
Chapter 1

Introduction to Evolutionary

Algorithms
Dae-Ki Kang

Notice and disclaimer!

• Most contents of these slides are simple and
literal translation of the Korean lecture slides of
the following book.
▫ 쉽게배우는 유전알고리즘/문병로/한빛미디어

• These slide are made simply because there are
no English lecture slides for the original lecture
slides, i.e. purely educational purpose.

• Any form of the reuse of the materials should be
done only after the permission of the original
author (문병로)

Objectives of this class

• Check the history of evolutionary algorithms

• Understand the basic architecture of
evolutionary algorithms and their operators

• Understand that evolutionary algorithms are not
always suitable for all problems.

Evolutionary Algorithms

• Genetic Algorithm= GA

• Problem solution space search method using the
evolution principle of entities in population
genetics

• One field of “Evolutionary Computation”

• key features - natural selection, crossover,
mutation, population, etc.

Brief of the history

• During 1950’s and 1960’s : Independent studies (without
communication) by some researchers

• Genetic Algorithm(John Holland)
• Evolutionary Programming (Fogel, Owens, Walsh) – crossover was

not used
• Evolution Strategy (Rechenberg) – Start with single thread. Similar

to current GA
• 1975, John Holland, 「Adaptation in Natural and Artificial Systems」
• 1984, due to Holland , SantaFe Institute changes research direction

from Complex System to Adaptive Complex System
• 1985, 1st International Conference on Genetic Algorithms (ICGA)
• 1989, David Goldberg, 「Genetic Algorithms in Search, Optimization

and Machine Learning」
• 1990's Explosion of interests, growing in quantity and quality
• 1997, IEEE Transactions on Evolutionary Computation

Basic terms

• Evolutionary Computation
▫ EC = GA + GP + EP + ES
 EC : Evolutionary Computation
 GA : Genetic Algorithm
 GP : Genetic Programming
 EP : Evolutionary Programming
 ES : Evolution Strategy

• Terms
▫ chromosome
▫ population
▫ gene
▫ genotype
▫ phenotype

Structure of Genetic Algorithms

▫ crossover – create a new chromosome by partially combining two chromosomes
▫ mutation – change a very small portion of a chromosome

 k/n : generation gap
 k ≈ n : generational GA
 k ≈ 1 : steady-state GA

▫ Stopping condition
 e.g. − fixed number of iterations

− probability of population convergence

Create n initial chromosomes;

repeat {

for i ← 1 to k {

pick two chromosomes p1, p2;

offspringi ← crossover (p1, p2);

offspringi ← mutation (offspringi);

}

replace k chromosomes in population with offspring1 , …, offspringk

} until (stopping condition is met);

return the best chromosomes from the population;

[Algorithm 1-1] Structure of GA

Representation

• In the past, chromosome is represented in binary
Binary: 00110010 … 00011111 → Hexadecimal: 32…1F

• Chromosome and solution

• Graph Bipartition

chromosome solution

1 1 Common

k 1 Rare

1 k Very rare

Graph Bipartition In chromosome representation

2

6

9

3 4

87

1

5

10 Chromosome

0011001101

Schema

• Patterns inside chromosomes
• Example

▫ In one binary chromosome whose length is n, there are 2n schemas

▫ Pattern 11*1 is included in chromosomes 1101 and 1111

▫ In chromosome 1101, there are 16 sub-patterns (1***, *1**, **0*, ***1,

11**, 1*0*, 1**1, *10*, *1*1, **01, 110*, 1*01, 11*1, *101, 1101, ****)

• Schema related terminologies

▫ * means don’t care
▫ 0 and 1 are specific symbols.
▫ Defining length is a number of symbols from the leftmost specific symbol

to the rightmost specific symbol in a schema
▫ order is a number of specific symbols in a schema
▫ The example in the right has the order 4

order

1101***

Crossover

• An operation that combines two solutions and
generate one new solution.

• Example
▫ One-point

▫ Three-point

a b c d e f g h i j

k l m n o p q r s t

a b c d e f q r s t

a b c d e f g h i j

k l m n o p q r s t

a b m n o p g h i t

Mutation

• An operation that introduce a new attribute that is
not in the parents to a child solution.

• Example

 Usually the probability is 0.015, or 0.01

• Crossover vs. Mutation
▫ Crossover- more exploitation of the existing solutions
▫ Mutation- more exploration of a new problem space

a b c d e f g h i j

a b c d e f g h x j

Replacement

• Generational GA has no difficulties in replacement
▫ When all generations are replaced, there is no choice

• In steady-state GA, replacement is important for the
performance
▫ Replace the solution of the worst quality
▫ Replace one of the parents
 To preserve the diversity, remove the one that is most

similar to the new one
 Use Hamming distance to calculate the similarity

• Replacement should be determined with the
consideration of crossover and mutation

Problems that GA is useful on

• Problems that GA can help
▫ The problems that traditional derterministic methods

cannot solve easily

• Problems that GA cannot help
▫ The problems that traditional derterministic

algorithms can solve easily
▫ The nature of the problems is what traditional

derterministic algorithms cannot solve easily, but the
particular problem under consideration is too small
(so it is easy and fast to cover all of the problem space)
 e.g. 5-city TSP

