
Socket I/Os in Windows
Dae-Ki Kang

Agenda

• TCP Server/Client
• Multi-Threads
• Synchronization
• Socket IO Model
• WSAAsyncSelect Model
• WSAEventSelect Model
• UDP Server/Client
• Overlapped Model
• Completion Port Model

TCP Server/Client

TCP Server/Client

• listen – server waits for the client
• connect – client connects to server and send

data
• accept – server accepts client and recv data
• send – server sends data to client
• recv – client recv data from server

Necessary things for TCP/IP Socket

• Protocol
• Local IP and port address
• Remote IP and port address

Socket data structure

Functions

bind()
• TCP server function – determine server's local

IP address and local port number

int bind (
SOCKET s,
const struct sockaddr* name,
int namelen

);

• Success:0, Failure: SOCKET_ERROR

listen()

• TCP server function – set TCP port status to
LISTENING to accept client

int listen (
SOCKET s,
int backlog

);

• Success:0, Failure: SOCKET_ERROR

accept()
• TCP server function – create and return a new

socket to communicate with connected client with
client's IP address and port number

SOCKET accept (
SOCKET s,
struct sockaddr* addr,
int* addrlen

);

• Success: new socket, Failure: INVALID_SOCKET

connect()
• TCP client function – connect to server and set

TCP protocol connection

int connect (
SOCKET s,
const struct sockaddr * name,
int namelen

);

• Success:0, Failure: SOCKET_ERROR

Data transmission

send()
• Data transmission function – copy application data

to send buffer

int send(
SOCKET s,
const char * buf,
int len,
int flags

);

• Success: number of bytes, Failure:
SOCKET_ERROR

recv()
• Data transmission function – copy receive buffer to

application buffer

int recv(
SOCKET s,
const char * buf,
int len,
int flags

);

• Success: number of bytes or 0, Failure:
SOCKET_ERROR

Considerations for message design

• Boundary
▫ use data with fixed length
▫ use special symbol for EOR (end of record)
▫ use the length of data in advance and send data

with variable length
• Byte order – network byte order is Big Endian!
• Member ordering

▫ starting address of struct
▫ #progma pack

Multi-Threads

• Process
• Thread – shares global memory inside a process
• Primary Thread

▫ thread started in main() or WinMain()
▫ created when process starts

• Context Switch – store and retrieval of thread's
states

Context switching

What are needed for thread creation?

• Starting address of thread functions
• Size of stack that thread function uses

Consider 2 functions and 3 threads

CreateThread()
• create thread and returns its handle

HANDLE CreateThread(
LPSECURITY_ATTRIBUTE lpThreadAttributes, //NULL
SIZE_T dwStackSize, // 0
LPTHREAD_START_ROUTINE lpStartAddress,

// Thread functon
DWORD dwCreationFlags,

// 0 or CREATE_SUSPENDED
LPDWORD lpThreadID // Thread ID

);

• Success: Thread handle, Failure: NULL

Defining thread function

DWORD WINAPI ThreadProc
(LPVOID lpParameter)

{
......

}

Terminate threads

• The thread function itself returns
• The thread function run ExitThread() function
• Main function call TerminateThread()
• Main thread terminates à all children threads

terminate

ExitThread()

void ExitThread(
DWORD dwExitCode

);

TerminateThread()

BOOL TerminateThread (
HANDLE hThread,

// HANDLE thread to terminate
DWORD dwExitCode // exit code

);

Wait for thread

• WaitForSingleObject();
• WaitForMultipleObjects();

WaitForSingleObject()
DWORD WaitForSingleObject(
HANDLE hHandle,
DWORD dwMilliseconds

);

Success: WAIT_OBJECT_0 or WAIT_TIMEOUT
Failure: WAIT_FAILED

HANDLE hThread = CreateThread(...);
WaitForSingleObject(hThread, INFINITE);

WaitForMultipleObjects()
DWORD WaitForMultipleObjects(
DWORD nCount,
const HANDLE * lpHandles,
BOOL bWaitAll,
DWORD dwMilliseconds

);

• Success: WAIT_OBJECT_0 ~
WAIT_OBJECT_0+nCount-1 or
WAIT_TIMEOUT

• Failure: WAIT_FAILED

Synchronization
• In multithreaded program, two threads try to access

shared memory

• Critical section – one thread for one shared resource
(in a process)

