
detection, etc.
UDP header à used for multiplexing/demultiplexing, error
detection
TCP header à used for multiplexing/demultiplexing, data
streaming, flow and congestion control

IP

TCP UDPdataTCP/UDP

dataTCP/UDPIP

Application
Sender

data

IP

TCP UDP

Application
Receiver

dataTCP/UDP

dataTCP/UDPIP

data

Socket Programming (C/Java)

Internet Socket

Socket provides an interface for a
programmer to write applications that
communicate between two hosts across IP
network
Socket types of interest
n SOCK_STREAM

wMaps to TCP in the AF_INET family

n SOCK_DGRAM
wMaps to UDP in the AF_INET family

Socket provides an interface for a
programmer to write applications that
communicate between two hosts across IP
network
Socket types of interest
n SOCK_STREAM

wMaps to TCP in the AF_INET family

n SOCK_DGRAM
wMaps to UDP in the AF_INET family

Client-Server Architecture

Client Server
request

response

Client requests service from server
Server responds with sending service
or error message to client

request

Simple Client-Server Example

Client Server
request

response

socket()

socket()
bind()
listen()

Connection
socket()
connect()
send()

recv()
close()

listen()
accept()

recv()

send()

recv()
close()

Connection
establishment

Data response

Data request

End-of-file notification

Example: Client Programming

Create stream socket (socket())
Connect to server (connect())
While still connected:
n send message to server (send())
n receive (recv()) data from server and

process it

Create stream socket (socket())
Connect to server (connect())
While still connected:
n send message to server (send())
n receive (recv()) data from server and

process it

Initializing Socket

Getting the file descriptor
int cSock;
if ((cSock = socket(AF_INET, SOCK_STREAM, NULL)) < 0)
{

perror("socket");
printf("Failed to create socket\n");
abort ();

}

Getting the file descriptor
int cSock;
if ((cSock = socket(AF_INET, SOCK_STREAM, NULL)) < 0)
{

perror("socket");
printf("Failed to create socket\n");
abort ();

}

Connecting to Server

struct hostent *host = gethostbyname(argv[1]);
unsigned int svrAddr = *(unsigned long *) host->h_addr_list[0];
unsigned short svrPort = atoi(argv[2]);

struct sockaddr_in sin;
memset (&sin, 0, sizeof(sin));
sin.sin_family = AF_INET;sin.sin_family = AF_INET;
sin.sin_addr.s_addr = svrAddr;
sin.sin_port = htons(svrPort);

if (connect(cSock, (struct sockaddr *) &sin, sizeof(sin)) < 0)
{

fprintf(stderr, "Cannot connect to server\n");
abort();

}

Sending Packets

int send_packets(char *buffer, int buffer_len)
{

sent_bytes = send(cSock, buffer, buffer_len, 0);
if (send_bytes < 0)
{

fprintf(stderr, “cannot send. \n”);
}
return 0;

}

Needs socket descriptor,
Buffer containing the message, and
Length of the message

int send_packets(char *buffer, int buffer_len)
{

sent_bytes = send(cSock, buffer, buffer_len, 0);
if (send_bytes < 0)
{

fprintf(stderr, “cannot send. \n”);
}
return 0;

}

Needs socket descriptor,
Buffer containing the message, and
Length of the message

Receiving Packets

int receive_packets(char *buffer, int bytes)
{

int received = 0;
int total = 0;
while (bytes != 0)
{{

received = recv(cSock, buffer[total], bytes);
if (received == -1) return –1;
if (received == 0) return total;
bytes = bytes – received;
total = total + received;

}
return total;

}

Example: Server Programming

create stream socket (socket())
Bind port to socket (bind())
Listen for new client (listen())
user connects (accept())
data arrives from client (recv())

data has to be send to client (send())

create stream socket (socket())
Bind port to socket (bind())
Listen for new client (listen())
user connects (accept())
data arrives from client (recv())

data has to be send to client (send())

Why bind?
Server application needs to call bind() to tell
operating system (i.e. network layer) which port to
listen
Client application does not need bind()
n Any port can be used to send data
n The server application will get the port number of the

client application through the UDP/TCP packet header
Server port must be known by client application in
order to connect to the server
How to handle if a port has been used by another
application?

Server application needs to call bind() to tell
operating system (i.e. network layer) which port to
listen
Client application does not need bind()
n Any port can be used to send data
n The server application will get the port number of the

client application through the UDP/TCP packet header
Server port must be known by client application in
order to connect to the server
How to handle if a port has been used by another
application?

