
Probabilistic Graphical Models 
Dae-Ki Kang 



Probabilistic Graphical Models 

• = Probability Theory + Graph Theory 

 



Probability 

• Sum rule (or marginalization) 

▫ P(A) = ∑B P(A,B) 

• Product rule 

▫ P(A,B) = P(B|A)P(A) 

• P(A|B) = P(B|A)P(A)/P(B) 

• P(A)= ∑B P(A|B)P(B) 

 



Decomposition 

• P(A,B,C) = P(A)P(B|A)P(C|A,B) 

• Chaining the product rule 

▫ P(X1,X2,X3,..,Xn)=P(X2,X3,..,Xn|X1)P(X1)=P(X3,
..,Xn|X2,X1)P(X2|X1)P(X1)=…=P(Xn|Xn-
1…X2,X1)…P(X1) 
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Directed Acyclic Graph 

• General Factorization 

▫ P(X1,…Xn)=∏P(Xi|Parent_i) 

• Directed Factorization (DF) 

 

 

All distributions DF 



Example of Directed Graph 

• Hidden Markov models 
• Kalman filters 
• Factor analysis 
• Probabilistic principal component analysis 
• Independent component analysis 
• Mixtures of Gaussians 
• Probabilistic expert systems 
• Sigmoid belief networks 
• Hierarchical mixtures of experts 
• Etc. 



Conditional Intependence 

• If A is independent of B given C 

▫ A  B|C 

▫ P(A|B,C)=P(A|C) 

▫ P(A,B|C)=P(A|B,C)P(B|C)=P(A|C)P(B|C) 

 



Markov Properties 

• We can determine the conditional independence 
properties of a distribution from its graph 

▫ d-separation 

 

 



Markov Properties: Example 1 

• head-to-tail 

• P(A,B,C)=P(A)P(B|A)P(C|B) 

• If we condition on node B 

▫ P(A,C|B)=P(A|B)P(C|B) 

▫ Therefore AC|B 

• If we haven’t observed B 

▫ AC| 

• Observation of B “blocks the path” from A to C 
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Markov Properties: Example 2 

• tail-to-tail 

• P(A,B,C)=P(B)P(A|B)P(C|B) 

• If we condition on node B 

▫ P(A,C|B)=P(A|B)P(C|B) 

▫ Therefore AC|B 

• If we haven’t observed B 

▫ AC| 

• Observation of B “blocks the path” from A to C 
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Markov Properties: Example 3 

• head-to-head 
• P(A,B,C)=P(A)P(B)P(C|A,B) 
• If we don’t observe C 

▫ P(A,B)=P(A)P(B) 
▫ AB| 

• If we condition on node C 
▫ P(A,B|C)≠P(A|C)P(B|C) 
▫ Therefore AB|C 

• Unobserved node C “blocks the path” from A to B 
• Observation of C “unblocks the path” from A to B 
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Implication of d-separation 

• A graphical property of Bayesian networks 

• Implication: If two sets of nodes X and Y are d-
separated in Bayesian networks by a third set Z 
(excluding X and Y), the corresponding variable 
sets X and Y are independent given the variables 
in Z 

 



Definition of d-separation 

• Two sets of nodes X and Y are d-separated in 
Bayesian networks by a third set Z (excluding X 
and Y) if and only if every path between X and Y 
is “blocked”, where the term “blocked” means 
that there is an intermediate variable V (distinct 
from X and Y) in Z such that: 
▫  The connection through V is “tail-to-tail” or “tail-

to-head” and V is instantiated 
▫ Or, the connection through V is “head-to-head” 

and neither V nor any of V’s descendants have 
received evidence. 

 



Markov blanket (MB) 

• The minimal set of nodes which d-separates 
node A from all other nodes is A's Markov 
blanket (MB)  

• The Markov blanket MB(A) of node A in a 
Bayesian network is the set of nodes composed 
of A's parents, its children, and its children's 
parents 



Explaining Away 

• Explaining away is a common pattern of 
reasoning in which the confirmation of one 
cause of an observed or believed event reduces 
the need to invoke alternative causes.  
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Separation for undirected graph 

• Sets A and B of nodes are separated by a third 
set C if every path from any node in A to any 
node in B passes through a node in C 

A B C 



Complete and Clique 

• A set of nodes is complete if there is a link from 
each node to every other node in the set;  

• A clique is a maximal complete set of nodes 

• Example: the following graph has cliques {A,B,C} 
and {B,C,D} 
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Clique potentials 

• A probability distribution is said to factorize 
with respect to a given undirected graph if it can 
be expressed as the product of positive functions 
over the cliques of the graph 

▫ P(X)=(1/Z) ∏c ψc(Xc) where ψc(Xc) are the clique 
potentials, and Z is a normalization constant 

 



Separator 

• A more general representation is the product of 
clique potentials divided by the separator 
potentials (a separator between two cliques is 
the set of nodes they have in common) 
▫ P(X)= (∏C ψC(XC)) / (Z ∏S ψS(XS)) 

• The cliques are {A,B,C} and {B,C,D}, and the 
separator set is {B,C} 
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Undirected factorization 

• A distribution which factorizes according to a 
particular graph is said to respect the undirected 
factorization property F 

• Theorem: for any graph and any distribution      
F ⇒ G 

• Theorem (Hammersley-Clifford): for strictly 
positive distributions and arbitrary graphs G⇔F 

• Also G⇔F for any distribution if, and only if, the 
graph is triangulated 

 