• Mutex – one thread for one shared resource (in
processes)

• Event – notify an event to other threads
• Semaphore – access control
• Waitable timer – wakes waiting thread after some

time

Synchronization

Thread synchronization

Critical section

• Critical section object is in user memory area, so
CS is used for threads in a process

• Faster and more efficient than others

#include <windows.h>
CRITICAL_SECTION cs;
// Thread 1
DWORD WINAPI Thread1(LPVOID arg)
{
EnterCriticalSection(&cs);
// use shared memory
LeaveCriticalSection(&cs);

}

// Thread 2
DWORD WINAPI Thread2(LPVOID arg)
{
EnterCriticalSection(&cs);
// use shared memory
LeaveCriticalSection(&cs);

}
int main()
{
InitializeCriticalSection(&cs);
DeleteCriticalSection(&cs);

}

Event object

• Used to notify events to other threads
▫ auto reset event
▫ manual reset event

• Create event object (not-signaled)
• One thread proceed, the other wait
• After completion, the thread change the event to

be signaled
• The other thread proceed

BOOL SetEvent(HANDLE hEvent); // to signaled
BOOL ResetEvent(HANDLE hEvent); // to un-

signaled

HANDLE CreateEvent(
LPSECURITY_ATTRIBUTE lpEventAttribute;
BOOL bManualReset;
BOOL bInitialState;
LPSTR lpName;

);
Success: Event handle, Fail: NULL

Socket IO Model

• Socket mode – Blocking v. Non-blocking
• Blocking

▫ accept() returns when client connects
▫ send(), sendto() returns when all data transfered
▫ recv(), recvfrom() returns when data arrived

• Non-blocking socket returns even if the
conditions are not met

// create a blocking socket first
SOCKET listen_sock = socket(AF_INET,

SOCK_STREAM, 0);
if (INVALID_SOCKET==listen_sock)

err_quit("socket()");

// and change it to non-blocking socket
u_long on=1;
retval=ioctlsocket(listen_sock, FIONBIO, &on);
if (SOCKET_ERROR==retval)

err_quit("ioctlsocket");

Socket IO Model

• When socket functions are used for non-
blocking socket that is not ready, the function
return FAILURE stuff

• To check for the error code, call
WSAGetLastError()

• Most error code is WSAEWOULDBLOCK, which
means the conditions are not met

• Then the program have to call the socket
function again after sometime

Non-blocking socket

• Pros
▫ the program can continue other work
▫ without multithreads, the program can process

multiple socket IOs
• Cons

▫ has to check for WSAEWOULDBLOCK for all
socket functions, which makes the program
complicated

▫ more CPU usage

Server model
• Repetitive server processes one client at a time

and then process the next
▫ Less resource
▫ Longer wait time

• Concurrent server processes multiple client in
parallel
▫ Shorter wait time ?a client which takes long time

does not affect others
▫ Use multi-processor, multi-process, or multi-

threads, so more resource usage

Ideal server and ideal socket
• Ideal server

▫ all client can connect
▫ server always responds to the client immediately and

send data in high speed
▫ minimize the system resource usage

• Ideal socket IO model
▫ minimal blocking in socket function call
▫ concurrent processing of IO task and other tasks
▫ minimum number of threads
▫ minimize user-mode & kernel mode switch
▫ minimize internal temporary data transfer

Socket I/O model in Windows
Socket IO
model

Windows CE Windows
(client version)

Windows
(server version)

Select CE 1.0+ Window 95+ Windows NT+

WSAAsyncSelect N/A Window 95+ Windows NT+

WSAEventSelect CE.NET 4.0+ Window 95+ Windows NT
3.51+

Overlapped CE.NET 4.0+ Window 95+ Windows NT
3.51+

Completion Port N/A Windows NT 3.5+(except Win
95/98/Me)

WSAAsyncSelect Model

• WSAAsyncSelect() is most crucial
• Process network events related with sockets in

terms of Window Message – can process
multiple sockets without using multi-threads

How it works?