Server Programming
struct hostent *host = gethostbyname (argv[1]);
unsigned int svrAddr = *(unsigned long *) host->h_addr_list[0];
unsigned short svrPort = atoi (argv[2]);
struct sockaddr_in sin;
memset (&sin, 0, sizeof (sin));
sin.sin_family = AF_INET;
sin.sin_addr.s_addr = svrAddr;
sin.sin_port = htons (svrPort); /* network byte order (big-endian) */
int svrSock = socket(AF_INET, SOCK_STREAM, 0);
if (bind(svrSock, (struct sockaddr *) &sin, sizeof(sin)) < 0) if (bind(svrSock, (struct sockaddr *) &sin, sizeof(sin)) < 0)
{

fprintf(stderr, "Cannot bind to network\n");
abort();

}
listen(svrSock, 5); /* maximum 5 connections will be queued */
while (1)
{

int cltSock = accept(svrSock, (struct sockaddr *)&cli_addr, &clilen);
/* launch a new thread to take care of this client connection */
/* cli_addr contains the address of the connecting client */
/* clilent is the buffer length that is valid in cli_addr */
/* both cli_addr and clileng are optional */
}

Java Socket Programming

Java Sokets
TCP stream
n java.net.Socket
n java.net.ServerSocket

UDP packet
n Java.net.DatagramPacket
n java.net.DatagramSocket

TCP stream
n java.net.Socket
n java.net.ServerSocket

UDP packet
n Java.net.DatagramPacket
n java.net.DatagramSocket

Socket

java.net.Socket is used by clients to make
a bi-directional connection with server
Socket constructors
n Socket(String hostname, int port)
n Socket(InetAddress addr, int port)
n Socket(String hostname, int port, InetAddress localAddr, int localPort)

/* specify a specific NIC and port to use */
n Socket(InetAddress addr, int port, InetAddress localAddr, int localPort)

Creating socket
Socket csweb = new Socket(“www.cs.iastate.edu", 80);

java.net.Socket is used by clients to make
a bi-directional connection with server
Socket constructors
n Socket(String hostname, int port)
n Socket(InetAddress addr, int port)
n Socket(String hostname, int port, InetAddress localAddr, int localPort)

/* specify a specific NIC and port to use */
n Socket(InetAddress addr, int port, InetAddress localAddr, int localPort)

Creating socket
Socket csweb = new Socket(“www.cs.iastate.edu", 80);

Socket Input & Output
try
{

String s;
Socket socket = new Socket(“www.cs.iastate.edu”, 80);
BufferedReader reader = new BufferedReader(

new InputStreamReader(socket.getInputStream()));
PrintStream pstream = new PrintStream(socket.getOutputStream());
pstream.println(“GET /”);
while ((s = reader.readLine()) != null)
{

try
{

String s;
Socket socket = new Socket(“www.cs.iastate.edu”, 80);
BufferedReader reader = new BufferedReader(

new InputStreamReader(socket.getInputStream()));
PrintStream pstream = new PrintStream(socket.getOutputStream());
pstream.println(“GET /”);
while ((s = reader.readLine()) != null)
{

System.out.println(s);
}

}
catch (Exception e)
{

System.err.println(“Error: “ + e);
}

Socket() attempts to connect the server immediately
Cannot set or change remote host and port
Socket constructors may block while waiting for the remote host to
respond

Some Socket Options

void setReceiveBufferSize()
void setSendBufferSize()
void setTcpNoDelay()

void setSoTimeout()

void setReceiveBufferSize()
void setSendBufferSize()
void setTcpNoDelay()

void setSoTimeout()

ServerSocket
ServerSocket is used by server to accept client
connections
ServerSocket constructor

public ServerSocket(int port)
public ServerSocket(int port, int backlog)
public ServerSocket(int port, int backlog, InetAddress networkInterface)

Creating a ServerSocket
ServerSocket ss = new ServerSocket(80, 50);

A closed ServerSocket cannot be reopened

ServerSocket is used by server to accept client
connections
ServerSocket constructor

public ServerSocket(int port)
public ServerSocket(int port, int backlog)
public ServerSocket(int port, int backlog, InetAddress networkInterface)

Creating a ServerSocket
ServerSocket ss = new ServerSocket(80, 50);

A closed ServerSocket cannot be reopened

A Simple Server
try
{

ServerSocket ss = new ServerSocket(2345);
Socket s = ss.accept();
PrintWriter pw = new PrintWriter(s.getOutputStream());
pw.println("Hello There!"); pw.println("Hello There!");
pw.println("Goodbye now.");
s.close();

}
catch (IOException ex)
{

System.err.println(ex);
}

Sending UDP Datagrams
1. Convert the data into byte array.
2. Create a DatagramPacket using the array
3. Create a DatagramSocket using the packet and then call send()

method

ExampleExample

InetAddress dst = new InetAddess(“cs.iastate.edu");
String s = “This is my datagram packet"
byte[] b = s.getBytes();
DatagramPacket dp = new DatagramPacket(b, b.length, dst, 2345);
DatagramSocket sender = new DatagramSocket();
sender.send(dp);

Note: DatagramPacket object can be reused (e.g., setting different dst
and port).