Socket I/O procedure in WSAAsyncSelect model

1. Register a window message and a network
event using WSAAsyncSelect() – For example,
register that when the system can send or
receive data using the socket, invoke a certain
window message

2. When the network event registered occurs, a
window message is invoked, and window
procedure is called

3. Window procedure process appropriate socket
functions based on the message received

WSAAsyncSelect()
int WSAAsyncSelect(
SOCKET s,
HWND hWnd,
unsigned int wMsg,
long lEvent

);

• Success:0, Failure: SOCKET_ERROR

#define WM_SOCKET(WM_USER+1)
// user defined window message

…
WSAAsyncSelect(s,hWnd,WM_SOCKET,FD_READ|FD_WRIT

E)

Network event constants
Network Event Meaning (produce Windows Message when…)

FD_ACCEPT When a client connects

FD_READ When data can be read

FD_WRITE When data can be written

FD_CLOSE When the client disconnects

FD_CONNECT When the client finish connection

FD_OOB When OOB data is arrived
OOB data = Out of Band data (or “urgent data” in TCP)

Window procedure
LRESULT CALLBACK WndProc (HWND hwnd, UINT

msg, WPARAM wParam, LPARAM lParam)
{
…

}

• hWnd - window that generates the message
• msg – user-defined message registered when

WSAAsyncSelect() was invoked
• wParam – socket that causes network event
• lParam – lower 16 bits: network event, higher 16 bits:

error code

WSAEventSelect Model

• WSAEventSelect() is an important function
• Detecting network event using event object

▫ create an event object for each socket
▫ observe the event objects to process multiple

sockets without using multu-threads

How it works

Necessary features

• Event object creation/desctruction:
▫ WSACreateEvent(), WSACloseEvent()

• Pairing socket and event object
▫ WSAEventSelect()

• Noticing signal state of event object
▫ WSAWaitForMultipleEvents()

• Finding out network event detail
▫ WSAEnumNetworkEvents()

Socket IO procedure in WSAEventSelect model

1. Create an event object using WSACreateEvent()
whenever a socket is created

2. Pair socket and event object using WSAEventSelect()
and register network event to process – for example,
register signal state of event object when the system
can send/receive data through socket

3. Call WSAWaitForMultipleEvents() to wait for the
event object to be signaled. When the registered
network event is occurred, the event object related
with the socket become signal state

4. Find out the occurred network event using
WSAEnumNetworkEvents() and call appropriate
socket functions to process the event

Creation/destruction of event object

WSAEVENT WSACreateEvent();
• Success: event object handle, Failure:

WSA_INVALID_EVENT
BOOL WSACloseEvent(WSAEVENT hEvent);
• Success: TRUE, Failure: FALSE

Pairing socket and event

WSAEVENT WSACreateEvent();
• Success: Event Object Handle, Failure:

WSA_INVALID_EVENT

BOOL WSACloseEvent(WSAEVENT hEvent);
• Success: TRUE, Failure: FALSE

Noticing signal state of event object

DWORD WSAWaitForMultipleEvents(
DWORD cEvents,
const WSAEVENT* lphEvents,
BOOL fWaitAll,
DWORD dwTimeout,
BOOL fAlertable

);

• Success: WSA_WAIT_EVENT_0 ~
WSA_WAIT_EVENT_0+cEvents-1 or
WSA_WAIT_TIMEOUT

• Failure: WSA_WAIT_FAILED

Finding out network event detail

int WSAEnumNetworkEvent(
SOCKET s,
WSAEVENT hEventObject,
LPWSAMETWORKEVENTS lpNetworkEvents

);

• Success:0, Failure: SOCKET_ERROR

TCP and UDP: commonalities

• Using port # and address
• Check data error

TCP and UDP: differences
TCP UDP

1 Connection-oriented protocol – data
communication after connection

Connectionless protocol –
communication without connection

2 No data boundary – byte stream
service

Data boundary – datagram

3 Reliable data communication -
resend data

Not reliable data communication –
do not resend data

4 1-to-1 communication (unicast) 1-to-1 communication (unicast)
1-to many (broadcast)
many-to-many (multicast)

UDP’s characteristics

• Usually, connect() function not used
• User applications don’t have to check for data

boundaries
• If needed, user applications have to guarantee

reliable communication (since, reliable
communication was not performed in protocol-
level)

• Easy to implement many-to-many
communication

How UDP server/client work?

UDP/IP socket communication involves

• Protocol for socket creation
• Local IP and address
• Remote IP and address

Socket data structure

UDP server/client architecture

UDP server/client architecture

sendto()
• Data communication function
• Use lower protocol (i.e. UDP/IP) to send application data
• If local IP and local port are not set when sendto() is called, the

system decide them automatically

int sendto (
SOCKET s,
const char* buf,
int len,
int flags,
const struct sockaddr* to,
int tolen

);

• Success: # of sent in byte, Failure: SOCKET_ERROR

sendto() usage
// initialize socket struct with receiver address
SOCKADDR_IN serveraddr;
…
// declare buffer for data to send
char buf[BUFSIZE];

// store data to buffer

// send data
retval = sendto(sock, buf, strlen(buf), 0, (SOCKADDR

*)&serveraddr, sizeof(serveraddr));
if (SOCKET_ERROR == retval) error_processing();
printf(“%d bytes sent\n”, retval);

recvfrom()
• data communication function
• copy received data to application buffer

int recvfrom(
SOCKET s,
char* buf;
int len,
int flags,
struct sockaddr* from,
int* fromlen

);

• Success: # of received in byte, Failure: SOCKET_ERROR

recvfrom() usage
// declare a variable for sender address
SOCKADDR_IN peeraddr;
int addrlen;
// declare buffer to store received data
char buf[BUFSIZE];
// receive data
addrlen=sizeof(peeraddr);
retval=recvfrom(sock, buf, BUFSIZE, 0,

(SOCKADDR*)&peeraddr, &addrlen);
if (SOCKET_ERROR == ret_val) error_processing();
printf(“%d bytes received\n”,retval);

Synchronous IO

• After IO function call, applications wait until IO
is done

• IO functions will return after IO task, and
applications process the results or proceed to the
next task

Synchronous IO

Asynchronous IO

• After IO function call, applications do their work
• When IO tasks are done, OS will notify it to

applications, and the applications will stop their
work and process the IO results

Asynchronous IO

Socket IO Models

• Synchronous IO + Asynchronous Notification
▫ Select Model
▫ WSAAsyncSelect Model
▫ WSAEventSelect Model

• Asynchronous IO + Asynchronous Notification
▫ Overlapped Model (I)
▫ Overlapped Model (II)
▫ Completion Port Model

Overlapped Model’s Procedure

1. Create a socket that supports asynchronous IO
2. Call socket functions that supports

asynchronous IO
3. OS asynchronously notifies the completion of

socket IO and the application processes the
results

Overlapped Models with asynchronous
notification
Model Description

OverlappedModel (I) After the completion of socket IO, OS will change the
status of the event object. Application observes the
event object to detect the completion of IO tasks.

OverlappedModel (II) After the socket IO completion, OS calls the function
registered by the application. Generally, we call such
functions ‘callback functions’. In overlapped model, we
call them completion routines.

Input Function
int WSASend
(

SOCKET s,
LPWSABUF lpBuffers,
DWORD dwBufferCount,
LPDWORD lpNumberOfBytesSent,
DWORD dwFlags,
LPWSAOVERLAPPED lpOverlapped,
LPWSAOVERLAPPED_COMPLETION_ROUTINE

lpCompletionRoutine
);

• Success: 0, Fail: SOCKET_ERROR

Output Function
int WSARecv
(

SOCKET s,
LPWSABUF lpBuffers,
DWORD
LPDWORD lpNumberOfBytesReceived,
LPDWORD lpFlags,
LPWSAOVERLAPPED lpOverlapped,
LPWSAOVERLAPPED_COMPLETION_ROUTINE

lpCompleetionRoutine
);

• Success:0, Fail: SOCKET_ERROR

Data Structure
typedef struct _WSABUF
{

u_long len; // length in byte
char FAR* buf; // buffer’s starting address

} WSABUF, *LPWSABUF;
typedef struct _WSAOVERLAPPED
{

DWORD Internal;
DWORD InternalHigh;
DWORD Offset;
DWORD OffsetHigh;
WSAEVENT hEvent;

} WSAOVERLAPPED, *LPWSAOVERLAPPED;

Overlapped Model (I)’s Socket IO
Procedure
1. Create a socket of asynchronous IO. Then, call WSACreateEvent()

function to create the corresponding event object
2. Call socket functions with asynchronous IO. Put event object

handle value in hEvent variable of WSAOVERLAPPED struct. If
the IO task is not completed soon, the socket function will return
error with code WSA_IO_PENDING. After IO task completion,
the OS will make the event object signaled