Receiving UDP Datagrams
1. Construct an empty DatagramPacket (with a buffer)
2. Pass the object to a DatagramSocket (with a port)
3. Call the DatagramSocket's receive() method
4. The calling thread blocks until a datagram is received

byte buffer = new byte[1024]; byte buffer = new byte[1024];
DatagramPacket incoming = new DatagramPacket(buffer, buffer.length);
DatagramSocket ds = new DatagramSocket(2345);
ds.receive(incoming);
byte[] data = incoming.getData();
String s = new String(data, 0, incoming.getLength());
System.out.println("Port" + incoming.getPort() +

" on " + incoming.getAddress() +
" sent this message:");

System.out.println(s);

A Mistake You Want to Avoid
byte[] buf = new byte[1024];
DatagramPacket incoming = new DatagramPacket(buf, buf.length);
DatagramSocket ds = new DatagramSocket(2345);
for (;;)
{

ds.receive(incoming);
byte[] data = incoming.getData();byte[] data = incoming.getData();
new DataProcessor(data).start();

}

class DataProcessor(byte[] data) extends Thread
{

// processing data[] …
}

Correct Way
byte[] buf = new byte[1024];
DatagramPacket incoming = new DatagramPacket(buf, buf.length);
DatagramSocket ds = new DatagramSocket(2345);
for (;;)
{

ds.receive(incoming);
byte[] data = new byte[incoming.getLength()];byte[] data = new byte[incoming.getLength()];
System.arraycopy(incoming.getData(), 0, data, 0, data.length);
new DataProcessor(data).start();

}

class DataProcessor(byte[] data) extends Thread
{

// processing data[] …
}

Redundant Array of Inexpensive Disk

RAID Management
n Monitor the health condition of RAID

subsystems
w disks, fans, power supplies, temperatures, etc.

n Report any failure instantly
n Provide disaster recovery

w array rebuild, spare disks reassign, etc.

RAID Management
n Monitor the health condition of RAID

subsystems
w disks, fans, power supplies, temperatures, etc.

n Report any failure instantly
n Provide disaster recovery

w array rebuild, spare disks reassign, etc.

Remote and Centralized
Storage Management

Homework #1

(UDP) Send beacon every minute

Assigned on Sept. 7, 2005

Due on 3:00PM, Sept. 21, 2005

Server
(java code)

(UDP) Send beacon every minute

Client
(C code)

(TCP) Send command and get result back

Client Design: Two Threads
BeaconSender: Send the following message to server every
minute using UDP datagram
struct BEACON
{

int ID; // randomly generated during startup
int StartUpTime; // the time when the client starts
char IP[4]; // the IP address of this client
int CmdPort; // the client listens to this port for cmd

}

CmdAgent: Receive and execute remote commands and
send results back using TCP socket. You implement two
commands:
(1) void GetLocalOS(char OS[16], int *valid)

// OS[16] contains the local operation system name
// valid = 1 indicates OS is valid

(2) void GetLocalTime(int *time, int *valid)
// time contains the current system clock
// valid = 1 indicates time is valid

BeaconSender: Send the following message to server every
minute using UDP datagram
struct BEACON
{

int ID; // randomly generated during startup
int StartUpTime; // the time when the client starts
char IP[4]; // the IP address of this client
int CmdPort; // the client listens to this port for cmd

}

CmdAgent: Receive and execute remote commands and
send results back using TCP socket. You implement two
commands:
(1) void GetLocalOS(char OS[16], int *valid)

// OS[16] contains the local operation system name
// valid = 1 indicates OS is valid

(2) void GetLocalTime(int *time, int *valid)
// time contains the current system clock
// valid = 1 indicates time is valid

Server Design
BeaconListener thread

n Receive beacons sent by clients
n For each new client, spawn a thread called ClientAgent

ClientAgent(beacon) thread
n Send command GetLocalOS() to the corresponding client
n Get the result back and display the OS
n Send command GetLocalTime() to the corresponding client
n Get the result back and display the execution time

BeaconListener thread
n Receive beacons sent by clients
n For each new client, spawn a thread called ClientAgent

ClientAgent(beacon) thread
n Send command GetLocalOS() to the corresponding client
n Get the result back and display the OS
n Send command GetLocalTime() to the corresponding client
n Get the result back and display the execution time