3. Call WSAWaitForMultipleEvents() to wait for the object signaled
4. After the asynchronous IO task completed,

WSAWaitForMultipleEvents() will be returned, the main thread
calls WSAGetOverlappedResult() to check asynchronous IO
results and to process data

5. When a new socket is created repeat 1~4, otherwise repeat 2~4

WSAGetOverlappedResult()

BOOL WSAGetOverlappedResult (
SOCKET s,
LPWSAOVERLAPPED lpOverlapped,
LPDWORD lpcbTransfer,
BOOL fWait,
LPDWORD lpdwFlags

);
• Success: TRUE, Fail: FALSE

Overlapped Model (II)

Overlapped Model (II)’s Socket IO
Procedure
1. Create a socket of asynchronous IO.
2. Call socket functions with asynchronous IO with the start address

of completion routine as a parameter. If the asynchronous IO is
not completed soon, the socket function returns error with error
code WSA_IO_PENDING.

3. Set the thread that invoked asynchronous IO function as an
alertable wait state with one of the functions,
WaitForSingleObjectEx(), WaitForMultipleObjectsEx(), SleepEx(),
and WSAWaitForMultipleEvents().

4. After the asynchronous IO task completed, the OS will call the
completion routine to check asynchronous IO results and to
process data.

5. After the completion routine, the thread exit from the alertable
wait state.

6. When a new socket is created repeat 1~5, otherwise repeat 2~5

CompletionRoutine

void CALLBACK Completion Routine
(

DWORD dwError,
DWORD cbTransferred,
LPWSAOVERLAPPED lpOverlapped,
DWORD dwFlags

);

Event kernel object based Overlapped
IO

CompletionRoutine based Overlapped
IO

Completion Port Model

• IO completion port has results of async IO and
handle of thread to process them

• IO completion port v. APC queue
▫ Creation and Destroyal
▫ Access control
▫ Asyns IO processing method

How it works.

Socket IO Procedure
1. Using CreateIoCompletionPort(), create IO completion port.
2. Create worker threads proportional to the # of CPUs. All

worker threads call GetQueuedCompletionStatus() and are
in wait status.

3. Create a socket that supports asynchronous IO. To store the
asynchronous IO result to IO completion port, the thread
calls CreateIoCompletionPort() to connect the socket and
IO completion port.

4. Call an asynchronous IO function. If the IO is not
completed soon, the socket function returns error with
WSA_IO_PENDING.

5. After the asynchronous IO task completed, the OS stores the
results to IO completion port and wakes one thread from
the wait queue. The woke thread process the results.

6. For new created socket, repeat 3~5, otherwise repeat 4~5.

CreateIOCompletionPort()

HANDLE CreateIOCompletionPort(
HANDLE FileHandle,
HANDLE ExistingCompletionPort,
ULONG CompletionKey,
DWORD NumberOfConcurrentThreads

);

• Success: IOCompletionPortHandle, Fail: NULL

GetQueuedCompletionStatus()

BOOL GetQueuedCompletionStatus(
HANDLE CompletionPort,
LPDWORD lpNumberOfBytes,
LPDWORD lpCompletionKey,
LPOVERLAPPED* lpOverlapped,
DWORD dwMilliseconds

);

• Success: non-zero value, Fail: 0

Summary of Socket IO Models
• Synchronous IO + Asynchronous notification

▫ select model
– highly portable (can be used in Linux)
– worst performance
– need to use multiple threads to process 64+ sockets

▫ WSAAsyncSelect model
– Use socket event as Windows Message
– Well coupled with GUI application
– One window procedure processes Windows Message and Socket

message --> can degrade performance
▫ WSAEventSelect model

– Mixture of select model and WSAAsyncSelect model
– Comparable good performance
– window procedure is not needed
– need to use multiple threads to process 64+ sockets

Summary of Socket IO Models
• Asynchronous IO + Asynchronous notification

▫ Overlapped model #1
– Good performance using asynchronous IO
– Need to use multiple threads to process 64+ sockets

▫ Overlapped model #2
– Good performance using asynchronous IO
– Cannot use terminate routine for all asynchronous socket

functions
▫ Completion port model

– Best performance using asynchronous IO and completion port
– Very complicated when compared with simplest socket IO

(blocking socket and one thread)
– Can be used in Windows NT family

